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We develop a variational multiscale proper orthogonal decomposition (POD) reduced-order model (ROM)
for turbulent incompressible Navier-Stokes equations. Under two assumptions on the underlying finite ele-
ment approximation and the generation of the POD basis, the error analysis of the full discretization of
the ROM is presented. All error contributions are considered: the spatial discretization error (due to the
finite element discretization), the temporal discretization error (due to the backward Euler method), and the
POD truncation error. Numerical tests for a three-dimensional turbulent flow past a cylinder at Reynolds
number Re = 1000 show the improved physical accuracy of the new model over the standard Galerkin and
mixing-length POD ROMs. The high computational efficiency of the new model is also showcased. Finally,
the theoretical error estimates are confirmed by numerical simulations of a two-dimensional Navier-Stokes
problem. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 641–663, 2014

Keywords: finite element method; proper orthogonal decomposition; reduced-order model; variational
multiscale

I. INTRODUCTION

Due to the complexity of fluid flows in many realistic engineering problems, millions or even bil-
lions of degrees of freedom are often required in a direct numerical simulation (DNS). To allow
efficient numerical simulations in these applications, reduced-order models (ROMs) are often
used. The proper orthogonal decomposition (POD) has been one of the most popular approaches
used in developing ROMs for complex fluid flows [1–5]. It starts by using a DNS (or exper-
imental data) to generate a POD basis {ϕ1, . . . , ϕd} that maximizes the energy content in the
system, where d is the rank of the data set. By utilizing the Galerkin method, one can project
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the original system onto the space spanned by only a handful of dominant POD basis functions
{ϕ1, . . . , ϕr}, with r ≤ d , which results in a low-order model—the Galerkin projection-based
POD-ROM (POD-G-ROM).

The POD-G-ROM has been applied successfully in the numerical simulation of laminar flows.
It is well known, however, that a simple POD-G-ROM will generally produce erroneous results
for turbulent flows [6]. The reason is that although the discarded POD modes {ϕr+1, . . . , ϕd} only
contain a small part of the system’s kinetic energy, they do, however, have a significant impact on
the dynamics. To model the effect of the discarded POD modes, various approaches have been
proposed (see, e.g., the survey in [7]). In this report, we develop an approach that improves the
physical accuracy of the POD-ROM for turbulent incompressible fluid flows by utilizing a varia-
tional multiscale (VMS) idea [8, 9]. This method is an extension to the Navier-Stokes equations
(NSE) of the VMS-POD-ROM that we proposed in [10] for convection-dominated convection-
diffusion-reaction equations. Our approach uses an eddy viscosity (EV) to model the interaction
between the discarded POD modes and those retained in the POD-ROM. Instead of being added
to all the resolved POD modes {ϕ1, . . . , ϕr}, EV is only added to the small resolved scales (POD
modes {ϕR+1, . . . , ϕr} with R < r) in the VMS-POD-ROM. Thus, the small scale oscillations are
eliminated without polluting the large scale components of the approximation. The small scales in
the VMS-POD-ROM are defined by a projection approach in [10], which is also used in [11–15] in
the finite element (FE) context. We also note that a different approach was developed in [16, 17].

In this report, the VMS-POD-ROM is extended and studied for the NSE. Under two assump-
tions on the underlying FE approximation and the generation of the POD basis, the error analysis
of the full discretization of the ROM (FE in space, backward Euler in time) is presented. A
numerical test of the VMS-POD-ROM for a three-dimensional (3D) turbulent flow past a circular
cylinder at Reynolds number Re = 1000 is conducted to investigate the physical accuracy of
the model. The theoretical error estimates are confirmed by using the VMS-POD-ROM in the
numerical simulation of a two-dimensional (2D) flow.

The rest of this article is organized as follows: In Section II, we briefly describe the POD
methodology and introduce the new VMS-POD-ROM. The error analysis for the full discretiza-
tion of the new model is presented in Section III. The new methodology is tested numerically
in Section IV for a 3D flow past a circular cylinder and a 2D flow problem. Finally, Section V
presents the conclusions and future research directions.

II. VARIATIONAL MULTISCALE PROPER ORTHOGONAL DECOMPOSITION

We consider the numerical solution of the incompressible NSE:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut − ν"u + (u · ∇) u + ∇p = f , in # × (0, T ],
∇ · u = 0, in # × (0, T ],
u = 0, on ∂# × (0, T ],
u(x, 0) = u0(x), in #,

(2.1)

where u(x, t) and p(x, t) represent the fluid velocity and pressure of a flow in the region #,
respectively, for x ∈ #, t ∈ [0, T ], and # ⊂ Rn with n = 2 or 3; the flow is bounded by walls
and driven by the force f(x, t); ν is the reciprocal of the Reynolds number; and u0(x) denotes the
initial velocity. We also assume that the boundary of the domain, ∂#, is polygonal when n = 2
and is polyhedral when n = 3.
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The following functional spaces and notations will be used in the article:

X = H1
0 (#) =

{
v ∈ [L2(#)]n : ∇v ∈ [L2(#)]n×n

and v = 0 on ∂#
}

,

Q = L2
0 (#) =

{
q ∈ L2(#) :

∫

#

qdx = 0
}

,

V = {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q} , and

Vh =
{
vh ∈ Xh : (∇ · vh, qh) = 0, ∀qh ∈ Qh

}
,

where Xh ⊂ X and Qh ⊂ Q are the FE spaces of the velocity and pressure, respectively. In
what follows, we consider the div-stable pair of FE spaces Pm/Pm−1, m ≥ 2 [18]. That is, the FE
approximation of the velocity is continuous on # and is an n-vector valued function with each
component a polynomial of degree less than or equal to m when restricted to an element, while
that of the pressure is also continuous on # and is a single valued function that is a polynomial
of degree less than or equal to m−1 when restricted to an element. We emphasize, however, that
our analysis extends to more general FE spaces. We consider the following spaces for the POD
setting:

Xr := span
{
ϕ1, ϕ2, . . . , ϕr

}
, (2.2a)

XR := span
{
ϕ1, ϕ2, . . . , ϕR

}
, and (2.2b)

LR := span
{
∇ϕ1, ∇ϕ2, . . . , ∇ϕR

}
, (2.2c)

where ϕj , j = 1, . . . , r , are the POD basis functions that will be defined in Section II.A. We note
that XR ⊂ Xr , since R < r .

We introduce the following notations: let H be a real Hilbert space endowed with inner product
(·, ·)H and norm || · ||H. Let the trilinear form b∗(·, ·, ·) be defined as

b∗ (u, v, w) = 1
2

[((u · ∇) v, w) − ((u · ∇) w, v)]

and the norm ||| · ||| be defined as |||v|||s,k :=
(

1
M

∑M−1
i=0 ||v(·, ti+1)||sk

)1/s

, where s and M are
positive integers.

The weak formulation of the NSE (2.1) reads: Find u ∈ X and p ∈ Q such that
{

(ut , v) + ν (∇u, ∇v) + b∗ (u, u, v) − (p, ∇ · v) = (f , v) , ∀v ∈ X,
(∇ · u, q) = 0, ∀q ∈ Q.

(2.3)

To ensure the uniqueness of the solution to (2.3), we make the following regularity assumptions
(see Definition 29 and Remark 10 in [18]):

Assumption 2.1. In (2.1), assume that f ∈ L2
(
0, T ; L2(#)

)
, u0 ∈ V, u ∈ L2 (0, T ; X) ∩

L∞ (
0, T ; L2(#)

)
, ∇u ∈

(
L4

(
0, T ; L2(#)

))n×n
, ut ∈ L2 (0, T ; X∗), and p ∈ L2 (0, T ; Q).

The FE approximation of (2.3) can be written as follows: Find uh ∈ Vh such that
(
uh,t , vh

)
+ ν (∇uh, ∇vh) + b∗ (uh, uh, vh) = (f , vh) , ∀vh ∈ Vh (2.4)

and uh(·, 0) = u0
h ∈ Vh.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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A. Proper Orthogonal Decomposition

We briefly describe the POD method, following [19]. For a detailed presentation, the reader is
referred to [3, 20–23].

Consider an ensemble of snapshots R := span {u(·, t0), . . . , u(·, tM)}, which is a collection
of velocity data from either numerical simulation results or experimental observations at time
ti = i"t , i = 0, . . . , M and let "t = T

M
. The POD method seeks a low-dimensional basis

{ϕ1, . . . , ϕr} in H that optimally approximates the snapshots in the following sense:

min
1

M + 1

M∑

ℓ=0

∥∥∥∥∥u(·, tℓ) −
r∑

j=1

(
u(·, tℓ), ϕj (·)

)
Hϕj (·)

∥∥∥∥∥

2

H

(2.5)

subject to the conditions that (ϕj , ϕi )H = δij , 1 ≤ i, j ≤ r , where δij is the Kronecker delta. To
solve (2.5), one can consider the eigenvalue problem

Kzj = λj zj , for j = 1, . . . , r , (2.6)

whereK∈R(M+1)×(M+1) is the snapshot correlation matrix with entriesKkℓ = 1
M+1 (u(·, tℓ), u(·, tk))H

for ℓ, k = 0, . . . , M , zj is the j-th eigenvector, and λj is the associated eigenvalue. The eigenvalues
are positive and sorted in descending order λ1 ≥ · · · ≥ λr ≥ 0. It can then be shown that the
solution of (2.5), the POD basis function, is given by

ϕj (·) = 1
√

λj

M∑

ℓ=0

(zj )ℓ
u(·, tℓ), 1 ≤ j ≤ r , (2.7)

where (zj )ℓ
is the ℓ-th component of the eigenvector zj . It can also be shown that the following

error formula holds [19, 21]:

1
M + 1

M∑

ℓ=0

∥∥∥∥∥u(·, tℓ) −
r∑

j=1

(
u(·, tℓ), ϕj (·)

)
Hϕj (·)

∥∥∥∥∥

2

H

=
d∑

j=r+1

λj , (2.8)

where d is the rank of R.

Remark 2.1. Since, as shown in (2.7), the POD basis functions are linear combinations of the
snapshots, the POD basis functions satisfy the boundary conditions in (2.1) and are solenoidal. If
the FE approximations are used as snapshots, the POD basis functions belong to Vh, which yields
Xr ⊂ Vh.

The Galerkin projection-based POD-ROM uses both Galerkin truncation and Galerkin pro-
jection. The former yields an approximation of the velocity field by a linear combination of the
truncated POD basis:

u (x, t) ≈ ur (x, t) ≡
r∑

j=1

aj (t) ϕj (x) , (2.9)

where
{
aj (t)

}r

j=1 are the sought time-varying coefficients representing the POD-Galerkin trajec-
tories. Note that r ≪ N , where N denotes the number of degrees of freedom in a DNS. Replacing
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the velocity u with ur in the NSE (2.1), using the Galerkin method, and projecting the resulted
equations onto the space Xr , one obtains the POD-G-ROM for the NSE: Find ur ∈ Xr such that

(
∂ur

∂t
, ϕ

)
+ ν (∇ur , ∇ϕ) + b∗ (ur , ur , ϕ) = (f , ϕ) , ∀ϕ ∈ Xr (2.10)

and ur (·, 0) = u0
r ∈ Xr . In (2.10), the pressure term vanishes due to the fact that all POD modes are

solenoidal and satisfy the appropriate boundary conditions. The spatial and temporal discretiza-
tions of (2.10) were considered in [24, 25]. Despite its appealing computational efficiency, the
POD-G-ROM (2.10) has generally been limited to laminar flows. To overcome this restriction,
we develop a closure method for the POD-ROM, which stems from the VMS ideas.

B. Variational Multiscale Method

Based on the concept of energy cascade and locality of energy transfer, the VMS method models
the effect of unresolved scales by introducing extra eddy viscosities to and only to the resolved
small scales [8, 9]. For a standard FE discretization, the separation of scales is generally chal-
lenging. Indeed, unless special care is taken (e.g., mesh adaptivity is used), the FE basis does
not include any a priori information regarding the scales displayed by the underlying problem.
Since the POD basis functions are already listed in descending order of their kinetic energy con-
tent, the POD represents an ideal setting for the VMS methodology. Naturally, we regard the
discarded POD basis functions as unresolved scales, {ϕ1, . . . , ϕR} as resolved large scales, and
{ϕR+1, . . . , ϕr} as resolved small scales, where R < r .

We consider the orthogonal projection of L2 on LR , PR : L2 → LR , defined by

(u − PRu, vR) = 0, ∀vR ∈ LR . (2.11)

Let P ′
R := I−PR , where I is the identity operator. We propose the variational multiscale POD

ROM (PR-VMS-POD-ROM) for the NSE: Find ur ∈ Xr such that
(

∂ur

∂t
, ϕ

)
+ ν (∇ur , ∇ϕ) + b∗ (ur , ur , ϕ) + α

(
P ′

R∇ur , P ′
R∇ϕ

)
= (f , ϕ) , ∀ϕ ∈ Xr , (2.12)

where α > 0 is a constant EV coefficient and the initial condition is given by the L2 projection of
u0 on Xr :

ur (·, 0) = u0
r :=

r∑

j=1

(u0, ϕj )ϕj . (2.13)

Remark 2.2. When R = r or α = 0, the PR -VMS-POD-ROM (2.12) coincides with the standard
POD-G-ROM, since no EV is introduced. When R = 0, since EV is added to all modes in the POD-
ROM, the PR -VMS-POD-ROM (2.12) becomes the mixing-length POD-ROM (ML-POD-ROM)
[6, 7]:

(
∂ur

∂t
, ϕ

)
+ ν (∇ur , ∇ϕ) + b∗ (ur , ur , φ) + α (∇ur , ∇ϕ) = (f , ϕ) , ∀ϕ ∈ Xr . (2.14)

Remark 2.3. We note that the PR -VMS-POD-ROM (2.12) is different from the VMS-POD-
ROM introduced in [7]. Indeed, the former uses the operator P ′

R and a constant EV coefficient,
whereas the later does not use the operator P ′

R and uses a variable EV coefficient.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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We consider the full discretization of (2.12): We use the backward Euler method with a time
step "t for the time integration and the FE space Pm with m ≥ 2 and a mesh size h for the spatial
discretization. For k = 0, . . . , M , denote the approximation solution of (2.12) at tk = k"t to be
uk

r = uh,r (tk) and the force at tk to be fk = f(tk), respectively. Note that we have dropped the
subscript "h" in uk

r for clarity of notation. The discretized PR -VMS-POD-ROM then reads: Find
uk

r ∈ Xr such that

(
uk+1

r − uk
r

"t
, ϕ

)
+ ν

(
∇uk+1

r , ∇ϕ
)
+ b∗ (

uk+1
r , uk+1

r , ϕ
)
+ α

(
P ′

R∇uk+1
r , P ′

R∇ϕ
)

=
(
fk+1, ϕ

)
,

∀ϕ ∈ Xr , k = 0, . . . , M − 1
(2.15)

with the initial condition given in (2.13): u0
r = ∑r

j=1(u
0, ϕj )ϕj .

In the sequel, we denote by uk and uk
h the velocity solution of (2.3) and the FE velocity

approximation of (2.4) at t = tk , respectively.

III. ERROR ESTIMATES

In this section, we present the error analysis for the PR -VMS-POD-ROM discretization (2.15).
We take the FE solutions uh(·, ti), i = 1, . . . , M as snapshots and choose H = L2 in the POD
generation. The error source includes three main components: the spatial FE discretization error,
the temporal discretization error, and the POD truncation error. We derive the error estimate in
two steps. First, we gather some necessary assumptions and preliminary results in Section III.A.
Then, we present the main result in Section III.B.

In the sequel, we assume C to be a generic constant, which varies in different places, but is
always independent of the FE mesh size h, the FE order m, the eigenvalues λj and the time step
size "t .

A. Preliminaries

We will need the following results for developing a rigorous error estimate:

Assumption 3.1 (FE error). We assume that the FE approximation uh of (2.4) satisfies the
following error estimate:

||u − uh|| + h||∇(u − uh)|| ≤ C(hm+1 + "t). (3.16)

We also assume the following standard approximation property (see, e.g., page 166 in [18]):

inf
qh∈Qh

||p − qh|| ≤ Chm. (3.17)

Remark 3.1. In chapter V of [26], a linearized version of the implicit (backward) Euler scheme
of the NSE (2.1) was considered (see Eq. (2.2)). Theorem 2.2 in the same chapter proves (opti-
mal) first-order error estimates with respect to the time variable in the L2 norm. On page 170, it is
mentioned that the discretization with respect to the space variable is not considered, since it has
already been thoroughly studied in chapter IV. In [27], the same linearized version of the implicit
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(backward) Euler scheme as that in Eq. (2.2) in chapter V of [26] is considered. The theorem on
page 44 in [27] proves (optimal) first-order error estimates with respect to the time variable in the
H1 norm. As in [26], the discretization with respect to the space variable was not considered. The
implicit (backward) Euler scheme was also considered in [28]. Section “Time discretization” on
page 765 in [28] outlines the derivation of an optimal error estimate with respect to both space
and time under assumptions on the stability of the solution. We note that these assumptions are
probably not valid in the fully turbulent regime considered in the numerical tests in Section IV.
For the explicit (forward) Euler scheme, an (optimal) first-order error estimate with respect to the
time variable was proven in [29]. Higher order schemes for the time discretization of the NSE
were analyzed in [26, 30–32].

We note that the references cited earlier generally focus on proving error estimates for the L2

norm of the error (i.e., the first term on the LHS of (3.16)). We also note that these references
usually make assumptions regarding the regularity of the solution or the parameters of the numer-
ical scheme. These assumptions are generally valid in laminar flow settings, but are usually not
valid in realistic turbulent flow settings. Furthermore, even when they are valid, the dependency
of the constants in the error estimates on the Reynolds number or the various norms of the solution
renders these error estimates impractical for realistic turbulent flows. Finding robust numerical
schemes for realistic turbulent flows is a fundamental problem that, to the best of our knowledge,
is still open (see, e.g., the extensive discussion in [18, 33, 34]). The main goal of this report is,
however, different. We are not aiming at developing robust numerical schemes for realistic tur-
bulent flows. Instead, we assume that an acceptable scheme exists and we investigate whether
the POD-ROM that we consider can achieve a similar numerical accuracy at a fraction of the
computational cost. We emphasize that this approach is commonly used in the derivation of error
estimates for POD-ROMs. Indeed, inequality (2.17) in Theorem 2.2 in [25] is similar to (although
not the same as) inequality (3.16) in Assumption 3.1 of our report.

For the POD approximation, the following POD inverse estimate was proven in Lemma 2 in
[19]:

Lemma 3.1. Let ϕi , i = 1, . . . , r , be POD basis functions, Mr be the POD mass matrix
with entries [Mr ]jk = (ϕk , ϕj ) , and Sr be the POD stiffness matrix with entries [Sr ]jk =
[Mr ]jk + (∇ϕk , ∇ϕj ) , where j , k = 1, . . . , r . Let || · ||2 denote the matrix 2-norm. Then, for
all v ∈ Xr , the following estimates hold:

||v||L2 ≤
√

||Mr ||2||S−1
r ||2||v||H1 , (3.18)

||v||H1 ≤
√

||Sr ||2||M−1
r ||2||v||L2 . (3.19)

Note that, since we chose H = L2 in the POD method, ||Mr ||2 = ||M−1
r ||2 = 1 in inequalities

(3.18)–(3.19).
The L2 norm of the POD projection error is given by (2.8) with H = L2. The H1 norm of the

POD projection error is given in the following lemma:

Lemma 3.2. The POD projection error in the H1 norm satisfies

1
M + 1

M∑

ℓ=0

∥∥∥∥∥uh(·, tℓ) −
r∑

j=1

(
uh(·, tℓ), ϕj (·)

)
ϕj (·)

∥∥∥∥∥

2

1

=
d∑

j=r+1

||ϕj ||21λj . (3.20)
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Note that the POD projection error for continuous functions, that is, the error in the
L2(0, T ; H 1(#)) norm, has been proven in [22] (Theorem 2, page 17). We consider the POD
of a discrete function and derive the time averaged POD projection error in the H1 norm as
follows:

Proof. Let Y = [uh(·, t0), uh(·, t1), . . . , uh(·, tM)] be the snapshot matrix. A necessary opti-
mality condition of the POD basis is given by the following eigenvalue problem (see, e.g.,
[35]):

1
M + 1

YY ᵀϕj = λjϕj . (3.21)

The POD projection error in the H1 norm satisfies

1
M + 1

M∑

ℓ=0

∥∥∥∥∥ uh(·, tℓ) −
r∑

j=1

(
uh(·, tℓ), ϕj (·)

)
ϕj (·)

∥∥∥∥∥

2

1

= 1
M + 1

M∑

ℓ=0

∥∥∥∥∥

d∑

j=r+1

(uh(·, tℓ), ϕj )ϕj

∥∥∥∥∥

2

1

= 1
M + 1

M∑

ℓ=0

(
d∑

j=r+1

(uh(·, tℓ), ϕj )ϕj ,
d∑

k=r+1

(uh(·, tℓ), ϕk)ϕk

)

1

= 1
M + 1

M∑

ℓ=0

d∑

j=r+1

d∑

k=r+1

(uh(·, tℓ), ϕj )(uh(·, tℓ), ϕk)(ϕj , ϕk)1

=
d∑

j=r+1

d∑

k=r+1

(
1

M + 1

M∑

ℓ=0

(uh(·, tℓ), ϕj )uh(·, tℓ), ϕk

)

(ϕj , ϕk)1

=
d∑

j=r+1

d∑

k=r+1

(
1

M + 1
YY ᵀϕj , ϕk

)
(ϕj , ϕk)1

(3.21)=
d∑

j=r+1

d∑

k=r+1

(
λjϕj , ϕk

)
(ϕj , ϕk)1

=
d∑

j=r+1

d∑

k=r+1

λjδjk(ϕj , ϕk)1
=

d∑

j=r+1

λj ||ϕj ||21, (3.22)

which proves (3.20).

We define the L2 projection of u, Pru, from L2 to Xr as follows:

(
u − Pru, ϕr

)
= 0, ∀ϕr ∈ Xr . (3.23)

We have the following error estimate of the L2 projection:

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Lemma 3.3. For any uk ∈ X , its L2 projection, wk
r = Pruk , satisfies the following error

estimates:

1
M + 1

M∑

k=0

∥uk − wk
r ∥

2 ≤ C

(

h2m+2 + "t2 +
d∑

j=r+1

λj

)

, (3.24)

1
M + 1

M∑

k=0

∥∇
(
uk − wk

r

)
∥2 ≤ C

(

h2m + ||Sr ||2h2m+2 + (1 + ||Sr ||2)"t2 +
d∑

j=r+1

||ϕj ||21λj

)

.

(3.25)

Proof. By the definition of the L2 projection (3.23), we have

∥uk − wk
r ∥

2 =
(
uk − wk

r , uk − wk
r

) (3.23)=
(
uk − wk

r , u − vk
r

)
, ∀vk

r ∈ Xr . (3.26)

Using the Cauchy-Schwarz inequality in (3.26), we get

∥uk − wk
r ∥ ≤ ||uk − vk

r ||, ∀vk
r ∈ Xr . (3.27)

Decompose uk −vk
r = (uk −uk

h)+(uk
h −vk

r ), where uk
h is the corresponding FE approximation.

Choosing vk
r = Pruk

h := ∑r

j=1

(
uk

h, ϕj

)
ϕj in (3.27), by the triangle inequality, Assumption 3.1,

and the POD projection error estimate (2.8), we have

1
M + 1

M∑

k=0

∥uk − wk
r ∥

2 ≤ 1
M + 1

M∑

k=0

(
∥uk − uk

h∥ + ∥uk
h − Pruk

h∥
)2

≤ C

(

h2m+2 + "t2 +
d∑

j=r+1

λj

)

, (3.28)

which proves error estimate (3.24).
Using the triangle inequality, Assumption 3.1, the POD inverse estimate (3.19) and Lemma

3.2, we obtain

1
M + 1

M∑

k=0

∥∇
(
uk − wk

r

)
∥2

≤ 1
M + 1

M∑

k=0

(
∥∇

(
uk − uk

h

)
∥ + ∥∇

(
uk

h − Pruk
h

)
∥ + ∥∇

(
Pruk

h − wk
r

)
∥
)2

≤ C

(

h2m + "t2 +
d∑

j=r+1

||ϕj ||21λj + ||Sr ||2
1

M + 1

M∑

k=0

∥Pruk
h − wk

r ∥
2

)

≤ C

(

h2m + "t2 +
d∑

j=r+1

||ϕj ||21λj + ||Sr ||2
1

M + 1

M∑

k=0

∥uk
h − uk∥2

)

(wk
r = Pruk)

≤ C

(

h2m + ||Sr ||2h2m+2 + (1 + ||Sr ||2)"t2 +
d∑

j=r+1

||ϕj ||21λj

)

, (3.29)

which proves error estimate (3.25).
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We assume that the following estimates, which are similar to (3.24) and (3.25), are also valid:

Assumption 3.2. For any uk ∈ X, its L2 projection, wk
r = Pruk , satisfies the following error

estimates:

∥uk − wk
r ∥ ≤ C

⎛

⎝hm+1 + "t +

√√√√
d∑

j=r+1

λj

⎞

⎠ , (3.30)

∥∇
(
uk − wk

r

)
∥ ≤ C

⎛

⎝hm +
√

||Sr ||2hm+1 +
√

1 + ||Sr ||2"t +

√√√√
d∑

j=r+1

||ϕj ||21λj

⎞

⎠ . (3.31)

Remark 3.2. The assumption that (3.30) and (3.31) hold is quite natural. It simply says that,
in the POD truncation error formulas (2.8) and (3.20), no individual term is much larger than the
other terms in the sums.

We also mention that formulas (3.30) and (3.31) would follow directly from the POD trunca-
tion error estimates (2.8) and (3.20) if we discarded the 1

M+1 factor in those estimates. This could
be accomplished simply by dropping the 1

M+1 factor from the snapshot correlation matrix K. In
fact, this approach is used in, for example, [24] (compare formula (3.5) in [24] with formula (2.8)
in our report). We note, however, that by dropping the 1

M+1 from the correlation matrix K would
most likely increase the magnitudes of the eigenvalues on the RHS of the POD truncation error
estimates (2.8) and (3.20).

Lemma 3.4 (see Lemma 13 and Lemma 14 in [18]). For any functions u, v, w ∈ X, the skew-
symmetric trilinear form b∗(·, ·, ·) satisfies

b∗(u, v, v) = 0, (3.32)

b∗(u, v, w) ≤ C||∇u||||∇v||||∇w||, (3.33)

and a sharper bound

b∗(u, v, w) ≤ C
√

||u||||∇u||||∇v||||∇w||. (3.34)

We have the following stability result for the PR -VMS-POD-ROM (2.15):

Lemma 3.5. The solution of (2.15) satisfies the following bound:

∥uM
r ∥2 + ν"t

M−1∑

k=0

∥∇uk+1
r ∥2 ≤ ∥u0

r∥
2 + "t

ν

M−1∑

k=0

∥fk+1∥2
−1. (3.35)

Proof. Choosing ϕ := uk+1
r in (2.15) and noting that b∗(uk+1

r , uk+1
r , uk+1

r ) = 0 by (3.32), we
obtain

(
uk+1

r − uk
r , uk+1

r

)
+ ν"t

(
∇uk+1

r , ∇uk+1
r

)
+ α"t

(
P ′

R∇uk+1
r , P ′

R∇uk+1
r

)
= "t

(
fk+1, uk+1

r

)
.

(3.36)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



VARIATIONAL MULTISCALE POD 651

Using the Cauchy-Schwarz inequality, Young’s inequality and the fact that the last term on the
LHS of (3.36) is positive yields

1
2
∥uk+1

r ∥2 − 1
2
∥uk

r∥
2 + ν"t∥∇uk+1

r ∥2 ≤ "t
(
fk+1, uk+1

r

)
. (3.37)

Applying the Cauchy-Schwarz inequality and Young’s inequality on the RHS of (3.37), we get

1
2
∥uk+1

r ∥2 − 1
2
∥uk

r∥
2 + ν"t∥∇uk+1

r ∥2 ≤ "t

2ν
∥fk+1∥2

−1 + ν"t

2
∥∇uk+1

r ∥2
. (3.38)

Then, the stability estimate (3.35) follows by summing (3.38) from 0 to M−1.

Lemma 3.6. The a priori stability estimate in Lemma 3.5 yields the following bounds:

||uk+1
r ||2 ≤ ν−1|||f |||22,−1 + ||u0

r ||2, ∀k = 0, . . . , M − 1. (3.39)

B. Main Results

We are ready to derive the main result of this section, which provides the error estimates for the
PR -VMS-POD-ROM (2.15).

Theorem 3.1. Under the regularity assumption of the exact solution (Assumption 2.1), the
assumption on the FE approximation (Assumption 3.1) and the assumption on the POD projec-
tion error (Assumption 3.2), the solution of the PR -VMS-POD-ROM (2.15) satisfies the following
error estimate: There exists "t∗ > 0 such that the inequality

∥uM − uM
r ∥2 + ν"t

M−1∑

k=0

∥∇
(
uk+1 − uk+1

r

)
∥2

≤ C((1 + ||Sr ||2 + ||SR||2) "t2 + h2m + (1 + ||Sr ||2 + ||SR||2) h2m+2

+
d∑

j=r+1

(
1 + ||ϕj ||21

)
λj +

d∑

j=R+1

||ϕj ||21λj ) (3.40)

holds for all "t < "t∗.

Proof. We start deriving the error bound by splitting the error into two terms:

uk+1 − uk+1
r =

(
uk+1 − wk+1

r

)
−

(
uk+1

r − wk+1
r

)
= ηk+1 − φk+1

r . (3.41)

The first term, ηk+1 = uk+1 −wk+1
r , represents the difference between uk+1 and its L2 projection

on Xr , which has been bounded in Lemma 3.3. The second term, φk+1
r , is the remainder.

Next, we construct the error equation. We first evaluate the weak formulation of the NSE (2.3)
at t = t k+1 and let v = ϕr , then subtract the PR -VMS-POD-ROM (2.15) from it. We obtain

(
uk+1

t , ϕr

)
−

(
uk+1

r − uk
r

"t
, ϕr

)
+ ν

(
∇uk+1 − ∇uk+1

r , ∇ϕr

)
+ b∗ (

uk+1, uk+1, ϕr

)

−b∗ (
uk+1

r , uk+1
r , ϕr

)
−

(
p, ∇·ϕr

)
− α

(
P ′

R∇uk+1
r , P ′

R∇ϕr

)
= 0, ∀ϕr ∈ Xr . (3.42)
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By subtracting and adding the difference quotient term,
(

uk+1−uk

"t
, ϕr

)
, in (3.42), and applying

the decomposition (3.41), we have, for any ϕr ∈ Xr ,

(
uk+1

t − uk+1 − uk

"t
, ϕr

)
+ 1

"t

(
ηk+1 − φk+1

r , ϕr

)
− 1

"t

(
ηk − φk

r , ϕr

)

+ ν
(
∇

(
ηk+1 − φk+1

r

)
, ∇ϕr

)
+ b∗ (

uk+1, uk+1, ϕr

)
− b∗ (

uk+1
r , uk+1

r , ϕr

)

−
(
p, ∇ · ϕr

)
− α

(
P ′

R∇uk+1
r , P ′

R∇ϕr

)
= 0. (3.43)

Note that (3.23) implies that
(
ηk , ϕr

)
= 0 and

(
ηk+1, ϕr

)
= 0. Choosing ϕr = φk+1

r in (3.43)

and letting rk = uk+1
t − uk+1−uk

"t
, we obtain

1
"t

(
φk+1

r , φk+1
r

)
− 1

"t

(
φk

r , φk+1
r

)
+ ν

(
∇φk+1

r , ∇φk+1
r

)

=
(
rk , φk+1

r

)
+ ν

(
∇ηk+1, ∇φk+1

r

)
+ b∗ (

uk+1, uk+1, φk+1
r

)

− b∗ (
uk+1

r , uk+1
r , φk+1

r

)
−

(
p, ∇ · φk+1

r

)
− α

(
P ′

R∇uk+1
r , P ′

R∇φk+1
r

)
. (3.44)

First, we estimate the LHS of (3.44) by applying the Cauchy-Schwarz inequality and Young’s
inequality:

LHS = 1
"t

∥φk+1
r ∥2 − 1

"t

(
φk

r , φk+1
r

)
+ ν∥∇φk+1

r ∥2

≥ 1
2"t

(
∥φk+1

r ∥2 − ∥φk
r ∥

2
)

+ ν∥∇φk+1
r ∥2

. (3.45)

Multiplying by 2"t both sides of inequality (3.45) and using the result in (3.44), we obtain

∥φk+1
r ∥2 − ∥φk

r ∥
2 + 2ν"t∥∇φk+1

r ∥2

≤ 2"t
(
rk , φk+1

r

)
+ 2ν"t

(
∇ηk+1, ∇φk+1

r

)
+ 2"tb∗ (

uk+1, uk+1, φk+1
r

)

− 2"tb∗ (
uk+1

r , uk+1
r , φk+1

r

)
− 2"t

(
p, ∇ · φk+1

r

)
− 2α"t

(
P ′

R∇uk+1
r , P ′

R∇φk+1
r

)
. (3.46)

Next, we estimate the terms on the RHS of (3.46) one by one. Using the Cauchy-Schwarz
inequality and Young’s inequality, we get

(
rk , φk+1

r

)
≤ ∥rk∥−1∥∇φk+1

r ∥ ≤ c−1
1

4
∥rk∥2

−1 + c1∥∇φk+1
r ∥2

, (3.47)

ν
(
∇ηk+1, ∇φk+1

r

)
≤ ν∥∇ηk+1∥∥∇φk+1

r ∥ ≤ c−1
2 ν

4
∥∇ηk+1∥2 + c2ν∥∇φk+1

r ∥2
. (3.48)

The nonlinear terms in (3.46) can be written as follows:

b∗ (
uk+1, uk+1, φk+1

r

)
− b∗ (

uk+1
r , uk+1

r , φk+1
r

)

= b∗ (
uk+1

r , ηk+1 − φk+1
r , φk+1

r

)
+ b∗ (

ηk+1 − φk+1
r , uk+1, φk+1

r

)

= b∗ (
uk+1

r , ηk+1, φk+1
r

)
+ b∗ (

ηk+1, uk+1, φk+1
r

)
− b∗ (

φk+1
r , uk+1, φk+1

r

)
, (3.49)
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where we have used b∗ (
uk+1, φk+1

r , φk+1
r

)
= 0, which follows from (3.32). Next, we estimate each

term on the RHS of (3.49). Since uk+1
r , ηk+1, φk+1

r ∈ X, we can apply the standard bounds for the
trilinear form b∗ (·, ·, ·) and use Young’s inequality:

b∗ (
uk+1

r , ηk+1, φk+1
r

) (3.34)≤ C∥uk+1
r ∥1/2∥∇uk+1

r ∥1/2∥∇ηk+1∥∥∇φk+1
r ∥

≤ 1
4c3

C2∥uk+1
r ∥∥∇uk+1

r ∥∥∇ηk+1∥2 + c3∥∇φk+1
r ∥2

; (3.50)

b∗ (
ηk+1, uk+1, φk+1

r

) (3.33)≤ C∥∇ηk+1∥∥∇uk+1∥∥∇φk+1
r ∥

≤ 1
4c4

C2∥∇uk+1∥2∥∇ηk+1∥2 + c4∥∇φk+1
r ∥2

; (3.51)

b∗ (
φk+1

r , uk+1, φk+1
r

) (3.34)≤ C∥φk+1
r ∥

1
2 ∥∇φk+1

r ∥
1
2 ∥∇uk+1∥∥∇φk+1

r ∥

= C∥φk+1
r ∥

1
2 ∥∇uk+1∥∥∇φk+1

r ∥
3
2

≤ C
c−3

5

4
∥∇uk+1∥4∥φk+1

r ∥2 + C
3c5

4
∥∇φk+1

r ∥2
. (3.52)

Since φk+1
r ∈ Xr ⊂ Vh, the pressure term on the RHS of (3.46) can be written as

−
(
p, ∇ · φk+1

r

)
= −

(
p − qh, ∇ · φk+1

r

)
, (3.53)

where qh is any function in Qh . Thus, the pressure term can be estimated as follows by the
Cauchy-Schwarz inequality and Young’s inequality:

−
(
p, ∇ · φk+1

r

)
≤ 1

4c6
∥p − qh∥2 + c6∥∇φk+1

r ∥2
. (3.54)

The last term on the RHS of (3.46) can be estimated as follows:

− α
(
P ′

R∇uk+1
r , P ′

R∇φk+1
r

)

= α
(
P ′

R∇uk+1 − P ′
R∇uk+1

r , P ′
R∇φk+1

r

)
− α

(
P ′

R∇uk+1, P ′
R∇φk+1

r

)

= α
(
P ′

R∇ηk+1, P ′
R∇φk+1

r

)
− α

(
P ′

R∇φk+1
r , P ′

R∇φk+1
r

)
− α

(
P ′

R∇uk+1, P ′
R∇φk+1

r

)

≤ α∥P ′
R∇ηk+1∥ · ∥P ′

R∇φk+1
r ∥ − α∥P ′

R∇φk+1
r ∥2 − α

(
P ′

R∇uk+1, P ′
R∇φk+1

r

)

≤ α

(
∥P ′

R∇ηk+1∥2 + 1
4
∥P ′

R∇φk+1
r ∥2

)
− α∥P ′

R∇φk+1
r ∥2 + α

(
∥P ′

R∇uk+1∥2 + 1
4
∥P ′

R∇φk+1
r ∥2

)

≤ α∥P ′
R∇ηk+1∥2 − α

2
∥P ′

R∇φk+1
r ∥2 + α∥P ′

R∇uk+1∥2
. (3.55)

Note that, since PR is the L2 projection of L2 on LR , we get

∥P ′
R∇ηk+1∥ ≤ ∥∇ηk+1∥.
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Choosing c1 = c3 = c4 = c6 = ν
12 , c2 = 1

12 and c5 = ν
9C

, then substituting the above
inequalities in (3.46), we obtain

∥φk+1
r ∥2 − ∥φk

r ∥
2 + ν"t∥∇φk+1

r ∥2 + α"t∥P ′
R∇φk+1

r ∥2

≤ 6"t

ν
∥rk∥2

−1 + 6ν"t∥∇ηk+1∥2 + 6"t

ν
C2∥uk+1

r ∥∥∇uk+1
r ∥∥∇ηk+1∥2

+ 6"t

ν
C2∥∇uk+1∥2∥∇ηk+1∥2 + C493ν−3"t

2
∥∇uk+1∥4∥φk+1

r ∥2 + 6"t

ν
∥p − qh∥2

+ 2α"t∥∇ηk+1∥2 + 2α"t∥P ′
R∇uk+1∥2

. (3.56)

Summing (3.56) from k = 0 to k = M − 1, we have

∥φM
r ∥2 + ν"t

M−1∑

k=0

∥∇φk+1
r ∥2 + α"t

M−1∑

k=0

∥P ′
R∇φk+1

r ∥2

≤ ∥φ0
r ∥

2 + 6"t

ν

M−1∑

k=0

∥rk∥2
−1 + 6ν"t

M−1∑

k=0

∥∇ηk+1∥2 + 6"t

ν
C2

M−1∑

k=0

∥uk+1
r ∥∥∇uk+1

r ∥∥∇ηk+1∥2

+ 6"t

ν
C2

M−1∑

k=0

∥∇uk+1∥2∥∇ηk+1∥2 + C493ν−3"t

2

M−1∑

k=0

∥∇uk+1∥4∥φk+1
r ∥2

+ 6"t

ν

M−1∑

k=0

∥p − qh∥2 + 2α"t

M−1∑

k=0

∥∇ηk+1∥2 + 2α"t

M−1∑

k=0

∥P ′
R∇uk+1∥2

. (3.57)

Next, we estimate each term on the RHS of (3.57).
The first term vanishes since u0

r = w0
r (see (2.13)).

By using the Poincaré-Friedrichs inequality, the second term on the RHS of (3.57) can be
estimated as follows (see, e.g., [10]):

"t

M−1∑

k=0

∥rk∥2
−1 ≤ C"t

M−1∑

k=0

∥rk∥2 ≤ C"t2∥ut t∥2
2,2. (3.58)

Using (3.25), the third and eighth terms on the RHS of (3.57) can be estimated as follows:

"t

M−1∑

k=0

∥∇ηk+1∥2 ≤ C

(

h2m + ||Sr ||2h2m+2 + (1 + ||Sr ||2) "t2 +
d∑

j=r+1

||ϕj ||21λj

)

. (3.59)

To estimate the fourth term on the RHS of (3.57), we use Lemma 3.6

"t

M−1∑

k=0

∥uk+1
r ∥∥∇uk+1

r ∥∥∇ηk+1∥2

(3.39)≤
(
ν−1/2|||f |||2,−1 + ||u0

r ||
)
"t

M−1∑

k=0

∥∇uk+1
r ∥∥∇ηk+1∥2
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(3.31)≤ C
(
ν−1/2|||f |||2,−1 + ||u0

r ||
)
"t

M−1∑

k=0

∥∇uk+1
r ∥(h2m + ||Sr ||2h2m+2 + (1 + ||Sr ||2) "t2

+
d∑

j=r+1

||ϕj ||21λj ). (3.60)

We note that we used estimate (3.31) in the derivation of (3.60); using (3.25) would not have
been enough for the asymptotic convergence of (3.60).

The fifth term on the RHS of (3.57) can be bounded as follows:

"t

M−1∑

k=0

∥∇uk+1∥2∥∇ηk+1∥2

(3.31)≤ C"t

M−1∑

k=0

∥∇uk+1∥2
(h2m + ||Sr ||2h2m+2 + (1 + ||Sr ||2) "t2 +

d∑

j=r+1

||ϕj ||21λj ). (3.61)

Since in (3.53) qh was an arbitrary function in Qh, we can use the approximation property
(3.17) in Assumption 3.1 to bound the seventh term on the RHS of (3.57) as follows:

"t

M−1∑

k=0

∥p − qh∥2 ≤ Ch2m. (3.62)

Using (2.2c), we have the following error bound of the last term on the RHS of (3.57):

"t

M−1∑

k=0

∥P ′
R∇uk+1∥2 = "t

M−1∑

k=0

∥∇uk+1 − PR∇uk+1∥2

≤ C
1
M

M−1∑

k=0

inf
vR∈XR

∥∇uk+1 − ∇vR∥2 ≤ C
1
M

M−1∑

k=0

∥∇uk+1 − ∇wk+1
R ∥2

(3.25)≤ C

(

h2m + ||SR||2h2m+2 + (1 + ||SR||2) "t2 +
d∑

j=R+1

||ϕj ||21λj

)

. (3.63)

Collecting (3.58)–(3.63) and letting d = C(6ν + 2α) + 6C3ν−1(ν− 1
2 |||f |||2,−1 +

||u0
r ||)|||∇ur |||1,0 + 6C3ν−1|||∇ur |||22,0, d1 = C493ν−3

2 , d2 = 6Cν−1(∥ut t∥2
2,2 + 1) + 2Cα + d,

d3 = 6Cν−1 + 2Cα + d , and d4 = 2αC, Eq. (3.57) becomes

∥φM
r ∥2 + ν"t

M−1∑

k=0

∥∇φk+1
r ∥2 + α"t

M−1∑

k=0

∥P ′
R∇φk+1

r ∥2

≤ d1"t

M−1∑

k=0

∥∇uk+1∥4∥φk+1
r ∥2 + d2"t2 + d||Sr ||2"t2 + d3h

2m + d||Sr ||2h2m+2

+ d

d∑

j=r+1

||ϕj ||21λj + d4

(

||SR||2"t2 + ||SR||2h2m+2 +
d∑

j=R+1

||ϕj ||21λj

)

. (3.64)
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If "t < "t∗ := d1|||∇u|||44,0, the discrete Gronwall lemma (see Lemma 27 in [18] and also
[32]) implies the following inequality:

∥φM
r ∥2 + ν"t

M−1∑

k=0

∥∇φk+1
r ∥2 + α"t

M−1∑

k=0

∥P ′
R∇φk+1

r ∥2

≤ C∗(d2"t2 + d||Sr ||2"t2 + d3h
2m + d||Sr ||2h2m+2 + d

d∑

j=r+1

||ϕj ||21λj

+ d4(||SR||2"t2 + ||SR||2h2m+2 +
d∑

j=R+1

||ϕj ||21λj )), (3.65)

where C∗ = e
d1"t

∑M−1
k=0

∥∥∥∇uk+1
∥∥∥

4

.
By dropping the third term on the LHS of (3.65) and using (3.30), (3.25), and the triangle

inequality, we get

∥∥uM − uM
r

∥∥2 + ν"t

M−1∑

k=0

∥∥∇
(
uk+1 − uk+1

r

)∥∥2

≤ C((1 + ||Sr ||2 + ||SR||2) "t2 + h2m + (1 + ||Sr ||2 + ||SR||2) h2m+2

+
d∑

j=r+1

(
1 + ||ϕj ||21

)
λj +

d∑

j=R+1

||ϕj ||21λj ). (3.66)

This completes the proof.

IV. NUMERICAL EXPERIMENTS

The goal of this section is twofold. In Section IV.A, we investigate the physical accuracy of the
PR -VMS-POD-ROM. To this end, we test the model in the numerical simulation of a 3D flow
past a circular cylinder at Re = 1000. The PR -VMS-POD-ROM is compared with the POD-G-
ROM and the ML-POD-ROM in which a constant EV is used [6, 7]. All the numerical results are
benchmarked against DNS data. A parallel CFD solver is used to generate the DNS data [36]. For
details on the numerical discretization, the reader is referred to the appendix in [37]. To assess the
physical accuracy of the POD-ROMs, two criteria are used: (i) the time evolution of the POD coef-
ficients, which measures the instantaneous behavior of the models; and (ii) the energy spectrum,
which measures the average behavior of the models. In Section IV.B, we illustrate numerically
the theoretical error estimates in Theorem 3.1. Specifically, we investigate the error’s asymptotic
behavior with respect to the time step, "t , and the POD contribution to the error introduced by
the EV term,

∑d

j=R+1 ||ϕj ||21λj .

A. Physical Accuracy

In this section, we test the PR -VMS-POD-ROM in the numerical simulation of a 3D flow past a
circular cylinder at Re = 1000. By using the method of snapshots [3], we compute the POD basis
{ϕ1, · · · , ϕd} from 1000 snapshots of the velocity field over 15 shedding cycles, that is, t ∈ [0, 75]
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FIG. 1. 3D flow past a cylinder at Re = 1000. First streamwise POD mode (top left), first normal POD
mode (top right), third streamwise POD mode (bottom left), and third normal POD mode (bottom right).
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

(see Fig. 1). These POD modes are then interpolated onto a structured quadratic FE mesh with
nodes coinciding with the nodes used in the original DNS finite volume discretization. Six POD
basis functions (r = 6) are then used in all POD-ROMs that we investigate next. These first six
POD modes capture 84% of the system’s energy. For all these POD-ROMs, the time discretization
was effected by using the backward Euler method with "t = 7.5 × 10−3. We emphasize that
the time interval used in the simulations of POD-ROMs is four times larger than that in which
snapshots are generated, that is, t ∈ [0, 300]. Thus, the predictive capabilities of the POD-ROMs
are investigated. In Fig. 2, the time evolutions of the POD coefficients a1 and a4 are plotted. The
other POD coefficients have a similar qualitative behavior, so, for clarity, they are not included in
our plots. To determine the EV constants in the ML-POD-ROM and the PR -VMS-POD-ROM, we
run the models on the short time interval [0, 15] with several different values for the EV constants
and choose the value that yields the results that are closest to the DNS results. This approach
yields the following values for the EV constants: α = 3 × 10−3 for the ML-POD-ROM (2.14)
and α = 3.5 × 10−3 for the PR-VMS-POD-ROM (2.12) when R = 1. We emphasize that these
EV constant values are optimal only on the short time interval tested, and they might actually be
nonoptimal on the entire time interval [0, 300] on which the POD-ROMs are tested. Thus, this
heuristic procedure ensures some fairness in the numerical comparison of the three POD-ROMs.

The POD-G-ROM (2.10) performs poorly, although it is computationally efficient (its CPU
time is 118s). Indeed, the amplitude of the temporal evolution of the POD coefficient a4(·) is
nine times larger than that for the DNS projection. The ML-POD-ROM’s time evolutions of the
POD coefficients a1 and a4 are also inaccurate. Specifically, although the time evolution at the
beginning of the simulation (where the EV constant α was chosen) is relatively accurate, the
accuracy significantly degrades toward the end of the simulation. For example, as shown in Fig.
2(b), the magnitude of a4 at the end of the simulation is only one eighth of that of the DNS. The
PR -VMS-POD-ROM yields more accurate time evolutions than both the POD-G-ROM and the
ML-POD-ROM for both a1 and a4, as shown in Fig. 2(c). The PR -VMS-POD-ROM is as efficient
as POD-G-ROM, its CPU time being 129 s.

Numerical Methods for Partial Differential Equations DOI 10.1002/num



658 ILIESCU AND WANG

FIG. 2. 3D flow past a cylinder at Re = 1000. Temporal evolution of POD coefficients a1(·) and a4(·) over
the time interval [0, 300] for POD-G-ROM (a), ML-POD-ROM (b), and PR-VMS-POD-ROM (c). [Color
figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3 presents the energy spectra of the three POD-ROMs. The three energy spectra are
compared with the DNS energy spectrum. For the energy spectra, we use the approach in [7] and
we calculate the average kinetic energy of the nodes in the cube with side 0.1 centered at the
probe (0.9992, 0.3575, 1.0625). The energy spectrum of the POD-G-ROM (2.10) overestimates
the energy spectrum of the DNS. The energy spectrum of the ML-POD-ROM (2.14), conversely,
underestimates the energy spectrum of the DNS, especially at the higher frequencies. Although it
displays high oscillations at the higher frequencies, the PR -VMS-POD-ROM (2.12) has a more
accurate spectrum than both the POD-G-ROM (2.10) and the ML-POD-ROM (2.14).

B. Numerical Accuracy

In this section, we test the PR -VMS-POD-ROM in the numerical simulation of the 2D incompress-
ible NSE (2.1). The exact velocity, u = (u, v), has componentsu = 2

π
arctan(−500(y−t))sin(πy),

v = 2
π

arctan(−500(x − t))sin(πx), and the exact pressure is given by p = 0. The inverse of
the Reynolds number is ν = 10−3 and the forcing term is chosen to match the exact solution.

FIG. 3. 3D flow past a cylinder at Re = 1000. Comparison of energy spectrum of DNS with that of POD-
G-ROM (a), ML-POD-ROM (b), and PR-VMS-POD-ROM (c). [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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TABLE I. The PR-VMS-POD-ROM with h = 1/64, r = 99, R = 95, and α = 10−3. The error E for
decreasing values of the time step, "t .

"t E

1 × 10−2 5.97 × 10−2

5 × 10−3 3.19 × 10−2

2.5 × 10−3 1.38 × 10−2

1.25 × 10−3 9.38 × 10−3

Taylor-Hood FEs are used to discretize the spatial domain [0, 1] × [0, 1]. We collect snapshots
over the time interval [0, 1] at every "T = 10−2 by recording the exact values of u and v on the
FE mesh with the mesh size h = 1/64. After applying the method of snapshots, we obtain a POD
basis set with the dimension of 101.

In POD-ROMs, the backward Euler method is used for time integration over the same time
interval. To verify the numerical error of the PR -VMS-POD-ROM (2.12) with respect to the time
step, "t , we choose h = 1/64, r = 99, R = 95 and α = 10−3. With this choice, h2m is on the order of
10−8, and

∑d

j=r+1 ||ϕj ||21λj and
∑d

j=R+1 ||ϕj ||21λj are on the order of 10−4. Thus, asymptotically,
the time discretization error dominates the total error in the theoretical error estimate (3.40). The

error E =
√

||uM − uM
r ||2 + ν"t

∑M−1
k=0 ∥∇

(
uk+1 − uk+1

r

)
∥2

is listed in Table I for decreasing
values of the time step, "t . A linear regression (see Fig. 4) indicates an almost linear correlation
between the error E and the time step "t :

E = 4.05("t)0.92,

which is close to the linear approximation property predicted by the theoretical error estimate
(3.40).

To verify the numerical error of the PR -VMS-POD-ROM with respect to R, we choose
h = 1/64, "t = 10−4, and r = 99. With this choice, h2m and "t2 are on the order of

FIG. 4. The PR-VMS-POD-ROM with h = 1/64, r = 99, R = 95 and α = 10−3. A linear regression between
the total error in the L2 norm at the final time, E , and the time step, "t , is nearly linear: E ∼ O

(
("t)0.92).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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TABLE II. The PR-VMS-POD-ROM with h = 1/64, "t = 10−4, r = 99, and α = 10−3. The approximate
error E for increasing values of R.

R
√∑d

j=R+1 ||ϕj ||21λj E

6 14.7 1.70 × 10−2

10 14.1 1.59 × 10−2

16 13.1 1.47 × 10−2

24 11.9 1.37 × 10−2

10−8 and
∑d

j=r+1 ||ϕj ||21λj is on the order of 10−4. Thus, asymptotically, the POD con-
tribution to the error introduced by the EV term,

∑d

j=R+1 ||ϕj ||21λj , dominates the total
error in the theoretical error estimate (3.40). For a fixed α = 10−3, the error E =√

||uM − uM
r ||2 + ν"t

∑M−1
k=0 ∥∇

(
uk+1 − uk+1

r

)
∥2

is listed in Table II for increasing values of

R. A linear regression between E and
√∑d

j=R+1 ||ϕj ||21λj (see Fig. 5) shows a nearly linear
correlation between the considered terms:

E = 1.03 × 10−3

⎛

⎝

√√√√
d∑

j=R+1

||ϕj ||21λj

⎞

⎠
1.04

,

which is close to the linear approximation property predicted by the theoretical error estimate
(3.40).

FIG. 5. The PR-VMS-POD-ROM with h = 1/64, "t = 10−4, r = 99, and α = 10−3. A lin-
ear regression between the error E and the POD contribution to the error introduced by the EV term:

E ∼ O
((√∑d

j=R+1 ||ϕj ||21λj

)1.04
)

. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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V. CONCLUSIONS

In this article, we proposed a new ROM for the numerical simulation of turbulent incompressible
fluid flows. This model, denoted PR -VMS-POD-ROM, utilizes a VMS method and a projection
operator to model the effect of the high index POD modes that are not included in the ROM. Under
two assumptions on the underlying FE approximation and the generation of the POD basis, an error
estimate was derived for the full discretization of the PR -VMS-POD-ROM. All the contributions
to the total error were considered: the spatial discretization error (due to the FE discretization),
the temporal discretization error (due to the backward Euler method), and the POD truncation
error. The PR -VMS-POD-ROM was also tested in the numerical simulation of a 3D flow past a
circular cylinder at Re = 1000. The numerical tests showed that the PR -VMS-POD-ROM is both
physically accurate and computationally efficient. Furthermore, the numerical results illustrated
the theoretical error estimates.

We note that the EV coefficient α in the PR -VMS-POD-ROM is simply chosen to be a con-
stant. We plan to extend this theoretical and numerical study by considering more accurate choices
for the EV coefficients, such as the Smagorinsky model [7, 38]. We also plan to investigate this
model in more complex physical settings, such as the Boussinesq equations [39]. Finally, we plan
to reduce the computational cost of the PR -VMS-POD-ROM by a different treatment of the time
discretization of the VMS term.

The authors thank the anonymous reviewers for their constructive comments, which helped
improve the manuscript.
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