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ARE THE SNAPSHOT DIFFERENCE QUOTIENTS NEEDED IN
THE PROPER ORTHOGONAL DECOMPOSITION?∗

TRAIAN ILIESCU† AND ZHU WANG‡

Abstract. This paper presents a theoretical and numerical investigation of the following prac-
tical question: Should the time difference quotients (DQs) of the snapshots be used to generate the
proper orthogonal decomposition (POD) basis functions? The answer to this question is important,
since some published numerical studies use the time DQs, whereas other numerical studies do not.
The criterion used in this paper to answer this question is the optimality of the convergence rate of
the error of the reduced order model with respect to the number of POD basis functions. Since to
the best of our knowledge a definition of the optimality of the convergence rate is not available, we
propose one in Definition 3.1 in this paper. Two cases are considered: the no DQ case, in which the
snapshot DQs are not used, and the DQ case, in which the snapshot DQs are used. For each case,
two types of POD bases are used: the L2-POD basis, in which the basis is generated in the L2-norm,
and the H1-POD basis, in which the basis is generated in the H1-norm. The error estimates suggest
that the convergence rates in the C0(L2)-norm and in the C0(H1)-norm are optimal for the DQ
case, but suboptimal for the no DQ case. The theoretical investigation, which uses two numerically
validated assumptions on the POD projection error and the POD Ritz projection error, suggests
the following convergence rates: In the DQ case, the error estimates are optimal in all norms (i.e.,
the C0(L2)-norm, the C0(H1)-norm, and the L2(H1)-norm) for both the L2-POD basis and the
H1-POD basis. In the no DQ case, however, the error estimates are suboptimal in the C0(L2)-norm
for the L2-POD basis and in the C0(H1)-norm for both the L2-POD basis and the H1-POD basis.
Numerical tests are conducted on the heat equation and on the Burgers equation. The numerical
results support the conclusions drawn from the theoretical error estimates. For both the heat equa-
tion and the Burgers equation, and for all norms and bases considered, the convergence rates for the
DQ case are much higher than (and usually twice as high as) the corresponding convergence rates
for the no DQ case. Overall, the theoretical and numerical results strongly suggest that, in order
to achieve optimal pointwise-in-time rates of convergence with respect to the number of POD basis
functions, one should use the snapshot DQs.
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1. Introduction. This paper addresses the following question: “Should the time
difference quotients (DQs) of the snapshots be used in the generation of the proper
orthogonal decomposition (POD) basis functions?”

We emphasize that this is an important question. There are two schools of
thought: one uses the DQs (see, e.g., [23, 24, 11, 12]), the other does not (see, e.g.,
[28, 27, 10, 33]).

To our knowledge, the first instance in which the snapshot DQs were incorporated
in the generation of the POD basis functions was the pioneering paper of Kunisch and
Volkwein [23]. In that report, the authors considered two types of errors for a general
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A1222 TRAIAN ILIESCU AND ZHU WANG

parabolic equation: the time discretization errors and the POD truncation errors.
They argued that one needs to include the temporal DQs in the set of snapshots;
otherwise, the error bound of the approximation of ut will contain an extra 1

∆t2 factor
(see Remark 1 in [23]). Thus, the motivation for using the temporal DQs was purely
theoretical. In numerical investigations, however, the authors reported contradictory
findings: in [23], the use of the DQs did not improve the quality of the reduced order
model (unless the snapshots were taken from a coarse temporal grid); in [17], however,
it did. Kunisch and Volkwein used again the snapshot DQs when they considered the
Navier–Stokes equations [24].

The snapshot DQs were also used in the discrete empirical interpolation method
of Chaturantabut and Sorensen [11, 12] (which is a discrete variant of the empirical
interpolation method [5]). The motivation in [11, 12], however, was different from
that in [23]. Indeed, the authors considered in [11, 12] a general, nonlinear system
of equations of the form y′ = f(y, t) and used the nonlinear snapshots f(y, t). They
further noted (see page 48 in [12]) that, since f(y, t) = y′ and (yn+1 − yn)/∆t ∼ y′,
this is similar to including the temporal DQs, as done in [23, 24].

To our knowledge, the first reports on POD analysis in which the DQs were
not used were [28] for the heat equation and [27] for the Navier–Stokes equations.
Chapelle, Gariah, and Sainte-Marie [10] used a different approach that did not utilize
the DQs either. This approach employed the L2 projection instead of the standard
H1 projection used in, e.g., [23, 24]. Further improvements to the approach used
in [10] (as well as that used in [23, 24]) were made by Singler in [33].

From the above discussion, it is clear that the question whether the snapshot DQs
should be included or not in the set of snapshots is important. To our knowledge, this
question is still open. This report represents a first step in answering this question.

From a theoretical point of view, the only motivation for using the snapshot DQs
was given in Remark 1 in [23]. The main point of this remark is the following: In the
error analysis of the evolution equation, to approximate ut(·, tn), the time derivative
of the exact solution u evaluated at time tn, one usually uses the DQ ∂u(·, tn) :=
u(·,tn)−u(·,tn−1)

∆t . To approximate the DQ ∂u(·, tn) in the POD space, one naturally uses

the POD DQ ∂ur(·, tn) := ur(·,tn)−ur(·,tn−1)
∆t , where ur is the POD reduced order model

approximation. We assume that ur(·, tn) is an optimal approximation for u(·, tn) and
that ur(·, tn−1) is an optimal approximation for u(·, tn−1), where the optimality is
with respect to r (the number of POD basis functions) and ∆t (the time step). Then,
it would appear that, with respect to ∆t, ∂ur(·, tn) is a suboptimal approximation for
∂u(·, tn), because of the ∆t in the denominator of the two difference quotients.

Although the argument above, used in Remark 1 in [23] to motivate the in-
clusion of the snapshot DQs in the derivation of the POD basis, seems natural,
we point out that this issue should be treated more carefully. Indeed, in the fi-
nite element approximation of parabolic equations, it is well known that the DQs

∂uh(·, tn) := uh(·,tn)−uh(·,tn−1)
∆t are actually optimal (with respect to ∆t) approxima-

tions of the DQs ∂u(·, tn) (see, e.g., [25, 32]). Thus, since the POD and finite element
approximations are similar (both use a Galerkin projection in the spatial discretiza-
tion), one could question the validity of the argument used in Remark 1 in [23]. We
emphasize that we are not claiming that the above argument is not valid in a POD
setting; we are merely pointing out that a rigorous numerical analysis is needed before
drawing any conclusions.

Our preliminary numerical studies indicate that not using the DQs does not yield
suboptimal (with respect to ∆t) convergence rates. For the heat equation (see sec-
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DIFFERENCE QUOTIENTS IN POD A1223

Table 1
Errors of the no DQ and DQ approaches when ∆t varies.

∆t
no DQ DQ

r EL2(L2) EL2(H1)
r EL2(L2) EL2(H1)

2.00e-01 6 3.71e-02 9.26e-01 6 3.71e-02 9.26e-01
1.00e-01 11 1.27e-02 5.81e-01 11 1.27e-02 5.81e-01
5.00e-02 21 2.99e-03 1.97e-01 21 2.99e-03 1.97e-01
2.50e-02 41 6.53e-04 3.81e-02 41 6.53e-04 3.81e-02
1.00e-02 59 1.03e-04 1.15e-02 88 1.03e-04 1.15e-02

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

∆t

E L
2 (

L
2 )

no_DQ
LR order 1.99
DQ
LR order 1.99

Fig. 1. Heat equation, L2-POD basis. Plots of the errors in the L2(L2)-norm with respect to
the time step ∆t when the DQs are used (denoted by DQ) and when the DQs are not used (denoted
by no DQ).

tion 4 for details regarding the numerical simulation), we monitor the rates of conver-
gence with respect to ∆t for the POD reduced order model. To this end, we choose
the discretization parameters to ensure that the time discretization error dominates
the other error components. We consider two cases: the no DQ case, in which the
DQs are not used, and the DQ case, in which the DQs are used. The errors (de-
fined in section 4) are listed in Table 1 and plotted in Figure 1 with associated linear
regressions. Both no DQ and DQ approaches yield an optimal approximation order
O(∆t2) in the L2-norm.

The main goal of the paper is to answer the question in its title, i.e., whether the
DQs should be used to generate the POD basis. The criterion used to answer this
question is the optimality of the convergence rate of the error of the POD reduced
order model with respect to r. Since to the best of our knowledge a definition of the
optimality of the convergence rate is not available, we propose one in Definition 3.1.
We consider the no DQ case and the DQ case. For each case, we use two types of
POD basis: the L2-POD basis, in which the basis is generated in the L2-norm, and
the H1-POD basis, in which the basis is generated in the H1-norm.

The rest of the paper is organized as follows: In section 2, we sketch the derivation
of the POD reduced order model for the heat equation. In section 3, we derive error
estimates for the POD reduced order model in the no DQ and the DQ cases for
the heat equation. In the DQ case, we use the POD Ritz projection to prove optimal
error estimates for both the L2-POD basis and the H1-POD basis in all norms. In the
no DQ case, we employ the L2 projection proposed by Chapelle, Gariah, and Sainte-
Marie [10] (see also [33]) to avoid the challenge posed by the POD approximation of
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A1224 TRAIAN ILIESCU AND ZHU WANG

ut. Using classical error analysis for Galerkin methods, however, yields suboptimal
error estimates in the C0(L2)-norm for the L2-POD basis and in the C0(H1)-norm
for both the L2-POD basis and the H1-POD basis. Although all the error analysis
in section 3 is done exclusively for the (linear) heat equation, in section 4, we present
numerical results for both the heat equation and the (nonlinear) Burgers equation.
For these two equations, the errors and the convergence rates in the no DQ and the
DQ cases are displayed for both the L2-POD basis and the H1-POD basis. The
optimality of the convergence rates suggested by the error estimates in section 3 is
confirmed by the numerical results. Furthermore, for all norms and bases considered,
the convergence rates for the DQ case are much higher than (and usually twice as
high as) the corresponding convergence rates for the no DQ case. Finally, in section 5,
we draw several conclusions regarding the theoretical and numerical results for the
no DQ and the DQ cases and we outline several future research directions.

2. Proper orthogonal decomposition reduced order modeling. In this
section, we sketch the derivation of the standard POD Galerkin reduced order model
for the heat equation. For a detailed presentation of reduced order modeling in general
settings, the reader is referred to, e.g., [16, 22, 7, 2, 6, 38, 4].

Let X := H1
0 (Ω), where Ω is the computational domain. Let u(·, t) ∈ X, t ∈ [0, T ]

be the weak solution of the weak formulation of the heat equation with homogeneous
Dirichlet boundary conditions:

(ut, v)L2 + ν (∇u,∇v)L2 = (f, v)L2 ∀v ∈ X.(2.1)

Given the time instances t0, . . . , tN ∈ [0, T ], we consider the following two ensembles
of snapshots:

V no DQ := span {u(·, t0), . . . , u(·, tN)} ,(2.2)

V DQ := span
{
u(·, t0), . . . , u(·, tN), ∂u(·, t1), . . . , ∂u(·, tN)

}
,(2.3)

where ∂u(·, tn) := u(·,tn)−u(·,tn−1)
∆t , n = 1, . . . , N , are the time DQs. The two ensem-

bles of snapshots correspond to the two cases investigated in this paper: (i) with the
DQs not included in the snapshots (i.e., V no DQ), and (ii) with the DQs included in
the snapshots (i.e., V DQ). As pointed out in Remark 1 in [23], although the DQs in
V DQ can be expressed as linear combinations of u(·, tn), n = 0, . . . , N , the ensemble
of snapshots V no DQ and V DQ yield different POD bases. This is clearly illustrated by
Figures 2–3, which display POD basis functions for the heat equation and the Burgers
equation, respectively. Details regarding the corresponding numerical simulations are
given in section 4. Since the time step ∆t is used in the definition of the DQs, here we
only briefly mention that the POD basis functions do not change when ∆t is varied
around its original fine resolution value.

Remark 2.1. From a theoretical point of view, it would seem more natural to
consider the continuous version of the POD method [24]. In this case, the snap-
shots ut(·, tn), n = 1, . . . , N , could not be expressed anymore as linear combinations
of u(·, tn), n = 0, . . . , N . Furthermore, the error analysis in section 3 would proba-
bly become clearer. We emphasize, however, that although driven by a theoretical
analysis, the question whether the DQs should be used is a practical question that
should be investigated numerically. Since the snapshots ut(·, tn), n = 1, . . . , N , would
have to be discretized in the numerical tests, for consistency reasons, we decided to
exclusively use the DQs throughout the paper.
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Fig. 2. Heat equation, L2-POD basis. Plots of the POD basis functions when the DQs are used
(denoted by DQ) and when the DQs are not used (denoted by no DQ).
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Fig. 3. Burgers equation, L2-POD basis. Plots of the POD basis functions when the DQs are
used (denoted by DQ) and when the DQs are not used (denoted by no DQ).

We note that, in this study, the heat equation (2.1) is assumed to be in nondimen-
sionalized form. Thus, in the definition of V DQ in (2.3), the snapshots u(·, ti), i =
0, . . . , N , and the DQs ∂u(·, ti), i = 1, . . . , N , are both nondimensional quantities.

We also note that the solution of (2.1) might scale differently in space and time.
In this case, to ensure a balanced scaling of the two terms in (2.1) (i.e., ut and ∆u),
one might consider, e.g., a nondimensionalization that uses the following scales: U
(the characteristic scale of the variable u) and T (the characteristic time scale of

D
ow

nl
oa

de
d 

10
/1

0/
16

 to
 1

29
.2

52
.3

3.
11

4.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1226 TRAIAN ILIESCU AND ZHU WANG

the system, e.g., the period in a time periodic system). In this case, the snapshots
u(·, ti), i = 0, . . . , N , and the DQs ∂u(·, ti), i = 1, . . . , N , used in V DQ would scale
similarly.

To simplify the presentation, we denote both sets of snapshots (i.e., V no DQ and
V DQ) by

V = span {s1, s2, . . . , sM} ,

where M = N + 1 when V no DQ is considered and M = 2N + 1 when V DQ is
considered. We use the specific notation (i.e., V no DQ or V DQ) only when this is
necessary. Let dim V = d. Given a Hilbert space H, the POD method seeks a low-
dimensional basis {ϕ1, . . . ,ϕr}, with r ≤ d, which optimally approximates the input
collection:

min
1

M

M∑

i=1

∥∥∥∥∥∥
si −

r∑

j=1

(
si , ϕj(·)

)
H ϕj(·)

∥∥∥∥∥∥

2

H

,(2.4)

subject to the conditions that (ϕi,ϕj)H = δij , 1 ≤ i, j ≤ r. In order to solve (2.4),
we consider the eigenvalue problem

K v = λ v ,(2.5)

where K ∈ RM×M , with Kij = 1
M (sj , si)H , is the snapshot correlation matrix,

λ1 ≥ λ2 ≥ · · · ≥ λd > 0 are the positive eigenvalues, and vk, k = 1, . . . , d, are the
associated eigenvectors. It can then be shown (see, e.g., [16, 22]), that the solution
of (2.4) is given by ϕk(·) = 1√

λk

∑M
j=1(vk)j sj , 1 ≤ k ≤ r, where (vk)j is the jth

component of the eigenvector vk.
Definition 2.1. The POD projection error is defined as

ηproj(x, t) := u(x, t)−
r∑

j=1

(
u(·, t) , ϕj(·)

)
H ϕj(x) .(2.6)

It can also be shown [23] that the POD projection error satisfies the following
equalities:

1

N + 1

N∑

i=0

∥∥∥∥∥∥
u(·, ti)−

r∑

j=1

(
u(·, ti) , ϕj(·)

)
H ϕj(·)

∥∥∥∥∥∥

2

H

(2.7)

=
d∑

j=r+1

λno DQ
j if V = V no DQ,

1

2N + 1

N∑

i=0

∥∥∥∥∥∥
u(·, ti)−

r∑

j=1

(
u(·, ti) , ϕj(·)

)
H ϕj(·)

∥∥∥∥∥∥

2

H

(2.8)

+
1

2N + 1

N∑

i=1

∥∥∥∥∥∥
∂u(·, ti)−

r∑

j=1

(
∂u(·, ti) , ϕj(·)

)
H ϕj(·)

∥∥∥∥∥∥

2

H

=
d∑

j=r+1

λDQ
j if V = V DQ .
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Remark 2.2. In section 3, we only consider the semidiscretization of the POD
reduced order model, i.e., the discretization in space (only with respect to the POD
truncation), but not in time. Thus, the parameters M (the number of snapshots)
and ∆t (the time step, which is related to M) do not affect the theoretical analysis
in section 3. The full discretization used in the numerical tests in section 4 does
obviously depend on the parametersM and∆t. To keep the length of the paper within
reasonable limits, we decided to fix the parameters M , ∆t, and d (the dimension of
the set of snapshots), and vary only the parameter r (the number of modes used in
the POD reduced order model). In sections 3 and 4 we show that this setting allows
us to answer the question in the title of this paper.

For clarity, in what follows, we will denote by C a generic constant that can
depend on all the parameters in the system, except on r. In order to be able to prove
pointwise-in-time error estimates in section 3, we make the following assumption.

Assumption 2.1. We assume that, for i = 1, . . . , N , the POD projection error
satisfies the following estimates:

∥∥∥∥∥∥
u(·, ti)−

r∑

j=1

(
u(·, ti) , ϕj(·)

)
L2 ϕj(·)

∥∥∥∥∥∥

2

H

(2.9)

≤ C
d∑

j=r+1

λno DQ
j if V = V no DQ ,

∥∥∥∥∥∥
u(·, ti)−

r∑

j=1

(
u(·, ti) , ϕj(·)

)
L2 ϕj(·)

∥∥∥∥∥∥

2

H

(2.10)

+

∥∥∥∥∥∥
∂u(·, ti)−

r∑

j=1

(
∂u(·, ti) , ϕj(·)

)
L2 ϕj(·)

∥∥∥∥∥∥

2

H

≤ C
d∑

j=r+1

λDQ
j if V = V DQ .

Definition 2.2 (L2-POD basis and H1-POD basis). If H = L2 in (2.4), (2.6),
(2.7), (2.8), (2.9), and (2.10), then the resulting POD basis is called an L2-POD basis.
If H = H1 in (2.4), (2.6), (2.7), (2.8), (2.9), and (2.10), then the resulting POD basis
is called an H1-POD basis.

Remark 2.3. Assumption 2.1 says that in the sums in (2.7) and (2.8) no individual
term is much larger than the other terms. We also note that Assumption 2.1 would
follow directly from the POD approximation property (2.7)–(2.8) if we dropped the
1
M factor in the snapshot correlation matrix K. In fact, this approach is used in,
e.g., [24, 37]. We mention, however, that this would increase the magnitudes of the
eigenvalues on the right-hand side (RHS) of the POD approximation property (2.7)–
(2.8).

Next, we present a numerical investigation of Assumption 2.1. We consider the
heat equation and the Burgers equation (see section 4 for details regarding the numer-
ical simulations), and both V = V no DQ and V = V DQ cases. Since the numerical re-
sults for the H1-POD basis are similar to those for the L2-POD basis, we only present

the latter. We calculate the ratios (Rno DQ
1 )r,i =

∥u(·,ti)−
∑r

j=1(u(·,ti) ,ϕj(·))L2 ϕj(·)∥2
L2∑d

j=r+1 λno DQ
j

,
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Fig. 4. Heat equation, L2-POD basis (top); Burgers equation, L2-POD basis (bottom). Plots

of the ratios Rno DQ
1 and RDQ

1 at t = 0.5.

(RDQ
1 )r,i =

∥u(·,ti)−
∑r

j=1(u(·,ti) ,ϕj(·))L2 ϕj(·)∥2
L2∑d

j=r+1 λDQ
j

+
∥∂u(·,ti)−

∑r
j=1(∂u(·,ti) ,ϕj(·))L2 ϕj(·)∥2

L2∑d
j=r+1 λDQ

j

to investigate assumptions (2.9) and (2.10), respectively. The ratios (Rno DQ
1 )r,i and

(RDQ
1 )r,i at t = 0.5 are plotted in Figure 4. Both ratios are uniformly bounded with

respect to r. For the highest r values, the denominators in the two ratios significantly
decrease, which results in a natural increase of the two ratios. We also note that the
highest values of the two ratios are attained at t = 0 and t = 1 for the heat equation,
and at t = 0 for the Burgers equation. We believe that this behavior is due to the
fact that the solution at t = 0 and t = 1 is not accurately captured by the first few
POD basis functions.

Overall, the plots in Figure 4 show that Assumption 2.1 is valid in our setting.
In what follows, we will use the notation Xr = span{ϕ1,ϕ2, . . . ,ϕr} . To derive

the POD reduced order model for the heat equation (2.1), we employ the Galerkin
truncation, which yields the following approximation ur ∈ Xr of u:

ur(x, t) :=
r∑

j=1

aj(t)ϕj(x).(2.11)

Plugging (2.11) into (2.1) and multiplying by test functions in Xr ⊂ X yields the
POD Galerkin reduced order model (POD-G-ROM):

(ur,t, vr)L2 + ν (∇ur,∇vr)L2 = (f, vr)L2 ∀ vr ∈ Xr.(2.12)
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DIFFERENCE QUOTIENTS IN POD A1229

The main advantage of the POD-G-ROM (2.12) over a straightforward finite element
discretization of (2.1) is clear—the computational cost of the former is dramatically
lower than that of the latter.

3. Error estimates. In this section, we prove estimates for the error u − ur,
where u is the solution of the weak formulation of the heat equation (2.1) and ur is
the solution of the POD-G-ROM (2.12). Error estimates for the POD reduced order
modeling of general systems were derived in, e.g., [23, 24, 36, 18, 28, 30, 21, 13, 35, 1,
31, 15]. We perform the error analysis only for the semidiscretization of the POD-G-
ROM (2.12). In fact, in this semidiscretization, we only consider the error component
corresponding to the POD truncation. Of course, in practical numerical simulations,
the semidiscretization also has a spatial component (e.g., due to the finite element
discretization). Furthermore, when considering the full discretization, the error also
has a time discretization component (due to the time stepping algorithm). All these
error components should be included in a rigorous error analysis of the discretization
of the POD-G-ROM (2.12) (see, e.g., [28, 19, 20]). For clarity of presentation, however,
we only consider the error component corresponding to the POD truncation. In what
follows, we will show that this is sufficient for answering the question asked in the
title of this paper.

In our theoretical analysis, we consider two cases, depending on the type of snap-
shots used in the derivation of the POD basis: Case I: V = V DQ (i.e., with the DQs);
and Case II: V = V no DQ (i.e., without the DQs). For each case, we consider both the
L2-POD basis and the H1-POD basis. The main goal of this section is to investigate
whether Case I, Case II, or both Case I and Case II, yield error estimates that are
optimal with respect to r.

Since, to the best of our knowledge, a definition for the optimality of the POD
error estimates is not available, we propose such a definition below.

Definition 3.1 (optimal POD error estimate). The POD-G-ROM error estimate
is optimal with respect to r if the following inequalities hold:

∥u− ur∥L2 ≤ C ∥ηproj∥L2 ,(3.1)

∥∇(u− ur)∥L2 ≤ C ∥∇ηproj∥L2 ,(3.2)

where ηproj is the POD projection error defined in (2.6).
Remark 3.1. We note that, since in this section we only consider the error

component corresponding to the POD truncation, the optimality in Definition 3.1 is
with respect to r. Of course, when the other error components are considered, the
optimality with respect to other discretization parameters (e.g., h and ∆t) should also
be considered.

We also note that other definitions for the optimality of the POD error estimates
are possible. For example, one could replace inequalities (3.1) and (3.2) in Defini-
tion 3.1 with

∥u− ur∥L2 ≤ C inf
vr∈Xr

∥v − vr∥L2 ,(3.3)

∥∇(u− ur)∥L2 ≤ C inf
vr∈Xr

∥∇(v − vr)∥L2 ,(3.4)

respectively. One advantage of the alternative definition in (3.3) and (3.4) is that it
resembles the standard finite element error estimates in Céa’s lemma [34] more than
Definition 3.1. One potential drawback of the alternative definition, however, is that
the evaluation of the RHS of (3.3) or (3.4) might not be straightforward. For example,
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when the L2-POD basis is used, infvr∈Xr ∥v−vr∥L2 = ∥ηproj∥L2 , so the RHS of (3.3)
can be easily evaluated by using (2.6). To evaluate the factor infvr∈Xr ∥∇(v− vr)∥L2

on the RHS of (3.4), however, one would have to solve a minimization problem at
each time step. Since the optimality of the POD error estimates is monitored in the
numerical experiments in section 4, in the remainder of the paper we exclusively use
Definition 3.1.

Remark 3.2 (optimal error estimate: L2-POD basis vs. H1-POD basis). When
the L2-POD basis is used, ∥ηproj∥L2 and ∥∇ηproj∥L2 scale differently with respect to
r: The scaling of ∥ηproj∥L2 is given by the POD projection error equalities (2.9)–(2.10)
in Assumption 2.1. The scaling of ∥∇ηproj∥L2 , however, is not given by (2.9)–(2.10).
There are several approaches that one can use to derive an estimate for ∥∇ηproj∥L2 .
For example, one can employ a brute force approach and use the fact that the
projection error lives in a finite dimensional space, i.e., the space spanned by the
snapshots. Using an inverse estimate similar to that presented in Lemma 3.2 but for
the entire space of snapshots (of dimension d), we get the following estimate:

∥∇ηproj∥L2 ≤ Cinv(d) ∥ηproj∥L2 ,(3.5)

where Cinv(d) is the constant in the inverse estimate in Lemma 3.2. Following the
discussion in Remark 3.3, we conclude that the scaling of ∥∇ηproj∥L2 is of lower order
with respect to r than the scaling of ∥ηproj∥L2. Thus, if the error analysis yields
estimates of the form

∥u− ur∥L2 ≤ C ∥∇ηproj∥L2 ,(3.6)

then these estimates will be called suboptimal with respect to r.
To derive an estimate for ∥∇ηproj∥L2 , one can alternatively employ the approach

used in Theorem 2 in [33] (see also Lemma 3.2 in [20]). This approach yields an
estimate that is sharper than the estimate in (3.5). We note, however, that even in
this case, the scaling of ∥∇ηproj∥L2 is of lower order with respect to r than the scaling
of ∥ηproj∥L2 . Thus, the conclusions regarding the optimality of the error estimates
remain unchanged: If the error analysis yields estimates such as (3.6), then these
estimates will be called suboptimal with respect to r.

When the H1-POD basis is used, the POD approximation property in Assump-
tion 2.1 shows that ∥ηproj∥L2 and ∥∇ηproj∥L2 have the same scaling with respect to

r, since they are both bounded by
√∑d

j=r+1 λ
no DQ
j (if V = V no DQ; see (2.9)) or by

√∑d
j=r+1 λ

DQ
j (if V = V DQ; see (2.10)).

Thus, if the error analysis yields estimates of the form

∥u− ur∥L2 ≤ C ∥∇ηproj∥L2 ,(3.7)

then these estimates will be called optimal with respect to r. We emphasize, however,
that if the constant C in (3.7) does depend on r in a suboptimal way (e.g., it increases
when r increases), then the estimate (3.7) will be called suboptimal with respect
to r.

We introduce some notation and we list several results that will be used through-
out this section. The first result is a POD inverse estimate, which was proved in
Lemma 2 and Remark 2 in [23] and in Lemma 3.1 and Remark 3.2 in [19]. Let
Mr ∈ Rr×r with Mij = (ϕj ,ϕi)L2 be the POD mass matrix and Sr ∈ Rr×r with
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DIFFERENCE QUOTIENTS IN POD A1231

Sij = (∇ϕj ,∇ϕi)L2 be the POD stiffness matrix. Let ∥ · ∥2 denote the matrix 2-
norm.

Lemma 3.2 (POD inverse estimate). For all vr ∈ Xr, the following POD inverse
estimates hold:

∥∇vr∥L2 ≤ CL2

inv(r) ∥vr∥L2 for the L2-POD basis, and(3.8)

∥∇vr∥L2 ≤ CH1

inv(r) ∥vr∥L2 for the H1-POD basis,(3.9)

where CL2

inv(r) :=
√
∥Sr∥2 and CH1

inv(r) :=
√
∥M−1

r ∥2.
Remark 3.3 (POD inverse estimate scalings). Since the r dependency of the

error estimates presented in this section will be carefully monitored, we try to get
some insight into the scalings of the constants CL2

inv(r) and CH1

inv(r) in (3.8) and (3.9),
respectively, i.e., the scalings of ∥Sr∥2 and ∥M−1

r ∥2 with respect to r.
We note that, since the POD basis significantly varies from test case to test

case, it would be difficult to derive general scalings of ∥Sr∥2 and ∥M−1
r ∥2. When the

underlying system is homogeneous (i.e., invariant to spatial translations), however, the
L2-POD basis is identical to the Fourier basis (see, e.g., section 3.3.1 in [16]). In this
case, one can derive the scalings of ∥Sr∥2. Thus, to get some insight into the scaling

of CL2

inv(r) in a general setting, we first consider the homogeneous case. Without
loss of generality, we assume that the domain is [0, 1] ⊂ R1 and that the boundary
conditions are homogeneous Dirichlet. In this case, the Fourier basis functions are
given by ϕj(x) = sin(j π x). The matrix Sr is diagonal and its diagonal entries are

given by Sjj =
∫ 1
0 (j π)

2 cos2(j π x) dx = 1
2 (j π)

2 . Since the POD stiffness matrix Sr

is symmetric, its matrix 2-norm is given by ∥Sr∥2 = λmax, where λmax is the largest
eigenvalue of Sr. Thus, we have

∥Sr∥2 =
1

2
(r π)2 = O(r2) .(3.10)

Thus, we conclude that, when the underlying system is homogeneous, the 2-norm of
the POD stiffness matrix Sr scales as O(r2).

Next, we use the numerical tests in section 4 to get some insight into the scalings
for CL2

inv(r) and CH1

inv(r) for general, nonhomogeneous systems. For the heat equation
and the Burgers equation (see section 4 for details regarding the numerical simula-
tions), we monitor the scalings of ∥Sr∥2 and ∥M−1

r ∥2. We consider Case I (V = V DQ)
and Case II (V = V no DQ). For each case, we also consider both the L2-POD basis
and the H1-POD basis. The scalings are plotted in Figure 5. Although the theoretical
scaling (3.10) predicted for the homogeneous flow fields is not recovered, all four plots

show a clear increase of ∥Sr∥2 and ∥M−1
r ∥2 (and CL2

inv(r) and CH1

inv(r), respectively)
with respect to r. We also note that, for the Burgers equation, the scalings reach a
plateau for large r values. We believe that this is due to the fact that the spatial and
temporal discretization error components become dominant for large r values.

The theoretical scaling in (3.10) valid for the homogeneous case and the numerical
results in Figure 5 for the (general, nonhomogeneous) heat equation and Burgers

equation strongly suggest that CL2

inv(r) and CH1

inv(r) increase when r increases.
After these preliminaries, we are ready to derive the error estimates. The error

analysis will proceed along the same lines as the error analysis of the finite element
semidiscretization [14, 26, 34]. The main difference between the two settings is that the
finite element approximation property is global [14, 26], whereas the POD projection
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Fig. 5. Heat equation (left), Burgers equation (right); L2-POD basis top, H1-POD basis bottom.
Plots of the scalings of ∥Sr∥2 and ∥M−1

r ∥2 with respect to r when the DQs are used (denoted by
DQ) and when the DQs are not used (denoted by no DQ).

error equality is local, i.e., it is only valid at the time instances at which the snapshots
were taken (see (2.7)–(2.10)). Thus, in order to be able to use the POD projection
error estimates (2.7)–(2.10), in what follows we assume that the final error estimates
for the semidiscretization are considered only at the time instances ti, i = 1, . . . , N .
We also consider both the L2-POD basis and the H1-POD basis. For clarity, we first
present the analysis for the L2-POD basis, and then highlight the differences in the
analysis for the H1-POD basis.

We start by considering the error equation:

(et, vr)L2 + ν (∇e,∇vr)L2 = 0 ∀ vr ∈ Xr,(3.11)

where e := u− ur is the error. The error is split into two parts:

e = u− ur = (u − wr)− (ur − wr) = η − φr,(3.12)

where wr is an arbitrary function in Xr, η := u− wr, and φr := ur − wr. Using this
decomposition in the error equation (3.11), we get

(φr,t, vr)L2 + ν (∇φr ,∇vr)L2 = (ηt, vr)L2 + ν (∇η,∇vr)L2 .(3.13)

The analysis proceeds by using (3.13) to show that

∥φr∥L2 ≤ C ∥η∥L2.(3.14)
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DIFFERENCE QUOTIENTS IN POD A1233

Using the triangle inequality, one then gets

∥e∥L2 ≤ ∥η∥L2 + ∥φr∥L2 ≤ (1 + C) ∥η∥L2 .(3.15)

Since wr was chosen arbitrarily, we choose wr =
∑r

j=1(u , ϕj)L2 ϕj in (3.15), use
(2.6), and get the following error estimate:

∥e∥L2 ≤ (1 + C) ∥ηproj∥L2 .(3.16)

Using Definition 3.1 and Remark 3.2, we conclude that the error estimate (3.16) is
optimal.

In the remainder of this section, we investigate whether optimal error estimates
can be obtained with or without including the DQs in the set of snapshots. To this
end, in section 3.1 we consider the case in which the DQs are included in the set of
snapshots (i.e., V = V DQ). Then, in section 3.2 we consider the case in which the
DQs are not included in the set of snapshots (i.e., V = V no DQ).

3.1. Case I (V = V DQ). The standard approach used to prove error estimates
in this case is to use the Ritz projection [23, 24, 19, 20]. This is also the standard
approach used in the finite element context [39, 14, 34, 26].

We choose wr := Rr(u) in (3.12), where Rr(u) is the Ritz projection of u:
(
∇(u−Rr(u)),∇vr

)
L2 = 0 ∀ vr ∈ Xr.(3.17)

To emphasize that we are using the Ritz projection, in the remainder of section 3.1
we will use the notation ηRitz = η = u−Rr(u). Using (3.17), (3.13) becomes

(φr,t, vr)L2 + ν (∇φr ,∇vr)L2 = (ηRitz
t , vr)L2 + ν✘✘✘✘✘✘✘✘✿0

(∇ηRitz ,∇vr)L2 ,(3.18)

where ηRitz
t = ut−Rr(ut). It is the cancellation of the last term on the RHS of (3.18)

that yields optimal error estimates. We let vr := φr in (3.18), and then we apply the
Cauchy–Schwarz inequality to the remaining term on the RHS:

1

2

d

dt
∥φr∥2L2 + ν ∥∇φr∥2L2 ≤ ∥ηRitz

t ∥L2 ∥φr∥L2 .(3.19)

We rewrite the first term on the left-hand side (LHS) of (3.19) as 1
2

d
dt∥φr∥2L2 =

∥φr∥L2
d
dt∥φr∥L2 and we apply the Poincaré–Friedrichs inequality to the second term

on the LHS of (3.19):

ν ∥∇φr∥2L2 ≥ C ν ∥φr∥2L2 .(3.20)

We note that the Poincaré–Friedrichs inequality C∥v∥2L2 ≤ ∥∇v∥2L2 holds for every
function v in the continuous space H1

0 (Ω), and, in particular, for φr ∈ Xr ⊂ X =
H1

0 (Ω) (see (3) in [23]). Thus, the constant C in (3.20) does not depend on r. Thus,
(3.19) becomes

d

dt
∥φr∥L2 + C ν ∥φr∥L2 ≤ ∥ηRitz

t ∥L2 .(3.21)

Using Gronwall’s lemma in (3.21), we get for 0 < t ≤ T

∥φr(t)∥L2 ≤ e−C ν t ∥φr(0)∥L2 +

∫ t

0
e−C ν (t−s) ∥ηRitz

t (s)∥L2 ds.(3.22)

Using (3.15), the first term on the RHS of (3.22) can be estimated as ∥φr(0)∥L2 ≤
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∥e(0)∥L2 + ∥ηRitz(0)∥L2 . Thus, (3.22) becomes

∥φr(t)∥L2 ≤ e−C ν t

(
∥e(0)∥L2 + ∥ηRitz(0)∥L2

)
+

∫ t

0
e−C ν (t−s) ∥ηRitz

t (s)∥L2ds.(3.23)

Applying the triangle inequality, just as in (3.15), we get

∥e(t)∥L2 ≤ ∥ηRitz(t)∥L2 + e−C ν t

(
∥e(0)∥L2 + ∥ηRitz(0)∥L2

)

+

∫ t

0
e−C ν (t−s) ∥ηRitz

t (s)∥L2 ds.(3.24)

We make the following assumption.
Assumption 3.1. We assume that the POD Ritz projection error ηRitz satisfies

optimal error estimates with respect to r in the L2-norm:

∥ηRitz∥L2 ≤ C ∥ηproj∥L2 ,(3.25)

∥ηRitz
t ∥L2 ≤ C ∥∂ηproj∥L2 ,(3.26)

∥∇ηRitz∥L2 ≤ C ∥∇ηproj∥L2 ,(3.27)

where ∂ηproj(x, t) := ∂u(x, t)−
∑r

j=1(∂u(·, t) , ϕj(·))L2 ϕj(x) .
Using (3.25) and (3.26) in (3.24), we conclude that the POD error estimate in the

L2-norm is optimal. Furthermore, since no reference has been made to the specific
way in which the POD basis was calculated, we conclude that the error estimate is
optimal with respect to r both for the L2-POD basis and the H1-POD basis.

Remark 3.4. Using estimate (3.26) in the integral on the RHS of (3.24) yields a
bound that depends on ∥∂ηproj∥L2 instead of ∥ηproj∥L2. Thus, it might seem that,
according to Definition 3.1 and Remark 3.2, we do not get optimal error estimates.
We emphasize, however, that since both ∥∂ηproj∥L2 and ∥ηproj∥L2 are bounded by∑d

j=r+1 λ
DQ
j when V = V DQ, the error estimate resulting from (3.24) is, in fact,

optimal.

3.1.1. The POD Ritz projection. In the finite element context, both ∥ηRitz∥L2

and ∥ηRitz
t ∥L2 are optimal (with respect to the mesh size h). In the POD context,

however, the optimality (with respect to r) is not that clear. In this subsection, we
present a theoretical and numerical investigation of the POD Ritz projection.

To the best of the authors’ knowledge, the first error estimates for the POD Ritz
projection were derived in the pioneering paper of Kunisch and Volkwein [23]. Sharper
error estimates were recently proven by Singler [33]. We summarize below the results
in [23, 33]. For clarity, we present the L2-POD basis case, and only highlight the
differences in the H1-POD basis case.

The main result in [23] regarding the POD Ritz projection is Lemma 3 (see also
(10) and (11) in [23]), which, in our notation, states the following:

∥∇ηRitz∥L2 ≤ C
√
∥Sd∥2 ∥ηproj∥L2 .(3.28)

For clarity, we have not included in (3.28) the constants that do not depend on r.
Inequality (3.28) suggests that assumption (3.27) is true (see (3.2) and (3.5)).

We emphasize that Lemma 3 in [23] does not include any bounds for ∥ηRitz∥L2 .
This is in clear contrast with the finite element context, in which ∥ηRitz∥L2 is estimated
by the usual duality argument (the Aubin–Nitsche “trick”; see, e.g., [34]). Using a
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DIFFERENCE QUOTIENTS IN POD A1235

duality argument, however, is challenging in the POD context, since any auxiliary dual
problem would not necessarily inherit the POD approximation property (2.7)–(2.10).
To the best of the authors’ knowledge, such a duality argument has never been used
in a POD context. We emphasize that not being able to use a duality argument in the
Ritz projection to get error estimates that are optimal with respect to r has significant
consequences in the error analysis. Indeed, in the proof of Theorem 7 in [23] (the error
estimate for the backward Euler time discretization), to estimate the ∥ηRitz∥L2 error
component in (27a) and (27b), the authors use the ∥∇ηRitz∥L2 estimate given in
Lemma 3 and the Poincaré–Friedrichs inequality given in (3). Since the Poincaré–
Friedrichs constant does not depend on r, we conclude that ∥ηRitz∥L2 and ∥∇ηRitz∥L2

scale similarly with respect to r. This, in turn, suggests that ∥ηRitz∥L2 is suboptimal
with respect to r (see Definition 3.1 and Remark 3.2). We note that the same approach
(i.e., Lemma 4 and the Poincaré–Friedrichs inequality) is used in [23] to estimate the
DQ approximation of ∥ηRitz

t ∥L2 (see the two inequalities above (29a)).
To summarize, the analysis in [23] suggests that, when the L2-POD basis is used,

assumption (3.27) holds, but assumptions (3.25) and (3.26) do not hold. When the
H1-POD basis is used, however, the analysis in [23] shows that assumption (3.27)
holds (see Lemma 3 in [23]) and suggests that (3.25) and (3.26) hold as well.

The approach used in Theorem 2 in [33] (see also Lemma 3.2 in [20]) yields error
estimates that are sharper than those in (3.28). We note, however, that although
sharper, the estimates in [33] cannot be easily used with the definition of optimality
of POD error estimates employed in this paper (see Definition 3.1). Furthermore,
even if we used the estimates in [33], they would yield the same conclusions regarding
the Ritz projection as the conclusions drawn from estimate (3.28).

Next, we present a numerical investigation of Assumption 3.1. We consider the
heat equation and the Burgers equation (see section 4 for details regarding the numer-
ical simulations), and both V = V no DQ and V = V DQ cases. Since the numerical re-
sults for the H1-POD basis are similar to those for the L2-POD basis, we only present

the latter. We calculate the ratios (RDQ
2 )r,i =

∥ηRitz(·,ti)∥L2

∥ηproj(·,ti)∥L2
, (RDQ

3 )r,i =
∥ηRitz

t ∥L2

∥∂ηproj∥L2
,

and (RDQ
4 )r,i =

∥∇ηRitz(·,ti)∥L2

∥∇ηproj(·,ti)∥L2
to investigate assumptions (3.25), (3.26), and (3.27),

respectively. These three ratios at t = 0.5 are plotted in Figure 6. All three ratios
are uniformly bounded with respect to r. We note that the ratios display relatively
higher values around r = 20. We also note that, for (RDQ

2 )r,i, the highest values
are attained at t = 0 and t = 1 for the heat equation, and at t = 0 for the Burgers
equation. We believe that this behavior is due to the fact that the solution at t = 0
and t = 1 is not accurately captured by the first few POD basis functions.

Overall, the plots in Figure 6 provide numerical support for Assumption 3.1 in
our setting.

3.2. Case II (V = V no DQ). This approach was used in [10, 33]. The mo-
tivation for this approach is the following: In Case I (V = V DQ), the first term on
the RHS of (3.18), (ηt, vr)L2 , yields a term ∥ηt∥L2 that stays in all the subsequent
inequalities, including the final error estimate (3.24). Chapelle, Gariah, and Sainte-
Marie proposed in [10] a different approach that eliminated the (ηt, vr)L2 term in
(3.18). Thus, instead of using the Ritz projection (as in Case I), they used the L2

projection. That is, they chose wr := Pr(u), where Pr(u) is the L2 projection of u,
given by

(
u− Pr(u), vr

)
L2 = 0 ∀ vr ∈ Xr.(3.29)
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Fig. 6. Heat equation, L2-POD basis (left column); Burgers equation, L2-POD basis (right

column). Plots of the ratios RDQ
2 (top), RDQ

3 (middle), and RDQ
4 (bottom) at t = 0.5.

To emphasize that we are using the L2 projection, in the remainder of section 3.2 we
will use the notation ηL

2
= η = u− Pr(u).

3.2.1. The POD L2 projection. Since the L2 projection plays such an impor-
tant role in this section, we summarize below some of its properties.

Lemma 3.3. If the L2-POD basis is used, then the following estimates hold:

∥ηL
2

∥L2 = ∥ηproj∥L2 ,(3.30)

∥∇ηL
2

∥L2 ≤ CL2

inv(d) ∥ηproj∥L2 .(3.31)

If the H1-POD basis is used, then the following estimates hold:

∥ηL
2

∥L2 ≤ ∥ηproj∥L2 ,(3.32)

∥∇ηL
2

∥L2 ≤ CH1

inv(d) ∥ηproj∥L2 .(3.33)
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DIFFERENCE QUOTIENTS IN POD A1237

Proof. Equality (3.30) follows by noticing that, for the L2-POD basis, the POD

L2 projection error ηL
2
is exactly the POD projection error defined in (2.6). Inequal-

ity (3.31) follows from (3.30) and Lemma 3.2.
Inequality (3.32) follows along the same lines as Lemma 2 in [23]: Choosing

vr =
∑r

j=1(u,ϕj)H1ϕj ∈ Xr and using the Cauchy–Schwarz inequality, we get

∥ηL
2

∥L2 = (ηL
2

, u− vr)L2 +

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✿0⎛

⎝ηL
2

, vr −
r∑

j=1

(u,ϕj)H1ϕj

⎞

⎠

L2

(3.34)

≤ ∥ηL
2

∥L2 ∥ηproj∥L2 ,

which, after simplifying by ∥ηproj∥L2, proves (3.32). Inequality (3.33) follows from
(3.32) and Lemma 3.2.

Remark 3.5. The approach used in Theorem 2 in [33] (see also Lemma 3.2 in [20])
yields error estimates that are sharper than those in (3.31) and (3.33). We did not
use this approach, however, for the following two reasons: First, estimates (3.31)
and (3.33) are easier to use with the definition of optimality of POD error estimates
employed in this paper (see Definition 3.1). Second, although sharper than (3.31) and
(3.33), the estimates yielded by Theorem 2 in [33] would not change the conclusions
regarding the optimality of the error estimates presented in the remainder of this
section (see Remark 3.2).

Next, we show how the error analysis in Case I changes with wr = Pr(u) as in
[10] (see also [33]). Using (3.29), (3.13) becomes

(φr,t, vr)L2 + ν (∇φr ,∇vr)L2 =✘✘✘✘✘✘✿0
(ηL

2

t , vr)L2 + ν (∇ηL
2

,∇vr)L2 ,(3.35)

where ηL
2

t = ut − Pr(ut). We emphasize that it is the cancellation of the first term
on the RHS of (3.35) that yields error estimates that do not require the DQs. We let
vr := φr in (3.35) and we apply the Cauchy–Schwarz inequality:

1

2

d

dt
∥φr∥2L2 + ν ∥∇φr∥2L2 ≤ ν ∥∇ηL

2

∥L2 ∥∇φr∥L2 .(3.36)

The error analysis can then proceed in several directions.

3.2.2. Approach II.A. One approach is to use Young’s inequality in (3.36):

1

2

d

dt
∥φr∥2L2 + ν ∥∇φr∥2L2 ≤ ν

2
∥∇ηL

2

∥2L2 +
ν

2
∥∇φr∥2L2 ,(3.37)

which implies

1

2

d

dt
∥φr∥2L2 +

ν

2
∥∇φr∥2L2 ≤ ν

2
∥∇ηL

2

∥2L2 .(3.38)

Noticing that the second term on the LHS of (3.38) is positive, we get

d

dt
∥φr∥2L2 ≤ ν ∥∇ηL

2

∥2L2 .(3.39)

When the L2-POD basis is used, according to Definition 3.1 and Remark 3.2, inequal-
ities (3.31) and (3.39) imply that Approach II.A will yield error estimates that are
suboptimal with respect to r. When the H1-POD basis is used, according to Defini-
tion 3.1 and Remark 3.2, inequalities (3.33) and (3.39) imply that Approach II.A will
yield error estimates that are optimal with respect to r.
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A1238 TRAIAN ILIESCU AND ZHU WANG

3.2.3. Approach II.B. Another way of continuing from (3.36) is to apply the
POD inverse estimates in Lemma 3.2:

∥∇φr∥L2 ≤ Cinv(r) ∥φr∥L2 ,(3.40)

where Cinv(r) = CL2

inv(r) if the L2-POD basis is used and Cinv(r) = CH1

inv(r) if the
H1-POD basis is used. Using (3.40) in (3.36) yields

1

2

d

dt
∥φr∥2L2 + ν ∥∇φr∥2L2 ≤ Cinv(r) ν ∥∇ηL

2

∥L2 ∥φr∥L2 .(3.41)

Dropping ν ∥∇φr∥2L2 in (3.41) and simplifying, we get

d

dt
∥φr∥L2 ≤ Cinv(r) ν ∥∇ηL

2

∥L2 .(3.42)

Comparing estimate (3.42) with estimate (3.39) in Approach II.A, we note that both

estimates have ∥∇ηL
2∥L2 on the RHS. In addition, estimate (3.42) has Cinv(r) on the

RHS, which increases the suboptimality with respect to r (see Remark 3.3). Thus,
estimate (3.42) suggests that Approach II.B yields estimates that are suboptimal with
respect to r when either the L2-POD basis or the H1-POD basis is used.

3.2.4. Approach II.C. Since both Approach II.A and Approach II.B yield error
estimates that are suboptimal with respect to r in the L2-norm, one can try instead to
prove optimal error estimates in the H1-seminorm. To this end, we use the approach
in [34] and, instead of choosing vr := φr in (3.35), we choose vr := φr,t:

∥φr,t∥2L2 +
ν

2

d

dt
∥∇φr∥2L2 ≤ ν ∥∇ηL

2

∥L2 ∥∇φr,t∥L2.(3.43)

Applying Young’s inequality and the POD inverse estimates in Lemma 3.2 in (3.43),
we get

∥φr,t∥2L2 +
ν

2

d

dt
∥∇φr∥2L2 ≤ ν ∥∇ηL

2

∥L2 ∥∇φr,t∥L2

≤ ν2

2
Cinv(r)

2 ∥∇ηL
2

∥2L2 +
1

2Cinv(r)2
∥∇φr,t∥2L2

≤ ν2

2
Cinv(r)

2 ∥∇ηL
2

∥2L2 +
1

2
∥φr,t∥2L2 ,(3.44)

where Cinv(r) = CL2

inv(r) if the L2-POD basis is used and Cinv(r) = CH1

inv(r) if the
H1-POD basis is used. Inequality (3.44) implies

d

dt
∥∇φr∥2L2 ≤ ν Cinv(r)

2 ∥∇ηL
2

∥2L2 .(3.45)

When the L2-POD basis is used, inequalities (3.31) and (3.45), and Remark 3.3 imply
that Approach II.C will yield error estimates that are suboptimal with respect to r (see
Definition 3.1 and Remark 3.2). When the H1-POD basis is used, inequalities (3.33)
and (3.45), and Remark 3.3 imply that Approach II.C will yield error estimates that
are suboptimal with respect to r.

Since for Case I (V = V DQ) in section 3.1 we did not prove error estimates in the
H1-norm, for a fair comparison with Approach II.C, we prove these error estimates
below. To this end, we let vr := φr,t in (3.18):

(φr,t,φr,t)L2 + ν (∇φr,∇φr,t)L2 = (ηRitz
t ,φr,t)L2 .(3.46)

D
ow

nl
oa

de
d 

10
/1

0/
16

 to
 1

29
.2

52
.3

3.
11

4.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DIFFERENCE QUOTIENTS IN POD A1239

Table 2
Theoretical convergence rates for the no DQ and the DQ cases: L2-POD basis (second and

fourth column); H1-POD basis (third and fifth column).

no DQ no DQ DQ DQ

L2-POD H1-POD L2-POD H1-POD

EC0(L2) suboptimal optimal optimal optimal
section 3.2.2 section 3.2.2 section 3.1 section 3.1
section 3.2.3

EC0(H1) suboptimal suboptimal optimal optimal
section 3.2.4 section 3.2.4 section 3.2.4 section 3.2.4

EL2(H1) optimal optimal optimal optimal
section 3.2.5 section 3.2.5

Applying Young’s inequality on the RHS of (3.46), we get

∥φr,t∥2L2 +
ν

2

d

dt
∥∇φr∥2L2 ≤ ∥ηRitz

t ∥L2 ∥φr,t∥L2 ≤ 1

2
∥ηRitz

t ∥2L2 +
1

2
∥φr,t∥2L2 ,(3.47)

which implies

d

dt
∥∇φr∥2L2 ≤ 1

ν
∥ηRitz

t ∥2L2.(3.48)

Using the triangle inequality ∥∇e∥L2 ≤ ∥∇ηRitz∥L2+∥∇φr∥L2 , inequality (3.48), and
assumptions (3.26)–(3.27), we conclude that, when either the L2-POD basis or the
H1-POD basis is used, Case I (V = V DQ) in section 3.1 yields error estimates that
are optimal with respect to r (see Definition 3.1 and Remark 3.2).

3.2.5. Approach II.D. In this section, we derive error estimates in the solution
norm (i.e., in the L2(0, T ;H1(Ω))-norm). Integrating (3.38) from 0 to T , we get

∥φr(T )∥2L2 + ν

∫ T

0
∥∇φr(s)∥2L2 ds ≤ ∥φr(0)∥2L2 + ν

∫ T

0
∥∇ηL

2

(s)∥2L2 ds.(3.49)

Inequality (3.31) (for the L2-POD basis) or inequality (3.33) (for the H1-POD basis)
implies that Approach II.D will yield error estimates that are optimal with respect to
r (see Definition 3.1 and Remark 3.2). We note that Proposition 3.3 in [10] yields a
similar estimate.

The theoretical convergence rates derived in this section are summarized in Ta-
ble 2.

4. Numerical results. The main goal of this section is to numerically investi-
gate the rates of convergence with respect to r of the POD-G-ROM (2.12) in the two
cases considered in section 3: Case I (V = V DQ) and Case II (V = V no DQ). We also
consider both the L2-POD basis and the H1-POD basis. Although the error analy-
sis in section 3 has been centered around the (linear) heat equation, in this section
we consider both the heat equation (section 4.1) and the nonlinear Burgers equation
(section 4.2).

Denoting the error at time tj by ej := ur
h(·, tj) − u(·, tj), the following er-

ror norms are considered: the error in the C0(0, T ;L2(Ω))-norm, approximated by
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Fig. 7. Heat equation. Fine resolution finite element solution used to generate the snapshots.

EC0(L2) = max0≤j≤N ∥ej∥L2(Ω); the error in the C0(0, T ;H1(Ω))-norm, approximated
by EC0(H1) = max0≤j≤N ∥ej∥H1(Ω); and the error in the L2(0, T ;H1(Ω))-norm, ap-

proximated by EL2(H1) =
√

1
N+1

∑
0≤j≤N ∥ej∥2H1(Ω). We also use the following nota-

tion:

Λr =

√√√√
d∑

j=r+1

λj and Θr =

√√√√ 1

N + 1

N∑

i=0

∥ut(·, ti)−
r∑

j=1

(ut(·, ti),ϕj(·))L2ϕj∥2L2.

Definition 3.1, Remark 3.2, and the POD projection error estimates (2.7)–(2.10)

yield the following scalings for optimal error estimates: (i) EC0(L2) = O(
√∑d

j=r+1 λj )

for both the L2-POD basis and the H1-POD basis; and (ii) EC0(H1) ∼ EL2(H1) =

O(
√
∥Sd∥2

∑d
j=r+1 λj) for the L2-POD basis and EC0(H1) ∼ EL2(H1) =O(

√∑d
j=r+1 λj)

for the H1-POD basis.

4.1. Heat equation. We consider the one-dimensional heat equation (2.1) with
a known exact solution that represents the propagation in time of a steep front:

u(x, t) = sin(πx)

[
1

π
arctan

(
c

25
− c

(
x− t

2

)2
)

+
1

2

]
,(4.1)

where x ∈ [0, 1] and t ∈ [0, 1]. The constant c in (4.1) controls the steepness of the
front. In all the numerical tests in this section, we use the value c = 100. The value
of the diffusion coefficient used in the heat equation (2.1) is ν = 10−2. Piecewise
linear finite elements are used to generate snapshots for the POD-G-ROM (2.12). A
mesh size h = 1/1024 and the Crank–Nicolson scheme with a time step ∆t = 10−3

are employed for the spatial and temporal discretizations, respectively. The time
evolution of the finite element solution is shown in Figure 7. In total, 1001 snapshots
are collected and used for generating POD basis functions. The same numerical solver
as that used in the finite element approximation is utilized in the POD-G-ROM.

4.1.1. L2-POD basis. In this section, we check the rates of convergence with
respect to r for the no DQ and the DQ cases when the L2-POD basis is used. The
dimensions of the spaces V no DQ and V DQ are d = 69 and d = 100, respectively.
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Table 3
Heat equation, L2-POD basis. Errors in the no DQ case.

r Λr Θr EC0(L2) EC0(H1) EL2(H1)

3 5.72e-02 8.37e-01 9.46e-02 2.30e+00 1.59e+00
5 2.71e-02 6.04e-01 4.70e-02 1.58e+00 1.14e+00
7 1.58e-02 4.58e-01 3.69e-02 1.38e+00 8.22e-01
10 7.34e-03 2.92e-01 1.57e-02 8.54e-01 5.31e-01
13 3.84e-03 1.90e-01 7.78e-03 5.84e-01 3.50e-01
17 1.71e-03 1.11e-01 5.15e-03 4.34e-01 1.88e-01
20 9.07e-04 6.91e-02 2.70e-03 2.56e-01 1.19e-01
24 4.36e-04 3.89e-02 1.24e-03 1.51e-01 6.98e-02
28 2.01e-04 2.11e-02 5.87e-04 8.27e-02 4.13e-02
31 1.19e-04 1.34e-02 3.02e-04 5.36e-02 3.12e-02
35 5.98e-05 7.94e-03 2.05e-04 4.30e-02 2.41e-02
39 2.93e-05 4.14e-03 7.94e-05 2.89e-02 2.17e-02
43 1.47e-05 2.46e-03 5.69e-05 2.65e-02 2.08e-02
47 7.48e-06 1.32e-03 2.70e-05 2.46e-02 2.06e-02
51 3.71e-06 7.35e-04 1.81e-05 2.42e-02 2.05e-02
56 1.61e-06 3.59e-04 1.35e-05 2.40e-02 2.05e-02
60 8.26e-07 1.92e-04 1.22e-05 2.39e-02 2.05e-02

Table 4
Heat equation, L2-POD basis. Errors in the DQ case.

r Λr Θr EC0(L2) EC0(H1) EL2(H1)

19 5.49e-02 7.75e-02 7.15e-03 4.96e-01 3.19e-01
23 2.95e-02 4.18e-02 2.03e-03 1.98e-01 1.19e-01
28 1.41e-02 2.00e-02 6.52e-04 7.97e-02 4.91e-02
33 6.75e-03 9.55e-02 2.41e-04 3.68e-02 2.80e-02
37 3.76e-03 5.31e-03 8.60e-05 2.67e-02 2.29e-02
42 1.77e-03 2.51e-03 2.66e-05 2.44e-02 2.10e-02
47 8.32e-04 1.18e-03 1.50e-05 2.40e-02 2.06e-02
51 4.62e-04 6.54e-04 1.38e-05 2.40e-02 2.05e-02
56 2.20e-04 3.11e-04 1.21e-05 2.39e-02 2.05e-02
60 1.19e-04 1.69e-04 1.18e-05 2.39e-02 2.05e-02
65 5.59e-05 7.91e-05 1.17e-05 2.39e-02 2.05e-02
70 2.63e-05 3.71e-05 1.17e-05 2.39e-02 2.05e-02
74 1.48e-05 2.10e-05 1.17e-05 2.39e-02 2.05e-02
79 6.99e-06 9.90e-06 1.17e-05 2.39e-02 2.05e-02
84 3.29e-06 4.67e-06 1.17e-05 2.39e-02 2.05e-02
88 1.74e-06 2.50e-06 1.17e-05 2.39e-02 2.05e-02
92 9.52e-07 1.41e-06 1.17e-05 2.39e-02 2.05e-02

The errors are listed in Table 3 (in the no DQ case) and in Table 4 (in the DQ case).
These errors with their linear regression plots are drawn in Figure 8. The convergence
rate of the error EC0(L2) is superoptimal in the DQ case and suboptimal in the no DQ
case. This supports the theoretical rates of convergence in Table 2, although the
suboptimality in the no DQ case is mild. The convergence rate of the error EC0(H1)

is optimal in the DQ case and strongly suboptimal in the no DQ case. This again
supports the theoretical rates of convergence in Table 2. The convergence rate of the
error EL2(H1) is optimal in the DQ case and strongly suboptimal in the no DQ case.
This supports the theoretical rates of convergence in Table 2 for the DQ case, but not
for the no DQ case.

We note that all the errors in Figure 8 reach a plateau. This is due to the fact
that, for large r values, the spatial (finite element) discretization error and the time
discretization error are the dominating components of the total error.
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Fig. 8. Heat equation, L2-POD basis. Plots of errors in C0(L2)-norm (top, left), C0(H1)-norm
(top, right), and L2(H1)-norm (bottom).

We also note that, although the convergence rates for the DQ case in Table 4
are consistently higher than the convergence rates for the no DQ case in Table 3, to
reach a prescribed error tolerance, higher r values are needed in the DQ case than in
the no DQ case (see the Λr values in the two tables). We emphasize, however, that
for other problems, such as those in [11], similar r values are needed in the DQ and
no DQ cases to reach a prescribed tolerance (results not included). We also note that,
for a prescribed time derivative error tolerance, similar r values are needed in the DQ
and no DQ cases (see the Θr values in Tables 3 and 4). Finally, we mention that, as

r → d, both
√∑d

i=r+1 λ
no DQ
i and

√∑d
i=r+1 λ

DQ
i approach zero exponentially fast.

Overall, the numerical results support the theoretical rates of convergence proved
in section 3. We also emphasize that the convergence rates in the DQ case in all
three norms are much higher than (and almost twice as high as) the corresponding
convergence rates in the no DQ case.

4.1.2. H1-POD basis. In this section, we repeat the numerical tests in sec-
tion 4.1.1, but with the H1-POD basis instead of the L2-POD basis. The dimensions
of the spaces V no DQ and V DQ are d = 97 and d = 123, respectively. The errors for
different values of r are listed in Table 5 (in the no DQ case) and in Table 6 (in the
DQ case). These errors with their linear regression plots are drawn in Figure 9. The
convergence rate of the error EC0(L2) is superoptimal in the DQ case and optimal in
the no DQ case. This supports the theoretical rates of convergence in Table 2. The
convergence rate of the error EC0(H1) is superoptimal in the DQ case and suboptimal
in the no DQ case. This supports the theoretical rates of convergence in Table 2. The
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Table 5
Heat equation, H1-POD basis. Errors in the no DQ case.

r Λr EC0(L2) EC0(H1) EL2(H1)

3 1.51e+00 1.11e-01 2.37e+00 1.56e+00
7 8.00e-01 4.04e-02 1.41e+00 8.16e-01
12 3.77e-01 1.54e-02 8.32e-01 3.85e-01
17 1.78e-01 6.64e-03 4.86e-01 1.84e-01
21 1.01e-01 2.97e-03 2.86e-01 1.05e-01
26 4.77e-02 1.33e-03 1.56e-01 5.31e-02
31 2.27e-02 5.72e-04 8.48e-02 3.11e-02
35 1.22e-02 3.01e-04 5.23e-02 2.40e-02
40 5.81e-03 1.39e-04 3.44e-02 2.13e-02
45 2.78e-03 6.30e-05 2.71e-02 2.07e-02
49 1.54e-03 2.71e-05 2.47e-02 2.05e-02
54 7.28e-04 1.50e-05 2.41e-02 2.05e-02

Table 6
Heat equation, H1-POD basis. Errors in the DQ case.

r Λr EC0(L2) EC0(H1) EL2(H1)

32 1.50e+00 7.85e-02 3.02e+00 1.18e+00
38 7.27e-01 3.97e-04 4.75e-02 3.64e-02
43 3.87e-01 7.65e-05 2.49e-02 2.13e-02
49 1.80e-01 1.54e-05 2.40e-02 2.06e-02
54 9.29e-02 1.29e-05 2.39e-02 2.05e-02
59 4.76e-02 1.20e-05 2.39e-02 2.05e-02
64 2.43e-02 1.18e-05 2.39e-02 2.05e-02
69 1.24e-02 1.17e-05 2.39e-02 2.05e-02
75 5.55e-03 1.17e-05 2.39e-02 2.05e-02
80 2.77e-03 1.17e-05 2.39e-02 2.05e-02
85 1.38e-03 1.17e-05 2.39e-02 2.05e-02
90 6.90e-04 1.17e-05 2.39e-02 2.05e-02

convergence rate of the error EL2(H1) is superoptimal in the DQ case and optimal in
the no DQ case. This supports the theoretical rates of convergence in Table 2.

Overall, the numerical results support the theoretical rates of convergence proved
in section 3. As suggested by the error analysis in section 3, the POD-ROM-G for the
no DQ case is more accurate for the H1-POD basis used in this section than for the
L2-POD basis used in section 4.1.1. We emphasize, however, that, as in section 4.1.1,
the convergence rates in the DQ case in all three norms are much higher than (and
sometimes almost twice as high as) the corresponding convergence rates in the no DQ
case.

4.2. Burgers equation. In this section, we consider the one-dimensional Burg-
ers equation. As mentioned at the beginning of section 4, the error estimates proved
in section 3 are valid for the (linear) heat equation, but not necessarily valid for the
nonlinear Burgers equation. Nevertheless, to gain some insight into the range of valid-
ity of the theoretical developments in section 3, we investigate the convergence rates
with respect to r in the no DQ and the DQ cases for the nonlinear Burgers equation:

⎧
⎨

⎩

ut − ν uxx + u ux = f in Ω× (0, T ] ,
u(x, 0) = u0(x) in Ω ,
u(x, t) = g(x, t) on ∂Ω× (0, T ] .

(4.2)
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Fig. 9. Heat equation, H1-POD basis. Plots of errors in C0(L2)-norm (top, left), C0(H1)-
norm (top, right), and L2(H1)-norm (bottom).

The initial condition is

u0(x) =

⎧
⎨

⎩

1 if x ∈
(
0, 12
]
,

0 if x ∈
(
1
2 , 1
)
,

(4.3)

which is similar to that used in [23]. We note that, although used in other numerical
investigations, the initial condition (4.3) does not fit into the classical theoretical
framework of section 3 (since it is discontinuous). The diffusion parameter is ν = 10−2,
the forcing term is f = 0, Ω = [0, 1], and T = 1. The boundary conditions are
homogeneous Dirichlet, that is, u(0, t) = u(1, t) = 0 for all t ∈ [0, 1].

To generate snapshots, we use piecewise linear finite elements with mesh size
h = 1/1024 and the backward Euler method with a time step ∆t = 10−4, and save
data at each time instance. The time evolution of the finite element solution is shown
in Figure 10. All snapshots are used for the POD basis generation and the same
numerical solver is used in the POD-G-ROM.

4.2.1. L2-POD basis. In this section, we check the rates of convergence with
respect to r for the no DQ and the DQ cases. The dimensions of the spaces V no DQ

and V DQ are d = 49 and d = 65, respectively. Since the exact solution of the Burgers
equation (4.2) with the initial condition (4.3) is not known, we consider the errors
between the POD-G-ROM results and the snapshots. The errors are listed in Table
7 (in the no DQ case) and in Table 8 (in the DQ case). These errors with their linear
regression plots are drawn in Figure 11. The convergence rate of the error EC0(L2)
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Fig. 10. Burgers equation. Fine resolution finite element solution used to generate the snapshots.

Table 7
Burgers equation, L2-POD basis. Errors in the no DQ case.

r Λr Θr EC0(L2) EC0(H1) EL2(H1)

3 8.74e-02 2.77e+00 2.38e-01 4.48e+01 2.34e+00
5 3.95e-02 2.62e+00 1.60e-01 4.44e+01 1.76e+00
7 1.97e-02 2.52e+00 1.17e-01 4.37e+01 1.24e+00
9 1.02e-02 2.44e+00 9.05e-02 4.28e+01 8.94e-01
11 5.47e-03 2.37e+00 7.01e-02 4.14e+01 6.84e-01
13 3.06e-03 2.26e+00 5.37e-02 3.91e+01 5.48e-01
16 1.36e-03 2.03e+00 3.44e-02 3.32e+01 4.06e-01
19 6.39e-04 1.63e+00 1.91e-02 2.32e+01 2.76e-01
22 3.05e-04 1.08e+00 8.13e-03 1.14e+01 1.49e-01
24 1.86e-04 7.31e-01 4.32e-03 5.86e+00 8.81e-02
27 8.83e-05 3.73e-01 2.54e-03 2.40e+00 3.89e-02
30 4.18e-05 1.82e-01 1.21e-03 1.06e+00 1.77e-02
33 1.96e-05 8.64e-02 4.96e-04 4.17e-01 8.22e-03
35 1.18e-05 5.22e-02 2.58e-04 2.64e-01 4.94e-03
38 5.48e-06 2.43e-02 1.20e-04 1.35e-01 2.31e-03

Table 8
Burgers equation, L2-POD basis. Errors in the DQ case.

r Λr Θr EC0(L2) EC0(H1) EL2(H1)

18 8.55e-02 1.21e-01 6.83e-03 5.60e-01 2.82e-01
21 4.56e-02 6.45e-02 2.99e-03 2.49e-01 1.37e-01
24 2.39e-02 3.38e-02 1.31e-03 1.23e-01 6.72e-02
28 9.81e-03 1.39e-02 4.29e-04 4.73e-02 2.57e-02
31 4.97e-03 7.03e-03 1.88e-04 2.28e-02 1.25e-02
34 2.49e-03 3.52e-03 8.27e-05 1.10e-02 6.10e-03
37 1.23e-03 1.73e-03 3.63e-05 5.24e-03 2.96e-03
39 7.62e-04 1.08e-03 2.10e-05 3.19e-03 1.82e-03
42 3.69e-04 5.22e-04 9.21e-06 1.51e-03 8.72e-04
45 1.77e-04 2.50e-04 4.03e-06 7.07e-04 4.15e-04
48 8.35e-05 1.18e-04 1.76e-06 3.29e-04 1.96e-04
51 3.90e-05 5.52e-05 7.62e-07 1.52e-04 9.15e-05
53 2.33e-05 3.30e-05 4.35e-07 9.02e-05 5.47e-05
56 1.06e-05 1.51e-05 1.86e-07 4.09e-05 2.51e-05
59 4.74e-06 6.81e-06 7.94e-08 1.84e-05 1.14e-05
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Fig. 11. Burgers equation, L2-POD basis. Plots of errors in C0(L2)-norm (top, left), C0(H1)-
norm (top, right), and L2(H1)-norm (bottom).

is superoptimal in the DQ case and strongly suboptimal in the no DQ case. This
clearly supports the theoretical rates of convergence in Table 2. The convergence rate
of the error EC0(H1) is optimal in the DQ case and extremely suboptimal in the no DQ
case. This strongly supports the theoretical rates of convergence in Table 2. Finally,
the convergence rate of the error EL2(H1) is optimal in the DQ case and strongly
suboptimal in the no DQ case. This supports the theoretical rates of convergence in
Table 2 for the DQ case, but not for the no DQ case.

Overall, the numerical results clearly support the theoretical rates of convergence
proved in section 3. We also emphasize that the convergence rates in the DQ case
in all three norms are much higher than (and generally three times as high as) the
corresponding convergence rates in the no DQ case.

4.2.2. H1-POD basis. In this section, we repeat the numerical tests in sec-
tion 4.2.1, but with the H1-POD basis instead of the L2-POD basis. The dimensions
of the spaces V no DQ and V DQ are d = 66 and d = 61, respectively. The errors for
different values of r are listed in Table 9 (in the no DQ case) and in Table 10 (in the
DQ case). These errors with their linear regression plots are drawn in Figure 12. The
convergence rate of the error EC0(L2) is superoptimal in the DQ case and optimal in
the no DQ case. This supports the theoretical rates of convergence in Table 2. The
convergence rate of the error EC0(H1) is superoptimal in the DQ case and subopti-
mal in the no DQ case. This again supports the theoretical rates of convergence in
Table 2. The convergence rate of the error EL2(H1) is superoptimal in the DQ case
and optimal in the no DQ case. This supports the theoretical rates of convergence in
Table 2.
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Table 9
Burgers equation, H1-POD basis. Errors in the no DQ case.

r Λr EC0(L2) EC0(H1) EL2(H1)

3 2.22e+00 2.07e-01 4.45e+01 2.43e+00
7 1.13e+00 9.31e-02 4.23e+01 1.25e+00
11 5.26e-01 2.94e-02 2.65e+01 6.35e-01
14 2.77e-01 1.23e-02 1.11e+01 3.35e-01
17 1.44e-01 6.30e-03 5.65e+00 1.71e-01
20 7.44e-02 3.22e-03 2.85e+00 8.72e-02
24 3.09e-02 1.14e-03 9.48e-01 3.56e-02
27 1.57e-02 4.68e-04 4.41e-01 1.79e-02
30 7.90e-03 2.19e-04 2.51e-01 8.93e-03
33 3.95e-03 1.21e-04 1.23e-01 4.43e-03
36 1.96e-03 5.78e-05 5.54e-02 2.18e-03
39 9.58e-04 2.51e-05 2.31e-02 1.06e-03

Table 10
Burgers equation, H1-POD basis. Errors in the DQ case.

r Λr EC0(L2) EC0(H1) EL2(H1)

26 2.24e+00 7.07e-01 7.50e+01 5.00e+00
30 1.04e+00 4.09e-04 4.56e-02 2.37e-02
33 5.65e-01 1.65e-04 2.04e-02 1.08e-02
36 3.01e-01 6.95e-05 9.39e-03 5.10e-03
40 1.26e-01 2.23e-05 3.37e-03 1.88e-03
43 6.46e-02 9.55e-06 1.56e-03 8.84e-04
46 3.26e-02 4.10e-06 7.17e-04 4.14e-04
49 1.62e-02 1.75e-06 3.28e-04 1.92e-04
52 7.90e-03 7.43e-07 1.48e-04 8.84e-05
54 4.83e-03 4.19e-07 8.72e-05 5.24e-05
57 2.19e-03 2.58e-07 5.33e-05 2.54e-05
59 1.14e-03 4.15e-07 9.13e-05 1.80e-05

Overall, the numerical results support the theoretical rates of convergence proved
in section 3. As suggested by the error analysis in section 3, the convergence rates
of the POD-G-ROM for the no DQ case are higher for the H1-POD basis used in
this section than for the L2-POD basis used in section 4.2.1. We emphasize, however,
that, as in section 4.2.1 the convergence rates in the DQ case in all three norms are
much higher than (and almost three times as high as) the corresponding convergence
rates in the no DQ case.

5. Conclusions. The effect of using or not using the snapshot DQs in the gener-
ation of the POD basis (the DQ and the no DQ cases, respectively) was investigated
theoretically and numerically for both the L2-POD basis and the H1-POD basis. The
criterion used in this theoretical and numerical investigation was the optimality of
the rate of convergence with respect to r of the POD-G-ROM solution to the exact
solution, where r is the number of POD basis functions used in the POD-G-ROM.

The error estimates in section 3 yielded the following conclusions: In the DQ case,
the error estimates were optimal in all norms (i.e., the C0(L2)-norm, the C0(H1)-
norm, and the L2(H1)-norm) for both the L2-POD basis and the H1-POD basis. In
the no DQ case, however, the error estimates were suboptimal in the C0(L2)-norm
for the L2-POD basis and in the C0(H1)-norm for both the L2-POD basis and the
H1-POD basis.

The numerical results in section 4 for the (linear) heat equation and the (non-
linear) Burgers equation confirmed the conclusions suggested by the theoretical error
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Fig. 12. Burgers equation, H1-POD basis. Plots of errors in C0(L2)-norm (top, left), C0(H1)-
norm (top, right), and L2(H1)-norm (bottom).

estimates in section 3. We emphasize that, for both the heat equation and the Burgers
equation, and for all norms and bases considered, the convergence rates for the DQ
case were much higher than (and usually at least twice as high as) the corresponding
convergence rates for the no DQ case.

The theoretical error estimates in section 3 and the numerical results in section 4
strongly suggest the following conjecture: “The snapshot DQs should be used in the
generation of the POD basis in order to achieve optimal pointwise-in-time rates of
convergence with respect to r, the number of POD basis functions utilized in the POD-
G-ROM. We also conjecture that using the snapshot DQs in the generation of the
POD basis could alleviate some of the degrading of convergence with respect to r seen
in, e.g., [29, 9, 3, 8]. We intend to investigate this conjecture in a future study.

To keep the length of the paper within reasonable limits, for each of the two
cases investigated (i.e., DQ and no DQ), we considered two subcases (i.e., using the
L2-POD basis or the H1-POD basis). One could, however, consider several additional
options. For example, one could replace the optimality of the error estimates given
in Definition 3.1 with the alternative definition proposed in Remark 3.1. One could
also consider variable parameters M , ∆t, and d (these parameters were fixed in the
present study; see Remark 2.2). Finally, one could try to use the recent sharper error
estimates for the POD projection error proved in [33]. Each of these options should be
investigated both theoretically and numerically to determine whether the conclusions
regarding the optimality of the POD error estimates in the two cases (i.e., DQ and
no DQ) would change. We plan to pursue some of these research directions in future
studies.
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