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Abstract. In this paper, we study an exponential time differencing method for solving
the gauge system of incompressible viscous flows governed by Stokes or Navier-Stokes
equations. The momentum equation is decoupled from the kinematic equation at a
discrete level and is then solved by exponential time stepping multistep schemes in
our approach. We analyze the stability of the proposed method and rigorously prove
that the first order exponential time differencing scheme is unconditionally stable for
the Stokes problem. We also present a compact representation of the algorithm for
problems on rectangular domains, which makes FFT-based solvers available for the
resulting fully discretized system. Various numerical experiments in two and three
dimensional spaces are carried out to demonstrate the accuracy and stability of the
proposed method.
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1 Introduction

As a fundamental model of incompressible viscous flows, the time-dependent parabolic
system of the velocity field u(t,x)=(u1,··· ,ud) and the pressure p(t,x),

{
ut−ν∆u+F(u)+∇p= f, in [0,T]×Ω,

∇·u=0, in [0,T]×Ω
(1.1)

has wide applications in engineering and scientific problems. In the mathematical model,
Ω∈Rd is the domain, f=( f1,··· , fd) represents the body force, F=(F1,··· ,Fd) represents
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the nonlinear convection, and ν> 0 denotes the kinematic viscosity of the fluids. When
F(u) is zero, the system is Stokes; when F(u) = (u·∇)u, the system is Navier-Stokes.
Many numerical methods have been developed for solving the system (1.1) in order to
simulate, predict and/or control the flows (see [10, 11, 14, 15, 25, 33] and references cited
therein).

In the development of efficient time integration methods for the fluid system, spe-
cial attentions have been drawn to deal with the incompressibility constraint. One of the
most popular methods is the projection method (or the so-called fractional step methods),
which was first developed in the late 1960s by Chorin and Temam independently [4, 32].
The basic idea is to decouple the velocity and pressure in a discrete setting so that one
only needs to solve a sequence of elliptic equations. Thus, it would greatly reduce the
computational complexity compared to the original fully coupled system. The exist-
ing projection methods are usually classified into three categories [11]: the pressure-
correction methods, the velocity-correction methods, and the consistent splitting meth-
ods. Among them, the popular pressure-correction methods ignore or treat explicitly the
pressure term in the first sub-step (i.e., treat viscous effect only) and then correct it in the
second sub-step (i.e., treat incompressibility); the velocity-correction methods switch the
roles of velocity and pressure terms as those in the pressure-correction method. In this
approach, the viscous effect is ignored or treated explicitly in the first sub-step and then
corrected in the second one; the consistent splitting methods first compute the velocity
by treating the pressure explicitly, then update the pressure by using the weak form of
a Poisson equation for the pressure. Although these approaches have been widely used,
it is still difficult to develop high-order (in time) schemes for both the velocity and pres-
sure. One of the main reasons is that the boundary condition for the pressure equation in
projection methods is artificial, which limits the flexibility and accuracy of the projection
methods, especially for the pressure approximation.

Another splitting approach is the gauge method [6–8, 29–31]. The method is based
on the Hodge decomposition (or Helmholtz-Hodge decomposition), which states that
a sufficient smooth, rapidly decaying vector field m = (m1,··· ,md) can be decomposed
into the sum of a divergence-free term u (a solenoidal part) and the gradient of a scalar
potential φ (an irrotational part), i.e.,

m(t,x)=u(t,x)+∇φ(t,x), (1.2)

where ∇·u=0 and these two components are orthogonal. The gauge system is reformu-
lated from (1.1), in which the velocity field u and the pressure p are replaced by the aux-
iliary filed m and the gauge variable φ. Based on the Hodge decomposition (1.2) and the
boundary conditions of velocity u, certain simple but consistent boundary conditions can
be assigned for both m and φ. The resulting system consists of a second-order parabolic
problem of m and a Poisson problem of φ that are weakly coupled through the boundary
conditions. In order to fully decouple the auxiliary field from the gauge variable dur-
ing simulations, an explicit extrapolation was used to generate an approximation of the
boundary values of m at a current time step by using its approximations from previous
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time steps [8]. This approach, plus an explicit treatment of the boundary conditions and
an implicit time discretization such as the backward Euler or Crank-Nicolson method,
has been proved to be unconditionally stable for the gauge formulation of Stokes system
and be stable for the gauge formulation of Navier-Stokes when the CFL condition is satis-
fied [36]. Since the resulted discrete system is fully decoupled, the computational cost of
simulations is reduced to solving a parabolic equation and a Poisson equation separately
at each time step.

On the other hand, the exponential integrator based methods, including the expo-
nential time differencing (ETD) [2, 3, 16–22, 34, 37] and the integrating factor approaches
[27, 28], have been proven to be very effective for solving parabolic systems due to their
good performance in preservation of the exponential behavior of the systems, numerical
stability and high-order accuracy. In particular, the ETD method has been well analyzed
for solving general semi-linear parabolic stiff equations. Therefore, in this paper, we syn-
thesize the ETD method with the gauge formulation in a consistent way, which is explicit
in nature with good numerical stability and accuracy, and also allows fast solvers to be
developed on rectangular domains.

The remainder of the paper is organized as follows. In Section 2, we first present
the gauge formulation of the incompressible viscous flow equation (1.1) and then pro-
pose a family of exponential time differencing multistep (ETDMs) schemes for solving
the gauge system. The temporal stability of the ETD semi-discretized system is analyzed
for the Stokes equation with a short discussion for the Navier-Stokes equation in Section
3. In Section 4, we discuss compact representations of the ETDMs schemes for problems
on rectangular domains when the central finite difference is used for spatial discretiza-
tion, which allows the use of FFT-based solvers for the fully discretized systems. Various
numerical experiments are performed to demonstrate the accuracy and stability of the
proposed methods in Section 5, and some concluding remarks are drawn in Section 6.

2 Exponential time differencing gauge method

2.1 Gauge formulation

We consider an incompressible viscous flow described by Eq. (1.1) together with a Dirich-
let boundary condition u|∂Ω = g(t,x) and an initial condition u(0,x)=u0(x). The gauge
method [8] introduces an auxiliary field m(t,x) and a gauge variable φ(t,x) satisfying the
Hodge decomposition (1.2) in Ω×[0,T]. Instead of solving the original system (1.1), it
substitutes u(t,x) =m(t,x)−∇φ(t,x) into (1.1) and leads to a gauge formulation of the
system as

mt−ν∆m= f−F(u), in Ω×[0,T] (2.1)

and

∆φ=∇·m, in Ω×[0,T] (2.2)
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with appropriate boundary conditions, where the independent variables t and x are sup-
pressed. The pressure p is then determined by

∇p=∇(φt−ν∆φ), in Ω×[0,T]. (2.3)

The initial conditions of m and φ are set to be

m(0,x)=u0, φ(0,x)=0, (2.4)

which are compatible with the Hodge decomposition (1.2) at the initial time t=0.
The main advantage of the gauge formulation is that it treats the incompressibility

constraint and viscous term separately, while giving us the freedom to assign an un-
ambiguous and consistent boundary conditions for m and φ. Two types of consistent
boundary conditions are proposed in [6,8]. In this paper, we use the Neumann boundary
condition, according to [6],

∂φ

∂n
=0, m·n=g·n, m·τ=g·τ+

∂φ

∂τ

, (2.5)

where n and τ are the unit vectors in the normal and tangential directions, respectively.
It is seen that m and φ are weakly coupled on the boundary. Obviously, if we can treat
∂φ
∂τ

and F(u) explicitly in (2.5) at each time step, the computational cost of the gauge
system (2.1)-(2.2) together with the initial condition (2.4) and the boundary condition
(2.5), reduces to the solution of heat equation and Poisson equation as done in [8].

2.2 Exponential time differencing multistep approximations

We now propose an exponential time differencing multistep method for numerical solu-
tion to the gauge system, (2.1) and (2.2), along with the boundary condition (2.5) over the
time interval [tn,tn+1]. Let the length of time step size δt = tn+1−tn be uniform for all n.
Suppose the domain is spatially partitioned by a mesh Th with nodes {xi}

n
i=1, and denote

by σI the set of interior nodes and by σB the set of boundary nodes. Denote by mh, φh

and uh the approximations of the auxiliary field m, the gauge variable φ and the velocity
field u on Th, respectively. Let ~mh,k and ~uh,k (k=1,··· ,d) be the vectors formed by the k-th
components of mh and uh at all nodes of Th, respectively. Furthermore, we decompose
~mh,k into two parts as ~mh,k= ~mh,k,I∪~mh,k,B, where ~mh,k,I denotes the components of ~mh,k at
all interior nodes σI and ~mh,k,B the components at all boundary nodes σB. Let ~mh be the
vector form of mh. Similar notations will also be used for f and F. Finally, let ~φh repre-
sent the vector containing the values of gauge variable φ. In particular, we note that the
gauge variable φ and m could be placed on the same grid, or different ones as done in a
staggered or half-staggered grid.

After a spatial discretization of (2.1) by using a finite difference or finite volume
method, the discretized auxiliary field mh satisfies the following system of ordinary dif-
ferential equations: for k=1,··· ,d, and t∈ [tn ,tn+1]

d~mh,k,I(t)

dt
=LD~mh,k,I(t)+~w(~mh,k,B(t))+~fk(t)−~Fk(uh(t)), (2.6)
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where LD is the stiffness matrix associated with the scaled Laplace operator ν∆ along
with the Dirichlet boundary condition, and ~w(·) is a vector-valued function of ~mh,k,B,
resulted from the boundary condition. It is easy to integrate the system (2.6) from tn to
tn+1 and get

~mn+1
h,k,I = eδtLD ~mn

h,k,I+
∫ δt

0
e(δt−τ)LD

[
~fk(tn+τ)−~Fk(uh(tn+τ))

+~w(~mh,k,B(tn+τ))
]

dτ. (2.7)

In order to compute {~mn+1
h,k,I}

d
k=1, the last integral in (2.7) has to be approximated in some

way because uh(t) and {~mh,k,B(t)}
d
k=1 are unknown a priori on the interval (tn,tn+1].

For k=1,··· ,d, we define

~Rk(t)=~fk(t)−~Fk(uh(t))+~w(~mh,k,B(t)), (2.8)

and employ the idea of multistep method to approximate the definite integration of
e(δt−τ)LD~Rk(tn+τ). In spirit of the Adams-Bashforth method, to avoid nonlinear iterative
solution process, we approximate ~Rk(tn+τ) by the Lagrange interpolating polynomial

~Pr
k(tn+τ)=

r

∑
s=0

ηr,s(τ)~Rk(tn−s) (2.9)

with

ηr,s(τ)=
r

∏
l=0
l 6=s

τ+lδt

(l−s)δt
.

It has the property that ~Rk(tn+τ)≈~Pr
k(τ)+O((δt)r+1). By substituting ~Pr

k(tn+τ) into (2.7),
we obtain

~mn+1
h,k,I ≈ eδtLD ~mn

h,k,I+
∫ δt

0
e(δt−τ)LD~Pr

k(tn+τ)dτ. (2.10)

The most popular first and second order polynomials are listed as follows:

r=0 : ~P0
k (tn+τ)=~Rk(tn),

r=1 : ~P1
k (tn+τ)=

(
1+

τ

δt

)
~Rk(tn)−

τ

δt

~Rk(tn−1).

Correspondingly, the first order ETD scheme (ETD1) and the second order ETD multistep
scheme (ETDMs2) for ~mn+1

h,k,I are the following:

ETD1: ~mn+1
h,k,I ≈ eδtLD ~mn

h,k,I+
∫ δt

0
e(δt−τ)LD~Rk(tn)dτ (2.11)

ETDMs2: ~mn+1
h,k,I ≈ eδtLD ~mn

h,k,I+
∫ δt

0
e(δt−τ)LD

(
(1+

τ

δt
)~Rk(tn)

−
τ

δt

~Rk(tn−1)

)
dτ. (2.12)
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Higher order schemes (r≥2) can be derived in a similar manner.
Due to the boundary conditions (2.5), the boundary value of m at tn+1, {~mn+1

h,k,B}
d
k=1, is

related to the unknown boundary information of φ at tn+1. We first temporarily approxi-
mate it by

~mn+1
h =g(tn+1)+G~φn

h (2.13)

at every boundary node xi ∈σB in the ETD1 scheme, and by

~mn+1
h =g(tn+1)+G(2~φn

h −~φn−1
h ) (2.14)

in the ETDMs2 scheme, where G denotes a discrete version of the gradient operator.
The discretized gauge variable φn+1

h is next solved from the Poisson equation (2.2)
with the associated zero Neumann boundary condition in (2.5) as

LN~φ
n+1
h =D~mn+1

h , (2.15)

where LN is the stiffness matrix associated with the discrete Laplacian operator ∆ under
zero Neumann boundary condition, and D denotes an appropriate discrete matrix for
the divergence operator.

We then correct the approximate boundary values of the auxiliary field {~mn+1
h,k,B}

d
k=1 by

using the gradient information of φh at tn+1 as follows:

~mn+1
h =g(tn+1)+G~φn+1

h (2.16)

at every boundary node xi ∈σB. Since φn+1
h satisfies the zero Neumann conditions, only

its tangential derivative needs to be evaluated at the boundary nodes σB.
Finally, if F(u) appears in (2.1) (such as in the Navier-Stokes equation), the approxi-

mate velocity filed un+1
h needs to be recovered from the Hodge decomposition (1.2) as

~un+1
h = ~mn+1

h −G~φn+1
h (2.17)

on every interior node xi ∈σI . The boundary value of un+1
h is explicitly given by gn+1 as

stated by the boundary condition of the problem.

Remark 2.1. The integrals in (2.11) and (2.12) generally are computed by first performing
exact integrations, and then evaluating some multiplications of matrix-exponentials with
vectors. The later operations can be effectively implemented by the Krylov subspace
method when the problem scale is large, see [9, 23] for details.

Remark 2.2. In order to enforce the consistency of the coupling of the auxiliary field
mn+1 and the gauge variable φn+1 in the discrete level, it could be theoretically better
to repeat the process of (2.15) and (2.16) according the accuracy order of the scheme.
However, from our numerical experiments in Section 5, we found that performing twice
the process of (2.15) and (2.16) only yields a very slight improvement for both ETD1 and
ETDMs2 schemes. Thus, we don’t recommend such a process.

https://www.cambridge.org/core/terms. https://doi.org/10.4208/cicp.OA-2016-0234
Downloaded from https://www.cambridge.org/core. University of South Carolina Libraries, on 24 Jul 2017 at 00:02:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/cicp.OA-2016-0234
https://www.cambridge.org/core


L. Ju and Z. Wang / Commun. Comput. Phys., 22 (2017), pp. 517-541 523

3 Temporal stability analysis

In this section, we focus on temporal stability analysis of the gauge system by using the
ETD schemes for time integration. In particular, we mainly consider the gauge formula-
tion of the Stokes equation (which is linear) without body force, i.e., the system consisting
of (2.1) with vanished f and F(u), (2.2) and (2.5). We assume that u is zero on the bound-
ary ∂Ω.

When the time is restricted on the interval [tn,tn+1], the semi-discretized gauge system
corresponding to the ETD1 scheme reads as follows:





mt−ν∆m=0, in Ω×[tn,tn+1),

m=∇φn, on ∂Ω×[tn,tn+1),

m(tn)=un+∇φn, in Ω

(3.1)

and {
∆φ=∇·m, in Ω×[tn,tn+1),
∂φ
∂n =0, on ∂Ω.

(3.2)

Without considering the spatial discretization, we analyze the stability of the ETD1
for time stepping. Let us first introduce a new variable û=m−∇φn in [tn,tn+1). Then it
can be derived from (3.1) and (3.2) that





ût−ν∆û=ν∇(∆φn), in Ω×[tn,tn+1),

û=0, on ∂Ω×[tn,tn+1),

û(tn)=un, in Ω

(3.3)

and the continuity of m at the time tn+1 indicates

∇·ûn+1=∇·mn+1−∆φn

=∇·(un+1+∇φn+1)−∆φn

=∆φn+1−∆φn (3.4)

due to the incompressibility condition ∇·un+1=0.

Define the scaled (by ν) Dirichlet Laplace operator

L=ν∆ : H2(Ω)∩H1
0(Ω)→ L2(Ω).

Denote the inner product (·,·) in the L2 sense as (u,v)=
∫

Ω
u·vdx. Clearly L is self-adjoint,

invertible and all its eigenvalues are negative. It is well known that L is the infinitesimal
generator of a strongly continuous semigroup on L2(Ω), which is denoted by etL with
t≥0. Note all eigenvalues of etL are between 0 and 1.
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The analytic solution of (3.3) is

ûn+1= eδt Lûn+ν
∫ δt

0
e(δt−τ)L∇(∆φn)dτ

= eδt Lûn−νL−1(I−eδt L)∇(∆φn). (3.5)

Note that eδt L and I−eδt L are all self-adjoint and commutative with L.
Rearranging the above equation, we get

−(I−eδt L)−1L(ûn+1−eδt Lûn)=ν∇(∆φn). (3.6)

Taking the inner product of both sides of (3.6) with ûn+1 yields

(
−(I−eδt L)−1L(I−eδt L)ûn+1,ûn+1

)

+
(
−(I−eδt L)−1Leδt L(ûn+1−ûn),ûn+1

)
=ν
(
∇(∆φn),ûn+1

)
. (3.7)

For the first term on the left-hand side of (3.7), we have

(
−(I−eδt L)−1L(I−eδtL)ûn+1,ûn+1

)
=−(Lûn+1,ûn+1). (3.8)

Define a new operator Q=−(I−eδtL)−1Leδt L, and it easy to see that Q is a self-adjoint,
positive definite operator. Then for the second term we get

(
Q(ûn+1−ûn),ûn+1

)

=
(

Qûn+1,ûn+1
)
−
(

Qûn,ûn+1
)

=
1

2

(
Qûn+1,ûn+1

)
−

1

2
(Qûn,ûn)+

1

2

(
Q(ûn+1−ûn),ûn+1−ûn

)
. (3.9)

For the term on the right-hand side of (3.7), we have

(
∇(∆φn),ûn+1

)

=−
∫

Ω
∆φn(∇·ûn+1)dx (because ûn+1|∂Ω=0)

=−
∫

Ω
∆φn(∆φn+1−∆φn)dx (due to (3.4))

=
1

2

∫

Ω
(∆φn+1−∆φn)2dx−

1

2

∫

Ω
(∆φn+1)2dx+

1

2

∫

Ω
(∆φn)2 dx

=
1

2

∫

Ω
(∇·ûn+1)2dx−

1

2
‖∆φn+1‖2+

1

2
‖∆φn‖2

=
1

2
‖∇·ûn+1‖2−

1

2
‖∆φn+1‖2+

1

2
‖∆φn‖2. (3.10)
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Since û|∂Ω=0, it holds that

ν

2
‖∇·ûn+1‖2≤

ν

2
‖∇ûn+1‖2=−

1

2
(Lûn+1,ûn+1). (3.11)

Substituting (3.8) - (3.11) into (3.7), we obtain

(
Qûn+1,ûn+1

)
−(Qûn,ûn)+

(
Q(ûn+1−ûn),ûn+1−ûn

)

−(Lûn+1,ûn+1)+ν‖∆φn+1‖2−ν‖∆φn‖2≤0. (3.12)

Because mn+1 is continuous at tn+1, we have

0=(ûn+1−∇φn)−(un+1−∇φn+1)

=(un+1−ûn+1)+(∇φn+1−∇φn). (3.13)

Also note that Qun+1 and ∇φn+1−∇φn are orthogonal since

(
Qun+1,∇φn+1−∇φn

)

=
(

un+1,∇Q(φn+1−φn)
)

=−
∫

Ω
Q(φn+1−φn)(∇·un+1)dx+

∫

∂Ω
(un+1 ·n)Q(φn+1−φn)ds

=0 (because un+1 is divergence-free and un+1|∂Ω =0). (3.14)

Taking the inner product of both sides of the equation (3.13) with Qun+1 and using the
orthogonality (3.14), we have

0=
(

Qun+1,un+1−ûn+1
)

=
1

2

(
Qun+1,un+1

)
−

1

2

(
Qûn+1,ûn+1

)

+
1

2

(
Q(un+1−ûn+1),un+1−ûn+1

)
. (3.15)

Based on (3.12) and (3.15), the positivity of operators Q and −L, we have

(
Qun+1,un+1

)
−(Qûn,ûn)+ν‖∆φn+1‖2−ν‖∆φn‖2 ≤0. (3.16)

Because ûn=un, we have

(
Qun+1,un+1

)
+ν‖∆φn+1‖2≤ (Qun,un)+ν‖∆φn‖2. (3.17)

Thus we obtain the following result.
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Theorem 3.1. The ETD1 time stepping scheme for the gauge system of the Stokes problem with
zero Dirichlet boundary conditions is unconditionally stable.

The theoretical analysis of ETDMs2 or even higher-order ETD gauge algorithms would
involve analyzing much more complicated operators, which needs further deeper study.

Remark 3.1. For the Navier-Stokes equation, or more general nonlinear flows where
F(u) 6= 0, the stability of the ETD method could be restricted by the CFL condition re-
sulted from the nonlinear term F(u) as discussed in [36]; in particular, in the case of very
small viscosity ν, it is usually required that δt≤h/|u(x)| where h denotes the spatial grid
size.

4 Fast solver on rectangular domains

In this section, we consider problems in a rectangular domain and develop a compact
formulation for the ETD multistep method and the corresponding FFT-based fast imple-
mentation. The essentials of the compact representation include the splitting of spatial
dimensions, diagonalization of the Laplacian, and analytic evaluations of exponential
parts in both the linear term and the approximation of nonlinear and boundary terms.
We will present the algorithm in the context of a two-dimensional domain, while its ex-
tension to the three dimensional space is straightforward.

Assume the domain Ω=[xb,xe]×[yb ,ye]. Although various numerical methods can be
used for the spatial discretization of the incompressible viscous flow model (1.1), we here
choose the well-known second order accurate central finite difference approximations
due to its simplicity. Suppose the domain is partitioned into Nx×Ny equally spaced
subdomains. The corresponding grid sizes in the horizontal and vertical directions are
hx = (xe−xb)/Nx and hy = (ye−yb)/Ny, and coordinates of the grid points are (xi,yj),
where xi = xb+ihx, yj =yb+ jhy, i=0,··· ,Nx and j=0,··· ,Ny. In Eq. (2.15), the divergence
information of m is needed for computing the gauge variable φ. If m and φ are defined
at the same grid, to evaluate ∇·m at a boundary node, one has to use one-sided finite
differences. It would result in larger approximation errors on the boundary than the
interior region. To this end, we employ a half-staggered grid, which allows us to use the
central finite difference method for approximating all the differentiations. A schematic
of the grid is shown in Fig. 1.

4.1 Spatial discretizations of differential operators

We first introduce some notations related to the spatial discretization of differential op-
erators. Let mh,k,i,j =mh,k(xi,yj), the Laplacian LD~mh at each interior node (xi,yj)∈σI is
defined as

(LD~mh,k,I)i,j=h−2
x (mh,k,i+1,j−2mh,k,i,j+mh,k,i−1,j)

+h−2
y (mh,k,i,j+1−2mh,k,i,j+mh,k,i,j−1) (4.1)
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Figure 1: A schematic of the half-staggered grid (Nx =Ny =3) for the spatial discretization.

for k = 1,2. The divergence of m needs to be computed at the centers of the grid,
(xi+1/2,yj+1/2), where

(D~mh)i+ 1
2 ,j+ 1

2
=

1

2
h−1

x (mh,1,i+1,j+1−mh,1,i,j+1+mh,1,i+1,j−mh,1,i,j)

+
1

2
h−1

y (mh,2,i,j+1−mh,2,i,j+mh,2,i+1,j+1−mh,2,i+1,j). (4.2)

Given φh,i,j = φh(xi+1/2,yj+1/2), the Laplacian LN~φh at an interior node (xi,yj)∈ σI is de-
fined as

(LN~φh)i,j=h−2
x (φh,i+1,j−2φh,i,j+φh,i−1,j)+h−2

y (φh,i,j+1−2φh,i,j+φh,i,j−1). (4.3)

As for boundary nodes, we shall use the zero Neumann boundary condition of φ. For
instance, when i=0 and 0< j<Ny−1,

(LN~φh)i,j=2h−2
x (φh,i+1,j−φh,i,j)+h−2

y (φh,i,j+1−2φh,i,j+φh,i,j−1).

When i= j=0, we have

(LN~φh)i,j =2h−2
x (φh,i+1,j−φh,i,j)+2h−2

y (φh,i,j+1−φh,i,j).

The gradient of φh, G~φh, is defined at all the nodes of Th, which has two components:





(
∂~φh

∂x

)
i,j
= 1

2 h−1
x (φh,i,j−1−φh,i−1,j−1+φh,i,j−φh,i−1,j),

(
∂~φh

∂y

)
i,j
= 1

2 h−1
y (φh,i,j−φh,i,j−1+φh,i−1,j−φh,i−1,j−1).

(4.4)
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Let us write the unknowns mh and φh in their original array form according to the
space dimension, denoted by Mh,k,I =(mh,k,I,i,j) and Φh =(φi,j). The second order spatial

differential operators ∂2

∂x2 and ∂2

∂y2 also can be written in the matrix form. We define A=

h−2
x GNx and B=h−2

y GNy where

GN =




−2 1 0 0 ··· 0
1 −2 1 0 ··· 0

. . .
. . .

. . .

0 ··· 0 1 −2 1
0 ··· 0 0 1 −2




(N−1)×(N−1)

.

Two special operators ©x and ©y are defined as in [37] such that

(A©x Mh,k,I)i,j =
Nx−1

∑
l=1

(A)i,l(Mh,k,I)l,j, (B©y Mh,k,I)i,j=
Ny−1

∑
l=1

(B)j,l(Mh,k,I)i,l

and these two operators are commutative. After enforcing the Dirichlet boundary condi-
tion, the discrete 2D Laplacian operator in (2.6) satisfies

LDMh,k,I =ν
[
(A©x +B©y )Mh,k,I+Mx

h,k,B+M
y
h,k,B

]
(4.5)

for k=1,2, where

Mx
h,k,B =h−2

x




mk(t,x0,y1) mk(t,x0,y2) ··· mk(t,x0,yNy−1)
0 0 ··· 0
...

...
. . .

...
0 0 ··· 0
mk(t,xNx ,y1) mk(t,xNx ,y2) ··· mk(t,xNx ,yNy−1)




(4.6)

and

M
y
h,k,B =h−2

y




mk(t,x1,y0) 0 ··· 0 mk(t,x1,yNy)
mk(t,x2,y0) 0 ··· 0 mk(t,x2,yNy)
...

...
. . .

...
...

mk(t,xNx−1,y0) 0 ··· 0 mk(t,xNx−1,yNy )


. (4.7)

As for the Laplacian with zero Neumann boundary condition in (2.15), ∂2

∂x2 and ∂2

∂y2 are

discretized as the following: Â=h−2
x ĜNx and B̂=h−2

y ĜNy , where

ĜN =




−1 1 0 0 ··· 0
1 −2 1 0 ··· 0

. . .
. . .

. . .

0 ··· 0 1 −2 1
0 ··· 0 0 1 −1




(N+1)×(N+1)

.
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Then
LNΦh=

(
Â©x +B̂©y

)
Φh. (4.8)

4.2 Main components of the ETDMs method

The ETDMs method has three major components: I) to evolve the heat equation (2.1)
of the auxiliary variable by (2.11) in ETD1 or (2.12) in ETDMs2; II) to solve the Poisson
equation (2.15) with zero Neumann boundary condition for the gauge variables; and
III) to update the boundary values of the auxiliary variable. Next, we elaborate these
components. In particular, based on the eigen-decomposition of the discrete Laplace
operator in x and y directions separately, we develop a compact representation of the
algorithm, which provides a fast solver to the gauge system.

Component I With the spatial discretization and the dimension splitting (4.5) discussed
in Section 4.1, the equation (2.6) can be rewritten to be the following system: for k=1,2,

dMh,k,I

dt
=ν(A©x +B©y )Mh,k,I+Fk(t,Uh)+W(Mh,k,B), (4.9)

where Fk(t,Uh) = (fk(t)−Fk(Uh))(Nx−1)×(Ny−1) comes from the forcing source and non-

linear terms, and W(Mh,k,B)=ν(Mx
h,k,B+M

y
h,k,B)(Nx−1)×(Ny−1) from the enforcement of the

boundary condition. Note that A and B are diagonalizable (see [26]) and have the fol-
lowing eigenvalue decompositions:

A=PxD̃xPx
−1, B=PyD̃yPy

−1, (4.10)

where D̃x and D̃y are diagonal matrices whose diagonal entries are the eigenvalues of
A and B respectively, and Px and Py are the corresponding eigenvector matrices. In
particular, we have

dx
i =−

4D

h2
x

sin2

(
πi

2Nx

)
, (Px)i,j =sin

(
πij

Nx

)
, i, j=1,··· ,Nx−1,

d
y
i =−

4D

h2
y

sin2

(
πi

2Ny

)
, (Py)i,j=sin

(
πij

Ny

)
, i, j=1,··· ,Ny−1.

Applying P−1
y y©P−1

x x© on both sides of Eq. (4.9) and denoting Vh,k,I =

P−1
y y©P−1

x x©Mh,k,I , we have

dVh,k,I

dt
=H⊙Vh,k,I+P−1

y y©P−1
x x©Fk(t,Uh)+P−1

y y©P−1
x x©W(Mh,k,B), (4.11)

where H = (hi,j)(Nx−1)×(Ny−1) with the element hi,j = ν(dx
i +d

y
j ) and the operation “⊙”

represents element by element multiplication between two arrays of the same size. It
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is easy to show that hi,j < 0. We also remark that the operations Px x© and Py y© can be

implemented efficiently by fast Fourier transform (FFT), and P−1
x x© and P−1

y y© by inverse
FFT, see [21].

Define another operation “(e∗)” to be the element by element exponentials of an
array. Given the information at the beginning of the time interval [tn,tn+1], Vn

h,k,I =

P−1
y y©P−1

x x©Mn
h,k,I , Eq. (4.11) can be solved by multiplying (e∗)−Ht and integrating the

system from tn to tn+1

Vn+1
h,k,I =eδtH⊙Vn

h,k,I

+
∫ δt

0
(e∗)(δt−τ)H⊙(P−1

y y©P−1
x x©Fk(tn+τ,Uh(tn+τ)))dτ

+
∫ δt

0
(e∗)(δt−τ)H⊙(P−1

y y©P−1
x x©W(Mh,k,B(tn+τ)))dτ, (4.12)

which yields

Mn+1
h,k,I =Py y©Px x©

[
(e∗)δtH⊙(P−1

y y©P−1
x x©Mn

h,k,I)+
∫ δt

0
(e∗)(δt−τ)H⊙

(
P−1

y y©P−1
x x©

(
F (tn+τ,Uh(tn+τ))+W (Mh,k,B (tn+τ))

))
dτ
]
. (4.13)

To shorten the presentation, we define

QR
k =

∫ δt

0
(e∗)(δt−τ)H⊙Rk (tn+τ,Uh(tn+τ),Mh,k,B(tn+τ)) dτ,

where

Rk(t,x,Uh(t),Mh,k,B(t))=P−1
y y©P−1

x x©[Fk (t,Uh(t))+W (Mh,k,B (t))]. (4.14)

Then Eq. (4.13) can be written as

Mn+1
h,k,I =Py©y Px©x

[
(e∗)δtH⊙(P−1

y ©y P−1
x ©x Mn

h,k,I)+QR
k

]
. (4.15)

As presented in Section 2.2, Rk(tn+τ,Uh(tn+τ),Mh,k,B(tn+τ)) can be approximated
by a polynomial Pr

k(τ) of degree r on the interval τ∈ [0,δt], for example,

P0
k (τ)=Rk(tn,Un

h ,Mn
h,k,B),

P1
k (τ)=

(
1+

τ

δt

)
Rk(tn,Un

h ,Mn
h,k,B)−

τ

δt
Rk(tn−1,Un−1

h ,Mn−1
h,k,B). (4.16)

Then we have

Q
R,(r)
k =

∫ δt

0
(e∗)(δt−τ)H⊙Pr

k (τ)dτ, (4.17)
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which is an approximation of QR
k with a temporal accuracy of order r+1. Next, Mn+1

h,k,I
given by (4.15) is computed in the compact form as

Mn+1
h,k,I =Py©y Px©x

[
(e∗)δtH⊙(P−1

y ©y P−1
x ©x Mn

h,k,I)+Q
R,(r)
k

]
. (4.18)

One can precompute the integration of (e∗)(δt−τ)H⊙(τ/δt)s in (4.17), named by φs(δt),
whose elements are

φs
i,j(δt)=

∫ δt

0

(
τ

δt

)s

e(δt−τ)hi,j dτ.

The integrals can be evaluated analytically, for example, φs
i,j(δt) for s = 0,1 are listed in

Table 1. Furthermore, when the time step size is fixed in a simulation, φs(δt) only needs
to be computed once and can be used repeatedly.

Table 1: The list of φs
i,j(δt) for s=0,1.

φ0
i,j(δt)=−

1

hi,j

(
1−eδthi,j

)
if hi,j 6=0, φ0

i,j(δt)=δt if hi,j=0,

φ1
i,j(δt)=−

1

hij

(
1−

φ0
i,j(δt)

δt

)
if hi,j 6=0, φ1

i,j(δt)=
δt

2
if hi,j=0.

In case of r=0 (i.e., the ETD1 scheme (2.11)),

Q
r,(0)
k =Rk(tn,Un

h ,Mn
h,k,B)⊙S0,0(δt), (4.19)

where S0,0(δt)=φ0
i,j(δt); in case of r=1 (i.e., the ETDMs2 scheme (2.12));

Q
R,(1)
k =Rk(tn,Un

h ,Mn
h,k,B)⊙S1,0(δt)−Rk(tn−1,Un−1

h ,Mn−1
h,k,B)⊙S1,1(δt), (4.20)

where S1,0(δt)=φ0
i,j(δt)+φ1

i,j(δt), S1,1(δt)=φ1
i,j(δt). We also temporarily update the bound-

ary values of Mh,k, Mn+1
h,k,B by (2.13) when r=0 and by (2.14) when r=1.

Component II The Poisson equation (2.15) with zero Neumann boundary condition for
the gauge variable can be expressed in the compact form as

(
Â©x +B̂©y

)
Φ

n+1
h =DMn+1

h , (4.21)

where DMn+1
h is calculated by Mn+1

h obtained from Component I and the divergence D

defined in (4.2). A fast Poisson solver based on FFT [21] can be used to solve (4.21).

Component III The boundary values of the auxiliary field mn+1
h,k,B, for k=1,··· ,d, are then

corrected by using Φ
n+1
h computed from Component II and Eq. (2.16).

When nonlinear terms appear in a system such as Navier-Stokes equations, after the
above steps, Un+1

h will be recovered by Un+1
h =Mn+1

h −GΦ
n+1
h , where the gradient G is

defined in (4.4).
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5 Numerical experiments

In this section, we perform several numerical experiments on testing the ETD Gauge
method for solving Stokes and Navier-Stokes problems in rectangular domains. Four
prototype problems are considered: the first two, where the exact solutions are known,
are used to illustrate the rates of convergence of the proposed methods in time and space;
the last two are driven-cavity flow problems in two and three dimensional spaces, respec-
tively. Furthermore, the driven-cavity flow problems are closely related to the application
of flows over and within cavities in many engineering problems, ranging from the small
cavities due to gaps in the body work of vehicles to the larger scale flows in urban street
canyons. We apply the fast solver developed in the preceding section for all the tests.

5.1 Stokes equation

Consider the Stokes equation (that is, Eq. (1.1) with F(u) = 0) on a square domain Ω=
[0,1]2 over the time interval [0,1]. The exact solution for the velocity is given by

u(t,x,y)=πsint(sin2πysin2πx,−sin2πxsin2πy) (5.1)

and for the pressure is

p(x,y,t)=sintcosπxsinπy. (5.2)

The source term f=ut−ν∆u+∇p is calculated correspondingly from the exact solution.
The ending time for all simulations is set to be T=1. The zero Dirichlet boundary condi-
tion is used for the velocity field.

Taking the viscosity coefficient ν=1, we first test the spatial convergence of the ETD
gauge method by using the ETDMs2 scheme with a fixed small time step size; then we
test the respective temporal convergence of the ETD1 and ETDMs2 schemes by fixing a
small spatial grid size and varying the time step size. The approximation errors of the
velocity, divergence and pressure measured in the L∞ norm and associated convergence
rates are reported in Table 2. It is observed that, for velocity and pressure in all the test
cases, the approximation errors decay at the expected optimal rates; and they quickly
reach the approximation error plateaus caused by either the fixed spatial grid sizes or the
time step sizes. In particular, the spatial accuracies of the velocity and the pressure are
both of second order; the temporal accuracy order is one for the ETD1 scheme and two
for the ETDMs2 scheme respectively. On the other hand, the errors of the divergence-free
condition decrease quadratically along the refinement of the spatial grids, but they are
almost independent of the time step sizes for both ETD schemes.

Next taking a small viscosity coefficient ν=10−3, we conduct the same type of tests.
The errors and corresponding rates of convergence are reported in Table 3. The ETD
schemes perform similar to that in the preceding case: for the velocity and pressure, the
optimal approximation errors are achieved; for the divergence of velocity, the approxima-
tion errors converge quadratically along the spatial grid refinement when a small fixed
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Table 2: Numerical errors and convergence rates of the ETD gauge method for the 2D Stokes flow with the
viscosity ν=1 and the exact solution (5.1) and (5.2).

(Nx, Ny, K) ‖u−uh‖∞ Rate ‖∇·uh‖∞ Rate ‖p−ph‖∞ Rate

Spatial convergence

( 16, 16, 1024) 3.387e-02 – 7.151e-03 – 3.537e-02 –

( 32, 32, 1024) 8.421e-03 2.01 2.030e-03 1.82 1.182e-02 1.58

( 64, 64, 1024) 2.103e-03 2.00 5.422e-04 1.90 3.708e-03 1.67

( 128, 128, 1024) 5.264e-04 2.00 1.392e-04 1.96 1.116e-03 1.73

( 256, 256, 1024) 1.324e-04 1.99 3.524e-05 1.98 3.265e-04 1.77

( 512, 512, 1024) 3.390e-05 1.97 8.860e-06 1.99 9.360e-05 1.80

Temporal convergence of ETD1

(1024,1024, 16) 8.265e-02 – 8.787e-04 – 1.344e-01 –

(1024,1024, 32) 3.510e-02 1.24 3.093e-04 1.50 6.457e-02 1.06

(1024,1024, 64) 1.560e-02 1.17 1.417e-04 1.13 2.644e-02 1.29

(1024,1024, 128) 7.258e-03 1.10 7.496e-05 0.92 1.032e-02 1.36

(1024,1024, 256) 3.485e-03 1.06 3.836e-05 0.97 4.103e-03 1.33

(1024,1024, 512) 1.703e-03 1.03 1.997e-05 0.94 1.833e-03 1.16

Temporal convergence of ETDMs2

(1024,1024, 16) 6.809e-03 – 3.547e-03 – 9.553e-02 –

(1024,1024, 32) 1.462e-03 2.22 8.583e-04 2.05 1.098e-02 3.12

(1024,1024, 64) 3.291e-04 2.15 1.006e-05 6.41 6.220e-04 4.14

(1024,1024, 128) 8.239e-05 2.00 2.142e-06 2.23 1.193e-04 2.38

(1024,1024, 256) 2.596e-05 1.67 2.081e-06 0.04 2.902e-05 2.04

(1024,1024, 512) 1.255e-05 1.05 2.067e-06 0.01 2.683e-05 0.11

time step size is used; and it reaches the error plateau quickly in the temporal refinement
tests where a small fixed spatial grid size is considered.

These results also numerically demonstrate that the gauge approach-based ETD1 and
ETDMs2 schemes are both unconditionally stable for the linear Stokes equation. With
the same spatial grid size and time step size, the larger the viscosity ν is, the smaller the
errors are.

The same test problem with ν=1 was used in the review article [11]: for the standard
projection method, a numerical boundary layer appears in the pressure approximation;
for the improved, rotational forms of the project method, large spikes of the pressure
approximation error occur at the four corners of the domain. We also note that several
revised projection approaches have been considered later to reduce the splitting error and
alleviate the boundary layer [1,12,13,24]. On the other hand, the proposed ETD schemes
of the gauge formulation yields the optimal L∞ errors for the pressure approximations
as shown in Table 2, which indicates our schemes do not introduce any artificial, incon-
sistent boundary condition on the pressure. To this end, we plot in Fig. 2 the pressure
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Table 3: Numerical errors and convergence rates of the ETD gauge method for the 2D Stokes flow with the
viscosity ν=10−3 and the exact solution (5.1) and (5.2).

(Nx, Ny, K) ‖u−uh‖∞ Rate ‖∇·uh‖∞ Rate ‖p−ph‖∞ Rate

Spatial convergence

( 16, 16, 1024) 3.008e-02 – 4.292e-01 – 1.233e-02 –

( 32, 32, 1024) 6.914e-03 2.12 1.859e-01 1.21 3.222e-03 1.94

( 64, 64, 1024) 1.693e-03 2.03 6.242e-02 1.57 8.753e-04 1.88

( 128, 128, 1024) 4.234e-04 2.00 1.802e-02 1.79 2.416e-04 1.86

( 256, 256, 1024) 1.057e-04 2.00 4.835e-03 1.90 6.676e-05 1.86

( 512, 512, 1024) 2.645e-05 2.00 1.250e-03 1.95 1.835e-05 1.86

Temporal convergence of ETD1

(1024,1024, 16) 1.305e-01 – 8.686e-01 – 3.218e-02 –

(1024,1024, 32) 6.448e-02 1.02 5.138e-01 0.76 1.683e-02 0.93

(1024,1024, 64) 3.094e-02 1.06 2.645e-01 0.96 8.219e-03 1.03

(1024,1024, 128) 1.449e-02 1.09 1.312e-01 1.01 3.944e-03 1.06

(1024,1024, 256) 6.634e-03 1.13 6.399e-02 1.04 1.889e-03 1.06

(1024,1024, 512) 2.995e-03 1.15 3.087e-02 1.05 9.096e-04 1.05

Temporal convergence of ETDMs2

(1024,1024, 16) 5.741e-03 – 2.924e-02 – 1.381e-03 –

(1024,1024, 32) 1.299e-03 2.14 1.625e-03 4.17 3.449e-04 2.00

(1024,1024, 64) 2.956e-04 2.14 7.209e-04 1.17 8.624e-05 2.00

(1024,1024, 128) 6.645e-05 2.15 3.677e-04 0.97 2.163e-05 2.00

(1024,1024, 256) 1.628e-05 2.03 3.095e-04 0.25 5.490e-06 1.98

(1024,1024, 512) 6.873e-06 1.24 3.020e-04 0.03 4.919e-06 0.16
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Figure 2: Pressure approximation errors of the ETDMs2 scheme for the 2D Stokes flow with the viscosity
ν=10−3 and the exact solution (5.1) and (5.2) when hx = hy = δt =

1
32 , hx = hy = δt =

1
64 and hx = hy = δt =

1
128

(from left to right).

approximation errors when the ETDMs2 scheme is used. It is seen that the error profiles
keep the same shape as the spatial grid size and time step size uniformly decrease, while
the magnitudes decay quadratically (no any boundary layer is observed).
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5.2 Navier-Stokes equation

The other important model of incompressible viscous flows is the Navier-Stokes equation
(that is, F(u)= (u·∇)u in (1.1)). The performance of the ETD gauge method is studied
through three test problems. Among them, the first two are two dimensional and the last
one is three dimensional.

Case I The purpose of this experiment is to numerically illustrate the optimal conver-
gence and accuracy of the ETD gauge method when the system is nonlinear. We consider
the 2D Navier-Stokes flow on a square box Ω=[0,1]2 with the exact solution same as (5.1)
for the velocity and (5.2) for the pressure. The source term f=ut−ν∆u+u·∇u+∇p is
again determined from the exact solutions and the viscosity is selected to be ν= 1. The
simulation ending time is still T=1.

The approximation errors in the L∞ norm and rates of convergence are shown in Table
4. The same numerical behavior as that in the Stokes examples is also observed in this
test case. It implies the ETD schemes are stable for the Navier-Stokes equation when the
convection is not dominated.

Table 4: Numerical errors and convergence rates of the ETD gauge method for the 2D Navier-Stokes flow with
the viscosity ν=1 and the exact solution (5.1) and (5.2).

(Nx, Ny, K) ‖u−uh‖∞ Rate ‖∇·uh‖∞ Rate ‖p−ph‖∞ Rate

Spatial convergence

( 16, 16, 1024) 3.387e-02 – 7.152e-03 – 3.639e-02 –

( 32, 32, 1024) 8.421e-03 2.01 2.031e-03 1.82 1.202e-02 1.60
( 64, 64, 1024) 2.103e-03 2.00 5.422e-04 1.91 3.752e-03 1.68

( 128, 128, 1024) 5.264e-04 2.00 1.392e-04 1.96 1.126e-03 1.74
( 256, 256, 1024) 1.324e-04 1.99 3.524e-05 1.98 3.279e-04 1.78

( 512, 512, 1024) 3.390e-05 1.97 8.860e-06 1.99 9.460e-05 1.79

Temporal convergence of ETD1

(1024,1024, 16) 8.262e-02 – 2.297e-03 – 4.308e-01 –

(1024,1024, 32) 3.509e-02 1.24 3.665e-04 2.65 1.814e-01 1.25
(1024,1024, 64) 1.560e-02 1.17 1.495e-04 1.29 8.016e-02 1.18

(1024,1024, 128) 7.256e-03 1.10 8.034e-05 0.90 3.726e-02 1.11
(1024,1024, 256) 3.484e-03 1.06 4.047e-05 0.99 1.792e-02 1.06

(1024,1024, 512) 1.703e-03 1.03 2.058e-05 0.98 8.780e-03 1.03

Temporal convergence of ETDMs2

(1024,1024, 16) 6.807e-03 – 4.235e-03 – 1.122e-01 –
(1024,1024, 32) 1.461e-03 2.22 9.019e-04 2.23 1.217e-02 3.20

(1024,1024, 64) 3.290e-04 2.15 1.012e-05 6.48 1.642e-03 2.89

(1024,1024, 128) 8.237e-05 2.00 2.143e-06 2.24 3.797e-04 2.11
(1024,1024, 256) 2.596e-05 1.67 2.081e-06 0.04 9.061e-05 2.07

(1024,1024, 512) 1.254e-05 1.05 2.063e-06 0.01 3.240e-05 1.48

https://www.cambridge.org/core/terms. https://doi.org/10.4208/cicp.OA-2016-0234
Downloaded from https://www.cambridge.org/core. University of South Carolina Libraries, on 24 Jul 2017 at 00:02:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.4208/cicp.OA-2016-0234
https://www.cambridge.org/core


536 L. Ju and Z. Wang / Commun. Comput. Phys., 22 (2017), pp. 517-541

Case II We apply the proposed ETD gauge method to the 2D lid-driven cavity flow
problems. The fluid is contained in a square domain Ω = [0,1]2 and is initially at rest.
The flow is then driven by a moving lid whose speed is unity. The cavity flow satisfies
Dirichlet boundary conditions, in particular, its velocity has the tangential component
u= 1 and vertical component v = 0 on the top side of the box; and the velocity is zero
on all the other sides. It is known that the flow structure inside the cavity is governed
by the Reynolds number, Re= 1/ν. We test the flows with different Reynolds number
Re=200, 1000, 2500, and 5000 by using the ETDMs2 scheme. The flows were simulated
until steady-states are achieved. For Re=200, a grid with hx = hy =1/128 was used and
final time T=20; for Re=1000, hx=hy=1/128 and T=40; for Re=2500, hx=hy=1/256 and
T=60; for Re=5000, hx=hy=1/512 and T=80. Since the viscosity is small in these tests,
we enforce the CFL condition (see Remark 3.1) by taking the time step size δt equal or
slightly smaller than the spatial grid size. It is observed that the flow reaches the steady
state at the final time T in all cases. The corresponding vorticity and stream function are
computed, and their contour plots together with that of the horizontal component of the
velocity are shown in Fig. 3.

When Re= 200, the flow exhibits a large primary vortex with a secondary vortex in
the right bottom corner. As Re increases to 1000, another secondary vortex appears at the
left bottom corner in addition to the primary vortex and the secondary vortex at the right
bottom corner. For the cases of Re= 2500 and 5000, a third vortex emerges in the upper
left corner. Furthermore, by comparing the simulation results with those obtained on the
grids with a respective double resolutions, we find the outputs to be very consistent. We
remark that these numerical results also match very well the observations reported in the
literature, e.g. [5].

Case III Next, we consider the 3D cavity flow in a unit cube driven by a moving lid.
The fluid is at rest initially and starts moving while the top lid is dragging at a constant
unit speed in x-direction. The velocity satisfies the zero Dirichlet boundary condition on
all the other sides. The evolution of the flows was again simulated by using the ETDMs2
scheme.

Varying the Reynolds number, with Re=200 or 1000, we plot the contours of vorticity
and the velocity vector field on the middle slice planes x= 1

2 , y= 1
2 and z= 1

2 respectively
in Fig. 4. The horizontal velocity of the fluid at a centerline, which is the line through the
center of the cube and parallel to the z-axis, is plotted in Fig. 5. The results match those
in literature such as [35].

6 Conclusions

The gauge formulation of the incompressible viscous flows applies the Hodge decompo-
sition at the PDE level and decomposes the original model into a parabolic problem of
the auxiliary field m and a Poisson problem of the gauge variable φ. These two prob-
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Figure 3: Lid-driven cavity flows at various Reynolds numbers in a 2D unit square: contour plots of the horizontal
component of the velocity (left), the vorticity (middle) and the stream function (right) at the time T obtained
by using the ETDMs2 gauge scheme.
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Figure 4: Lid-driven cavity flows at Re=200 and 1000 respectively in a 3D unit box: the vorticity contours (first

and third rows) and the velocity vector fields (second and fourth rows) on the middle-planes x= 1
2 (left), y= 1

2

(middle) and z= 1
2 (right) at time T, respectively.
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lems are weakly coupled through the consistent boundary conditions. In this paper, we
develop the ETD multistep methods for the gauge system. At each time step, it treats
the boundary of m explicitly. After solving m and φ successively, the boundary values of
m are updated so that the Hodge decomposition is satisfied at the discrete level. With a
half-staggered grid for the spatial discretization, the ETD schemes are numerically con-
sistent. Therefore, no artificial boundary layer appears in the pressure approximation
and the associated error in the L∞ norm converges optimally.

The proposed first-order ETD method is proven to be unconditionally stable for the
Stokes system. A compact representation of the ETD methods is obtained for problems
on rectangular domains, which makes FFT-based solvers available for the resulting fully
discrete problem, hence, is computationally efficient. Various numerical experiments are
carried out to demonstrate the accuracy and stability of the proposed method. Although
we only present first order and second order ETD methods, higher order ETD schemes
can be derived in the same manner. Furthermore, the theoretical stability analysis of
ETDMs2 or higher order ETD methods is still under our investigation.
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