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VARIATIONAL MULTISCALE PROPER ORTHOGONAL

DECOMPOSITION: CONVECTION-DOMINATED

CONVECTION-DIFFUSION-REACTION EQUATIONS

TRAIAN ILIESCU AND ZHU WANG

Abstract. We introduce a variational multiscale closure modeling strategy
for the numerical stabilization of proper orthogonal decomposition reduced-
order models of convection-dominated equations. As a first step, the new
model is analyzed and tested for convection-dominated convection-diffusion-
reaction equations. The numerical analysis of the finite element discretization
of the model is presented. Numerical tests show the increased numerical ac-
curacy over the standard reduced-order model and illustrate the theoretical
convergence rates.

1. Introduction

One of the most successful dynamical systems ideas in the study of turbulent
flows has been the Proper Orthogonal Decomposition (POD) [17, 38]. POD has
been used to generate reduced-order models (ROMs) for the prediction and control
of structure dominated turbulent flows [1, 4, 9, 33, 34]. The idea is straightforward:
Instead of using billions of local finite element (FE) basis functions equally dis-
tributed in space, POD uses only a few (usually O(10)) global basis functions that
represent the most energetic structures in the system. Thus, the computational
cost in a direct numerical simulation (DNS) of a complex flow can be reduced by
orders of magnitude when POD is employed.

Despite its widespread use (hundreds of papers being published every year),
POD has several well-documented drawbacks. In this report, we address one of
them, namely the numerical instability of a straightforward POD Galerkin pro-
cedure applied to a complex flow [2]. To address this issue, we draw inspiration
from the methodologies used in the numerical stabilization of FE discretization
of convection-dominated flows. Specifically, we employ the variational multiscale
(VMS) approach used by Layton in [30], which adds artificial viscosity only to the
smallest resolved scales. We also note that an approach similar to that used in [30]
was proposed by Guermond in [14, 15].

We emphasize that the VMS philosophy is particularly appropriate to the POD
setting, in which the hierarchy of small and large structures appears naturally.
Indeed, the POD modes are listed in decreasing order of their kinetic energy content.

Received by the editor November 23, 2010 and, in revised form, December 2, 2011.
2010 Mathematics Subject Classification. Primary 76F65, 65M60; Secondary 76F20, 65M15.
Key words and phrases. Proper orthogonal decomposition, variational multiscale.
The first author was supported in part by NSF Grants #DMS-0513542 and #OCE-0620464

and AFOSR grant #FA9550-08-1-0136.
The second author was supported in part by NSF Grants #DMS-0513542 and #OCE-0620464

and AFOSR grant #FA9550-08-1-0136.

©2013 American Mathematical Society
Reverts to public domain 28 years from publication

1357

Licensed to Univ of South Carolina. Prepared on Mon Oct 10 10:33:50 EDT 2016 for download from IP 129.252.33.114.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1358 TRAIAN ILIESCU AND ZHU WANG

We also note that, although a VMS-POD approach was announced in [6, 7] and
another VMS-POD approach was used in [4], to the authors’ knowledge this is the
first time that the VMS formulation in [30] has been applied in a POD setting.

In this report, the new VMS-POD model is analyzed and tested in the numerical
approximation of a convection-dominated convection-diffusion-reaction problem⎧⎨⎩

ut − εΔu + b · ∇u + gu = f in (0, T ] × Ω ,
u(x, 0) = u0(x) in Ω ,
u(x, t) = 0 on (0, T ] × ∂Ω ,

(1.1)

where ε � 1 is the diffusion parameter, b with ‖b‖ = O(1) the given convective
field, g the reaction coefficient, f the forcing term, Ω ⊂ �

2 the computational do-
main, t ∈ [0, T ], with T the final time, and u0(·) the initial condition. Without loss
of generality, we assume in what follows that the boundary conditions are homo-
geneous Dirichlet. We emphasize that the new VMS-POD model targets turbulent
flows described by the Navier-Stokes equations (NSE). We chose the mathematical
setting in (1.1), however, because it is simple, yet relevant to our ultimate goal
(since ε � ‖b‖). Of course, once we fully understand the behavior of the new
VMS-POD model in this simplified setting, we will analyze and apply it in the
NSE setting.

The rest of the paper is organized as follows. In Section 2, we briefly describe the
POD methodology and introduce the new VMS-POD model. The error analysis
for the FE discretization of the new model is presented in Section 3. The new
methodology is tested numerically in Section 4 for a problem displaying shock-
like phenomena. Finally, Section 5 presents the conclusions and future research
directions.

2. Variational multiscale proper orthogonal decomposition

2.1. Proper orthogonal decomposition. In this section, we briefly describe the
POD. For a detailed presentation, the reader is referred to [17, 28, 38].

Let X be a real Hilbert space endowed with the inner product (·, ·)X , and u(·, t) ∈
X, t ∈ [0, T ] the state variable of a dynamical system. Given the time instances,
t1, . . . , tN ∈ [0, T ], we consider the ensemble of snapshots

V := span {u(·, t1), . . . , u(·, tN )} ,(2.1)

with dim V = d. The POD seeks a low-dimensional basis {ϕ1, . . . , ϕr}, with r � d,
which optimally approximates the input collection. Specifically, the POD basis
satisfies

min
1

N

N∑
i=1

∥∥∥∥∥∥u(·, ti) −
r∑

j=1

(
u(·, ti) , ϕj(·)

)
X
ϕj(·)

∥∥∥∥∥∥
2

X

,(2.2)

subject to the conditions that (ϕi, ϕj)X = δij , 1 ≤ i, j ≤ r. In order to solve (2.2),
we consider the eigenvalue problem

K v = λ v ,(2.3)

where K ∈ �
N×N , with Kij =

1

N

(
u(·, tj), u(·, ti)

)
X

, is the snapshot correlation

matrix, λ1 ≥ λ2 ≥ · · · ≥ λd > 0 are the positive eigenvalues, and vk, k = 1, . . . , d
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VARIATIONAL MULTISCALE PROPER ORTHOGONAL DECOMPOSITION 1359

are the associated eigenvectors. It can then be shown (see, e.g., [17, 28]), that the
solution of (2.2) is given by

ϕk(·) =
1√
λk

N∑
j=1

(vk)j u(·, tj), 1 ≤ k ≤ r,(2.4)

where (vk)j is the j-th component of the eigenvector vk. It can also be shown that
the following error formula holds:

1

N

N∑
i=1

∥∥∥∥∥∥u(·, ti) −
r∑

j=1

(
u(·, ti) , ϕj(·)

)
X
ϕj(·)

∥∥∥∥∥∥
2

X

=
d∑

j=r+1

λj .(2.5)

In what follows, we will use the notation Xr = span{ϕ1, ϕ2, . . . , ϕr} . Although X
can be any real Hilbert space, in what follows we consider X := H1

0 (Ω).
In the form it has been presented so far, POD seems to be only a data compres-

sion technique. Indeed, equation (2.2) simply says that the POD basis is the best
possible approximation of order r of the given data set. In order to make POD a
predictive tool, one couples the POD with the Galerkin procedure. This, in turn,
yields a ROM, i.e., a dynamical system that represents the evolution in time of the
Galerkin truncation. We now briefly present the derivation of this ROM, highlight
one of its main drawbacks, and propose a method to address this deficiency.

The POD-Galerkin truncation is the approximation ur ∈ Xr of u:

ur(x, t) :=
r∑

j=1

aj(t)ϕj(x).(2.6)

Plugging (2.6) into (1.1) and multiplying by test functions in Xr ⊂ X yields the
POD-Galerkin (POD-G) model

(ur,t, vr) + ε(∇ur,∇vr) + (b · ∇ur, vr) + (g ur, vr) = (f, vr) ∀ vr ∈ Xr.(2.7)

The main advantage of the POD-G model (2.7) over a straightforward FE dis-
cretization of (1.1) is clear; the computational cost of the former is dramatically
lower than that of the latter. There are, however, several well-documented disad-
vantages of (2.7), such as its numerical instability in convection-dominated flows
[37]. To address this issue, we draw inspiration from the methodologies used in
numerical stabilization of FE discretizations of such flows.

2.2. Variational multiscale. The VMS method introduced by Hughes and his
group [19, 20, 21, 22] has been successful in the numerical stabilization of turbulent
flows [12, 13, 23, 24, 25, 26]. The idea in VMS is straightforward: Instead of adding
artificial viscosity to all resolved scales, in VMS artificial viscosity is only added to
the smallest resolved scales. Thus, the small scale oscillations are eliminated with-
out polluting the large scale components of the approximation. The VMS method
has been extensively developed, various numerical methods being used. The FE
discretization of the resulting VMS model has evolved in several directions: Hughes
and his group proposed a VMS formulation for the NSE in which a Smagorinsky
model [5, 39] was added only to the smallest resolved scales [19, 20, 21, 22]. A
different type of VMS approach, based on the residual of the NSE, was proposed
by Bazilevs et al. in [3]. One of the earliest VMS ideas for convection-dominated
convection-diffusion-reaction equations was proposed by Guermond in [14, 15]. In
this VMS formulation, the smallest scales were modeled by using FE spaces enriched

Licensed to Univ of South Carolina. Prepared on Mon Oct 10 10:33:50 EDT 2016 for download from IP 129.252.33.114.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1360 TRAIAN ILIESCU AND ZHU WANG

with bubble functions. Layton proposed in [30] a VMS approach similar to that
of Guermond. In this VMS approach, however, the smallest resolved scales were
modeled by projection on a coarser mesh. The VMS approach proposed in [30] was
extended to the NSE in a sequence of papers by John and Kaya [23, 24, 25, 26].
The variational formulation used by the FE methodology fits very well with the
VMS approach. The definition of the smallest resolved scales, however, often poses
many challenges to the FE method. Indeed, one needs to enrich the FE spaces with
bubble functions [14, 15], consider hierarchical FE bases [20], or use a projection
on a coarser mesh [30].

2.3. The VMS-POD model. POD represents the perfect setting for the VMS
methodology, since the hierarchy of the basis is already present. Indeed, the POD
basis functions are already listed in descending order of their kinetic energy con-
tent. Based on this observation, we next propose a VMS based POD model. To
this end, we consider the following spaces: X := H1

0 (Ω), Xh ⊂ H1
0 (Ω), Xr :=

span{ϕ1, ϕ2, . . . , ϕr}, XR := span{ϕ1, ϕ2, . . . , ϕR}, where R < r, and LR, which
will be defined later. Note that XR ⊆ Xr ⊂ Xh ⊂ X. We also consider PR :
L2(Ω) −→ LR, the orthogonal projection of L2(Ω) on LR, defined by

(u− PRu, vR) = 0 ∀ vR ∈ LR.(2.8)

Also, let P
′

R := � − PR. We are now ready to define the Variational Multiscale
Proper Orthogonal Decomposition (VMS-POD) model :

(ur,t, vr) + ε (∇ur,∇vr) + α (P
′

R∇ur, P
′

R∇vr)

+ (b · ∇ur, vr) + (gur, vr) = (f, vr) ∀ vr ∈ Xr.
(2.9)

The third term on the LHS of (2.9) represents the artificial viscosity that is added
only to the smallest resolved scales of the gradient. We note that, although a
VMS-POD approach was announced in [6, 7] and another one was used in [4], to
the authors’ knowledge this is the first time that the VMS formulation in [30] is
applied in a POD setting.

In the next two sections, we will first estimate the error made in the FE dis-
cretization of the new VMS-POD model (2.9) and then use it in a numerical test.

3. Error estimates

In this section, we prove estimates for the average error

1

N + 1

N∑
n=0

‖un − un
r ‖,

where the approximation un is the solution of (3.11) (the weak form of (1.1)) and
un
r is the solution of (3.12) (the FE discretization of the VMS-POD model (2.9)).

To this end, we follow the approach in [16] (see also [27]). We emphasize, however,
that our presentation is different in that it has to include several results pertaining
to the POD setting. To this end, we use some of the developments in [32] (see also
[18, 29, 31, 36]).

We start by introducing some notation and we list several results that will be
used throughout this section. For clarity, we will denote by C a generic constant
that can depend on all the parameters in the system, except on d (the number of
POD modes retained in the Galerkin truncation), N (the number of snapshots),
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VARIATIONAL MULTISCALE PROPER ORTHOGONAL DECOMPOSITION 1361

r (the number of POD modes used in the POD-G model (2.7)), R (the number
of POD modes used in the projection operator in the VMS-POD model (2.9)), h
(the mesh-size in the FE discretization), α (the artificial viscosity coefficient), and ε
(the diffusion coefficient). Of particular interest is the independence of the generic
constant C from ε. Indeed, we will prove estimates that are uniform with respect
to ε, which is important when convection-dominated flows (such as the NSE) are
considered.

We introduce the bilinear forms b(u, v) := (b · ∇u, v) + (g u, v), a(u, v) :=

ε(∇u,∇v)+b(u, v), and A(u, v) := a(u, v)+α (P
′

R∇u, P
′

R∇v). We also consider the

weighted norm ‖u‖2a,b,α := a ‖u‖2+b ‖∇u‖2+α ‖P ′

R∇u‖2. We now make the follow-
ing assumption, which is used in proving the well-posedness of the weak formulation
of (1.1).

Assumption 1 (Coercivity and Continuity).

g − 1

2
∇ · b ≥ β > 0 and max{‖g‖, ‖b‖} = γ > 0.(3.1)

For the FE discretization of (1.1), we consider a family of finite dimensional
subspaces Xh of X = H1

0 (Ω), such that, for all v ∈ Hm+1 ∩ X, the following
assumption is satisfied.

Assumption 2 (Approximability).

inf
vh∈Xh

{
‖v − vh‖ + h ‖∇v −∇vh‖

}
≤ C hm+1 ‖v‖m+1 1 ≤ m ≤ k,(3.2)

where k is the order of accuracy of Xh. We also assume that the FE spaces Xh

satisfy the following inverse estimate.

Assumption 3 (FE Inverse Estimate).

‖∇vh‖ ≤ C h−1 ‖vh‖ ∀ vh ∈ Xh.(3.3)

A similar inverse estimate for POD is proven in [29]. For completeness, we
present it below. We also include a new estimate and present its proof.

Lemma 3.1 (POD inverse estimate). Let Mr ∈ �
r×r with Mij = (ϕj , ϕi) be the

POD mass matrix, Hr ∈ �
r×r with Hij = (∇ϕj ,∇ϕi) be the POD stiffness matrix,

Sr ∈ �
r×r with Sij = (ϕj , ϕi)H1 be the POD mass matrix in the H1-norm, and

‖ · ‖2 denote the matrix 2-norm. Then, for all vr ∈ Xr, the following estimates
hold.

‖vr‖L2 ≤
√
‖Mr‖2 ‖S−1

r ‖2 ‖vr‖H1 ,(3.4)

‖vr‖H1 ≤
√
‖Sr‖2 ‖M−1

r ‖2 ‖vr‖L2 ,(3.5)

‖∇vr‖L2 ≤
√
‖Hr‖2 ‖M−1

r ‖2 ‖vr‖L2 .(3.6)

Proof. The proof of estimates (3.4) and (3.5) was given in [29] (see Lemma 2 and
Remark 2). The proof of (3.6) follows along the same lines: Let vr =

∑r
i=1 xjϕj and

x = (x1, . . . , xr)
T . From the definition of Hr, it follows that ‖∇vr‖2L2 = xT Hr x.

Since Hr is symmetric, its matrix 2-norm is equal to its Rayleigh quotient [11]:

‖Hr‖2 = max
x�=0

xT Hr x
xT x

. Thus, we get:

‖∇vr‖2L2 = xT Hr x ≤ ‖Hr‖2 xT x .(3.7)
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1362 TRAIAN ILIESCU AND ZHU WANG

Furthermore, since M−1
r is also symmetric, we get yT M−1

r y ≤ ‖M−1
r ‖2 yT y for

all vectors y ∈ �
r. We also note that, since Mr is symmetric positive definite, we

can use its Cholesky decomposition Mr = Lr L
T
r , where Lr is a lower triangular

nonsingular matrix [11]. Thus, letting y = Lr x, we get:

‖M−1
r ‖2 ≥ yT M−1

r y

yT y
=

xT LT
r (L−1

r )T L−1
r Lr x

xT LT Lx
=

xT x

xT Mr x
.(3.8)

Inequalities (3.7) and (3.8) imply the following inequality, which proves (3.6):
‖∇vr‖2L2 ≤ ‖Hr‖2 ‖M−1

r ‖2 xT Mr x = ‖Hr‖2 ‖M−1
r ‖2 ‖vr‖2L2 . �

Remark 3.2. We note that, in our setting, (3.6) can be improved. Indeed, since Sr

is the identity matrix when X = H1
0 , we get:

‖∇vr‖L2 ≤ ‖vr‖H1 ≤
√
‖Sr‖2 ‖M−1

r ‖2 ‖vr‖L2 =

√
‖M−1

r ‖2 ‖vr‖L2 .(3.9)

We note, however, that in general (3.9) might not hold.

To prove optimal error estimates in time, we follow [10, 29] and include the

finite difference quotients ∂u(tn) = u(tn)−u(tn−1)
Δt , where n = 1, . . . , N , in the set of

snapshots V := span
{
u(t0), . . . , u(tN ), ∂u(t1), . . . , ∂u(tN )

}
. As pointed out in [29],

the error formula (2.5) becomes:

1

2N + 1

N∑
i=0

∥∥∥∥∥∥u(·, ti) −
r∑

j=1

(
u(·, ti) , ϕj(·)

)
X
ϕj(·)

∥∥∥∥∥∥
2

X

+
1

2N + 1

N∑
i=1

∥∥∥∥∥∥∂u(·, ti) −
r∑

j=1

(
∂u(·, ti) , ϕj(·)

)
X
ϕj(·)

∥∥∥∥∥∥
2

X

=

d∑
j=r+1

λj .

(3.10)

After these preliminaries, we are ready to derive the error estimates.
The weak form of (1.1) reads:

(ut, v) + a(u, v) = (f, v) ∀ v ∈ X .(3.11)

The VMS-POD model for (3.11) with a backward Euler time discretization reads:
Find un

r ∈ Xr such that:

1

Δt
(un+1

r − un
r , vr) + A(un+1

r , vr) = (fn+1, vr) ∀ vr ∈ Xr .(3.12)

The following stability result for un
r holds:

Theorem 3.3. The solution un
r of (3.12) satisfies the following bound:

‖un
r ‖ ≤ ‖u0

r‖ + Δt
N−1∑
n=0

‖fn+1‖.(3.13)

Proof. Choosing vr := un+1
r in (3.12), we get:

1

Δt
(un+1

r − un
r , u

n+1
r ) + A(un+1

r , un+1
r ) = (fn+1, un+1

r ) .(3.14)

By applying the Cauchy-Schwarz inequality on both sides of (3.14) and simplifying
by ‖un+1

r ‖, we get:

‖un+1
r ‖ − ‖un

r ‖ ≤ Δt ‖fn+1‖.(3.15)

Summing from 0 to N − 1 the inequality in (3.15), we get (3.13). �
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VARIATIONAL MULTISCALE PROPER ORTHOGONAL DECOMPOSITION 1363

In order to prove an estimate for ‖un − un
r ‖, we will first consider the Ritz

projection wr ∈ Xr of u ∈ X:

A(u− wr, vr) = 0 ∀ vr ∈ Xr.(3.16)

The existence and uniqueness of wr follow from the Lax-Milgram lemma. We now
prove an estimate for un − wn

r , the error in the Ritz projection.

Lemma 3.4. The Ritz projection wn
r of un satisfies the following error estimate:

1

N

N∑
n=1

‖un − wn
r ‖ ≤ C

{(
1 +

√
‖M−1

r ‖2 + α−1

)1/2

(3.17) ⎛⎝hm+1 1

N

N∑
n=1

‖un‖m+1 +

√√√√ d∑
j=r+1

λj

⎞⎠
+
√
ε + α

⎛⎝hm 1

N

N∑
n=1

‖un‖m+1 +

√√√√ d∑
j=r+1

λj

⎞⎠}
.

Proof. Setting u := un in (3.16), we get:

A(un − wn
r , vr) = 0 ∀ vr ∈ Xr.(3.18)

We decompose the error un−wn
r as un−wn

r := (un − Ih,r(u
n))−(wn

r − Ih,r(u
n)) =

ηn − φn
r , where Ih,r(u

n) is the interpolant of un in the space Xr. By the triangle
inequality, we have:

1

N

N∑
n=1

‖un − wn
r ‖ ≤ 1

N

N∑
n=1

‖ηn‖ +
1

N

N∑
n=1

‖φn
r ‖.(3.19)

We start by estimating ‖ηn‖. We note that Ih,r(u
n) consists of two parts: We first

consider un
h, the FE solution of (1.1), which yielded the ensemble of snapshots V

defined in (2.1). Then, we interpolate un
h in Xr, which yields Ih,r(u

n). Note that
this is different from [16], where only the first part was present (see (8) in [16]).

1

N

N∑
n=1

‖ηn‖ =
1

N

N∑
n=1

‖un − Ih,r(u
n)‖

≤ 1

N

N∑
n=1

‖un − un
h‖ +

1

N

N∑
n=1

‖un
h − Ih,r(u

n)‖ .
(3.20)

Using Assumption 2, it is easily shown [35] that:

1

N

N∑
n=1

‖un − un
h‖ ≤ C hm+1 1

N

N∑
n=1

‖un‖m+1.(3.21)

Picking Ih,r(u
n) :=

∑r
j=1(u

n
h, ϕj)X ϕj in the last term on the RHS of (3.20) and

then using (3.10), we get:

1

N

N∑
n=1

‖un
h − Ih,r(u

n)‖ ≤

√√√√ d∑
j=r+1

λj .(3.22)
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1364 TRAIAN ILIESCU AND ZHU WANG

Note that we consider that the time instances tn = nΔt in the time discretization
(3.12) are the same as the time instances at which the snapshots were taken. If this
is not the case, one should use a Taylor series approach (see (4.8) in [32]).

Plugging (3.21) and (3.22) in (3.20), we get:

1

N

N∑
n=1

‖ηn‖ ≤ C hm+1 1

N

N∑
n=1

‖un‖m+1 +

√√√√ d∑
j=r+1

λj .(3.23)

Similarly, using that X = H1
0 in (3.10), we get:

1

N

N∑
n=1

‖∇ηn‖ ≤ C hm 1

N

N∑
n=1

‖un‖m+1 +

√√√√ d∑
j=r+1

λj .(3.24)

Equation (3.18) implies:

A(un − wn
r , vr) = A(ηn − φn

r , vr) = 0.(3.25)

Choosing vr = φn
r in (3.25) implies:

A(φn
r , φ

n
r ) = A(ηn, φn

r ).(3.26)

We decompose the bilinear form A into its symmetric and skew-symmetric parts:
A :=As+Ass, where As(u, v) :=α (P

′

R∇u, P
′

R∇v)+ε (∇u,∇v)+
((
g − 1

2∇ · b
)
u, v

)
,

and Ass(u, v) :=
(
b · ∇u + 1

2 (∇ · b) u, v
)
. Equation (3.26) implies:

As(φ
n
r , φ

n
r ) +�������0

Ass(φ
n
r , φ

n
r ) = As(η

n, φn
r ) + Ass(η

n, φn
r ) .(3.27)

Assumption 1 implies that As(φ
n
r , φ

n
r ) ≥ C ‖φn

r ‖21,ε,α. Thus, using the Cauchy-
Schwarz and Young’s inequalities, (3.27) becomes:

C ‖φn
r ‖21,ε,α ≤ As(φ

n
r , φ

n
r )1/2 As(η

n, ηn)1/2 + Ass(η
n, φn

r )

≤ 1

2
As(φ

n
r , φ

n
r ) +

1

2
As(η

n, ηn) + (bηn,∇φn
r ) +

1

2
((∇ · b) ηn, φn

r ) .
(3.28)

Rearranging and using Assumption 1, (3.28) becomes:

C ‖φn
r ‖21,ε,α ≤ C

(
|As(η

n, ηn)| + |(bηn,∇φn
r )| + | ((∇ · b) ηn, φn

r ) |
)
.(3.29)

We now estimate each term on the RHS of (3.29).

|As(η
n, ηn)| = ε ‖∇ηn‖2 +

((
g − 1

2
∇ · b

)
ηn, ηn

)
+ α ‖P ′

R∇ηn‖2 ≤ C ‖ηn‖21,ε,α .

(3.30)

To estimate the second term on the RHS of (3.29), we first note that ‖PR‖ ≤ 1
(since PR is L2-projection) and use the inverse estimate (3.5) in Lemma 3.1 to
obtain:

‖PR(∇φn
r )‖ ≤ ‖∇φn

r ‖ ≤ ‖φn
r ‖H1 ≤

√
‖M−1

r ‖2 ‖φn
r ‖ .(3.31)
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Using that (PRu, P
′

Rv) = 0 ∀u, v, the Cauchy-Schwarz and Young’s inequalities,
and the inverse estimate (3.9), we then get:

|(bηn,∇φn
r )| ≤ |(PR(bηn), PR(∇φn

r ))| + |(P ′

R(bηn), P
′

R(∇φn
r ))|(3.32)

≤ ‖PR(bηn)‖ ‖PR(∇φn
r )‖ + ‖P ′

R(bηn)‖ ‖P ′

R(∇φn
r )‖

≤ C

√
‖M−1

r ‖2 ‖PR(bηn)‖ ‖φn
r ‖ + ‖P ′

R(bηn)‖ ‖P ′

R(∇φn
r )‖

≤
(

1

β
C ‖M−1

r ‖2 ‖PR(bηn)‖2 +
β

4
‖φn

r ‖2
)

+

(
1

2α
‖P ′

R(bηn)‖2 +
α

2
‖P ′

R(∇φn
r )‖2

)
.

We note that this is exactly why we need the inverse estimate in Lemma 3.1: to
absorb ‖φn

r ‖2 in the LHS of (3.29). If we had used ‖∇φn
r ‖2 instead, then we would

have had to absorb it in ε ‖∇φn
r ‖2 on the LHS, and so the RHS would have depended

on ε. Finally, by using the Cauchy-Schwarz and Young’s inequalities, the third term
on the RHS of (3.29) can be estimated as follows:

| ((∇ · b) ηn, φn
r ) | ≤ C ‖ηn‖ ‖φn

r ‖ ≤ C

(
1

β
‖ηn‖2 +

β

4
‖φn

r ‖2
)

.(3.33)

Collecting estimates (3.29), (3.30), (3.32) and (3.33), we get:

‖φn
r ‖21,ε,α ≤ C

(
‖ηn‖21,ε,α +

1

β
‖M−1

r ‖2 ‖PR(bηn)‖2

+
1

2α
‖P ′

R(bηn)‖2 +
1

β
‖ηn‖2

)
.

(3.34)

The last term on the RHS of (3.34), can be absorbed in C ‖ηn‖21,ε,α. Since ‖PR‖ ≤ 1

(PR is L2-projection) and ‖b‖ ≤ γ (by Assumption 1), we get the following two
inequalities:

1

β
‖M−1

r ‖2 ‖PR(bηn)‖2 ≤ C ‖M−1
r ‖2 ‖ηn‖2 ,(3.35)

1

2α
‖P ′

R(bηn)‖2 ≤ C

α
‖ηn‖2 .(3.36)

Thus, using (3.35) and (3.36) in (3.34), we get:

‖φn
r ‖21,ε,α ≤ C

(
‖ηn‖2 + ε ‖∇ηn‖2 + α ‖P ′

R(∇ηn)‖2 + C ‖M−1
r ‖2 ‖ηn‖2

+
1

2α
‖P ′

R(bηn)‖2 +
C

α
‖ηn‖2

)
.

(3.37)

Since PR is L2-projection, ‖P ′

R‖ ≤ 1, and thus the second term on the RHS of

(3.37) can be bounded as follows: α ‖P ′

R(∇ηn)‖2 ≤ α ‖∇ηn‖2. Summing in (3.37),
we get:

1

N

N∑
n=1

‖φn
r ‖21,ε,α ≤ C

(
1 + ‖M−1

r ‖2 + α−1
) 1

N

N∑
n=1

‖ηn‖2

+ (ε + α)
1

N

N∑
n=1

‖∇ηn‖2 .
(3.38)
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Using (3.23) and (3.24) in (3.38), we get:

1

N

N∑
n=1

‖φn
r ‖ ≤ C

{(
1 + ‖M−1

r ‖2 + α−1
)1/2

(3.39) ⎛⎝hm+1 1

N

N∑
n=1

‖un‖m+1 +

√√√√ d∑
j=r+1

λj

⎞⎠
+
√
ε + α

⎛⎝hm 1

N

N∑
n=1

‖un‖m+1 +

√√√√ d∑
j=r+1

λj

⎞⎠}
.

Using (3.19), (3.23), and (3.39), we get (3.17). �

Corollary 3.1. The Ritz projection wn
r of un satisfies the following error estimate

up to O(Δt2):

‖(un − wn
r )t‖ ≤ C

{(
1 + ‖M−1

r ‖2 + α−1
)1/2

(3.40) ⎛⎝hm+1‖ut‖L2(Hm+1) +

√√√√ d∑
j=r+1

λj

⎞⎠
+
√
ε + α

⎛⎝hm ‖ut‖L2(Hm+1) +

√√√√ d∑
j=r+1

λj

⎞⎠}
.

Proof. The proof follows along the same lines as the proof of Lemma 3.4. Note that
it is exactly at this point that we use the fact that the finite difference quotients
∂u(tn) are included in the set of snapshots (see Remark 1 in [29] and also [10]). �

We are now ready to prove the main result of this section.

Theorem 3.5. Assume that

LR = ∇XR = span{∇ϕ1, . . . ,∇ϕR} .(3.41)

Then the following error estimate holds:

1

N + 1

N∑
n=0

‖un − un
r ‖ ≤ C

{(
1 + ‖M−1

r ‖2 + α−1
)1/2

(3.42) ⎛⎝hm+1 1

N

N∑
n=1

(
‖un‖m+1 + ‖ut‖L2(Hm+1)

)
+

√√√√ d∑
j=r+1

λj

⎞⎠
+
√
ε + α

⎛⎝hm 1

N

N∑
n=1

(
‖un‖m+1 + ‖ut‖L2(Hm+1)

)
+

√√√√ d∑
j=r+1

λj

⎞⎠
+‖u0 − u0

r‖ + Δt ‖utt‖L2(L2)

+
√
α

⎛⎝hm 1

N

N∑
n=1

‖un‖m+1 +

√√√√ d∑
j=R+1

λj

⎞⎠}
.
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Proof. We evaluate (3.11) at tn+1, we let v = vr, and then we add and subtract(
un+1 − un

Δt
, vr

)
:(
un+1
t − un+1 − un

Δt
, vr

)
+

(
un+1 − un

Δt
, vr

)
+ a(un+1, vr) = (fn+1, vr).

(3.43)

Subtracting (3.12) from (3.43), we obtain the error equation:(
un+1
t − un+1 − un

Δt
, vr

)
+

(
un+1 − un+1

r

Δt
, vr

)
−
(
un − un

r

Δt
, vr

)
+ A(un+1 − un+1

r , vr) + (a−A)(un+1, vr) = 0.

(3.44)

We now decompose the error as un − un
r =

(
un − wn

r

)
−

(
un
r − wn

r

)
= ηn − φn

r ,
which, by the triangle inequality, implies:

‖un − un
r ‖ ≤ ‖ηn‖ + ‖φn

r ‖.(3.45)

We note that ‖ηn‖ has already been bounded in Lemma 3.4. Thus, in order to
estimate the error, we only need to estimate ‖φn

r ‖. The error equation (3.44) can
be written as:(

un+1
t − un+1 − un

Δt
, vr

)
+

(
ηn+1 − ηn

Δt
, vr

)
−
(
φn+1
r − φn

r

Δt
, vr

)
+A(ηn+1 − φn+1

r , vr) + (a−A)(un+1, vr) = 0.

(3.46)

We pick vr := φn+1
r in (3.46), we note that, since φn+1

r ∈ Xr, A(ηn+1, φn+1
r ) = 0,

and we get:

A(φn+1
r , φn+1

r ) +
1

Δt
(φn+1

r − φn
r , φ

n+1
r ) =

1

Δt
(ηn+1 − ηn, φn+1

r )

+(rn, φn+1
r ) + (a−A)(un+1, φn+1

r ),
(3.47)

where rn = un+1
t − un+1 − un

Δt
. We now start estimating all the terms in (3.47).

The terms on the LHS of (3.47) are estimated as follows:

A(φn+1
r , φn+1

r ) ≥ β ‖φn+1
r ‖2 + ε ‖∇φn+1

r ‖2 + α ‖P ′

R∇φn+1
r ‖2,(3.48)

1

Δt
(φn+1

r − φn
r , φ

n+1
r ) ≥ 1

Δt

(
‖φn+1

r ‖2 − ‖φn
r ‖ ‖φn+1

r ‖
)
.(3.49)

Now we estimate the RHS of (3.47) by using the Cauchy-Schwarz and Young’s
inequalities: (

1

Δt
(ηn+1 − ηn) + rn, φn+1

r

)
≤

∥∥∥∥ 1

Δt
(ηn+1 − ηn) + rn

∥∥∥∥ ‖φn+1
r ‖

≤ 1

2β

∥∥∥∥ 1

Δt
(ηn+1 − ηn) + rn

∥∥∥∥2 +
β

2
‖φn+1

r ‖2,
(3.50)

(a−A)(un+1, φn+1
r ) = −α (P

′

R∇un+1, P
′

R∇φn+1
r )

≤ α ‖P ′

R∇un+1‖ ‖P ′

R∇φn+1
r ‖ ≤ α

2
‖P ′

R∇un+1‖2 +
α

2
‖P ′

R∇φn+1
r ‖2.

(3.51)
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Using (3.48)–(3.51) and absorbing RHS terms into LHS terms, (3.47) now reads:

1

Δt
(‖φn+1

r ‖2 − ‖φn
r ‖ ‖φn+1

r ‖) +
β

2
‖φn+1

r ‖2 + ε ‖∇φn+1
r ‖2

+
α

2
‖P ′

R∇φn+1
r ‖2 ≤ 1

2β

∥∥∥∥ 1

Δt
(ηn+1 − ηn) + rn

∥∥∥∥2 +
α

2
‖P ′

R∇un+1‖2.
(3.52)

By using Young’s inequality, the first term on the LHS of (3.52) can be estimated
as follows:

‖φn+1
r ‖2 − ‖φn

r ‖ ‖φn+1
r ‖ ≥ ‖φn+1

r ‖2 − 1

2
‖φn

r ‖2 −
1

2
‖φn+1

r ‖2

=
1

2
‖φn+1

r ‖2 − 1

2
‖φn

r ‖2.
(3.53)

Using (3.53) in (3.52) and multiplying by 2 Δt, we get:

‖φn+1
r ‖2 − ‖φn

r ‖2 + Δt ‖φn+1
r ‖21,ε,α(3.54)

≤ C

(
Δt

∥∥∥∥ 1

Δt
(ηn+1 − ηn) + rn

∥∥∥∥2 + αΔt ‖P ′

R∇un+1‖2
)

≤ C

(
Δt

∥∥∥∥ 1

Δt
(ηn+1 − ηn)

∥∥∥∥2 + Δt ‖rn‖2 + αΔt ‖P ′

R∇un+1‖2
)
.

Summing from n = 0 to n = N − 1 in (3.54), we get:

max
0≤n≤N

‖φn
r ‖2 +

N−1∑
n=0

Δt ‖φn+1
r ‖21,ε,α ≤ C

(
Δt

N−1∑
n=0

∥∥∥∥ 1

Δt
(ηn+1 − ηn)

∥∥∥∥2

+ ‖φ0
r‖2 + Δt

N−1∑
n=0

‖rn‖2 + αΔt

N−1∑
n=0

‖P ′

R∇un+1‖2
)
.

(3.55)

Proceeding as in [40] (see also [16]), we estimate the first term on the RHS of (3.55)
as follows. We start by writing:

(3.56) ηn+1 − ηn =

∫ tn+1

tn

ηt dt .

Taking the L2-norm in (3.56) and applying the Cauchy-Schwarz inequality, we get:

‖ηn+1 − ηn‖ ≤
∫ tn+1

tn

1 ‖ηt‖ dt ≤
(∫ tn+1

tn

12 dt

)1/2 (∫ tn+1

tn

‖ηt‖2 dt
)1/2

≤ (Δt)1/2
(∫ tn+1

tn

‖ηt‖2 dt
)1/2

,

(3.57)

which implies

Δt

∥∥∥∥ 1

Δt
(ηn+1 − ηn)

∥∥∥∥2 ≤
∫ tn+1

tn

‖ηt‖2 dt.

Summing from n = 0 to n = N − 1, we get

Δt

N−1∑
n=0

∥∥∥∥ 1

Δt
(ηn+1 − ηn)

∥∥∥∥2 ≤ ‖ηt‖2L2(L2),
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which was bound in Corollary 3.1. We thus obtain up to O(Δt2):

Δt
N−1∑
n=0

∥∥∥∥ 1

Δt
(ηn+1 − ηn)

∥∥∥∥2 ≤ C

{(
1 + ‖M−1

r ‖2 + α−1
)1/2

(3.58) ⎛⎝hm+1‖ut‖L2(Hm+1) +

√√√√ d∑
j=r+1

λj

⎞⎠
+
√
ε + α

⎛⎝hm ‖ut‖L2(Hm+1) +

√√√√ d∑
j=r+1

λj

⎞⎠}2

.

To estimate the third term on the RHS of (3.55), we use a Taylor series expansion
of un around un+1:

un = un+1 − un+1
t Δt +

∫ tn+1

tn

utt(s) (tn − s) ds .(3.59)

Taking the L2-norm in (3.59) and applying the Cauchy-Schwarz inequality, we get

‖rn‖ ≤
∫ tn+1

tn
1 ‖utt‖ ds ≤ (Δt)1/2 ‖utt‖L2(L2) . Summing from n = 0 to n = N − 1,

we get:

Δt

N−1∑
n=0

‖rn‖2 ≤ Δt2 ‖utt‖2L2(L2) .(3.60)

To estimate the last term on the RHS of (3.55), we use the fact that LR = ∇XR

(assumption (3.41)). We emphasize that this is the only instance in the proof where
the assumption LR = ∇XR is used. Thus, we get:

αΔt
N−1∑
n=0

‖P ′

R∇un+1‖2 = αΔt
N−1∑
n=0

‖∇un+1 − PR∇un+1‖2(3.61)

(3.41)

≤ C α
1

N

N−1∑
n=0

inf
vR∈XR

‖∇un+1 −∇vR‖2

(2.5),(3.2)

≤ C α

⎛⎝hm 1

N

N∑
n=1

‖un‖m+1 +

√√√√ d∑
j=R+1

λj

⎞⎠2

.

Using (3.58), (3.60), and (3.61) in (3.55), the obvious inequality

max
0≤n≤N

‖φn
r ‖ ≥ 1

N + 1

N∑
n=0

‖φn
r ‖,

inequality (3.45), and the estimates in Lemma 3.4, we obtain the error estimate
(3.42). �

4. Numerical results

The goal of this section is twofold: (i) to show that the new VMS-POD model
(2.9) is significantly more stable numerically than the standard POD-G model (2.7);
and (ii) to illustrate numerically the theoretical error estimate (3.42). We also
use Theorem 3.5 to provide theoretical guidance in choosing an optimal value for
the artificial viscosity coefficient α and use this algorithm within our numerical
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1370 TRAIAN ILIESCU AND ZHU WANG

framework. Finally, we show that the VMS-POD model (2.9) displays a relatively
low sensitivity with respect to changes in the diffusion coefficient ε. Thus, we
provide numerical support for the theoretical estimate (3.42), which is uniform
with respect to ε.

The mathematical model used for all the numerical tests in this section is the
convection-dominated convection-diffusion-reaction equation (1.1) with the follow-
ing parameter choices: spatial domain Ω = [0, 1]× [0, 1], time interval [0, T ] = [0, 1],
diffusion coefficient ε = 1 × 10−4, convection field b = [cos π

3 , sin
π
3 ]T , and reaction

coefficient g = 1. The forcing term f and initial condition u0(x) are chosen to satisfy
the exact solution u(x, y, t) = 0.5 sin(πx) sin(πy)

[
tanh

(
x+y−t−0.5

0.04

)
+ 1

]
, which is

similar to that used in [14]. As in the theoretical developments in Section 3, in this
section we employ the FE method for spatial discretization and the backward Euler
method for temporal discretization of all models investigated. All computations are
carried out on a PC with 3.2 GHz Intel Xeon Quad-core processor.

We start by comparing the VMS-POD model (2.9) to the standard POD-G model
(2.7). To generate the POD basis, we first run a DNS with the following parameters:
piecewise quadratic finite elements, uniform triangular mesh with mesh-size h =
0.01, and time-step Δt = 10−4. A mesh refinement study indicates that DNS

mesh resolution is achieved. The average DNS error is 1
N+1

∑N
n=0 ‖un − un

h‖ =

2.04 × 10−4, where N = 1000, and un and un
h are the exact solution and the FE

solution at t = nΔt, respectively. The CPU time of the DNS is 9.42 × 104 s. Since
the forcing term is time-dependent, the global load vectors are stored for later use
in all the ROMs. The POD modes are generated in H1 by the method of snapshots;
the rank of the data set is 104. For both POD-ROMs (POD-G and VMS-POD),
we use the same number of POD basis functions: r = 40.

We first test the POD-G model (2.7). The CPU time for the POD-G model is
96.4 s, which is three orders of magnitude lower than that of a brute force DNS.
The numerical solution at t = 1 is shown in Figure 1 for both the DNS (top) and
the POD-G model (middle). It is clear from this figure that, although the first 40
POD modes capture 99.99% of the system’s kinetic energy, the POD-G model yields
poor quality results and displays strong numerical oscillations. This is confirmed

by the POD-G model’s high average error 1
N+1

∑N
n=0 = 1.11 × 10−1, where un

r

is the POD-G model’s solution at t = nΔt. Indeed, the POD-G model’s average
error is almost three orders of magnitude higher than the average error of the DNS.
The average errors for different values of r listed in Table 1 show that increasing
the number of POD modes (r) does not decrease significantly the average error.
It is thus clear that the straightforward POD-G model, although computationally
efficient, is highly inaccurate.

Table 1. Average errors for the POD-G model (2.7) with different
values of r. Note that the POD-G model yields poor results.

r 20 40 60 80

1
N+1

N∑
n=0

‖un − un
r ‖ 1.25 × 10−1 1.11 × 10−1 9.28 × 10−2 8.20 × 10−2

Next, we investigate the VMS-POD model (2.9). We make the following param-
eter choices: R = 20 and α = 4.29 × 10−2. The motivation for this choice is given
later in this section. The CPU time for the VMS-POD model (2.9) is 106.2 s, which
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Figure 1. Numerical solution at t = 1: DNS (top), POD-G model
(2.7) (middle), and VMS-POD model (2.9) (bottom). Note that
the VMS-POD model is much more accurate than the POD-G
model, decreasing the unphysical oscillations of the latter. The
CPU times for both the VMS-POD and POD-G models are three
orders of magnitude lower than the CPU time for the DNS.
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1372 TRAIAN ILIESCU AND ZHU WANG

is close to the CPU time of the POD-G model (2.7). The numerical solution at
t = 1 for the VMS-POD model is shown in Figure 1 (bottom). It is clear from this
figure that the VMS-POD model is much more accurate than the POD-G model.
Indeed, the VMS-POD model results are much closer to the DNS results than the
POD-G model results, since the numerical oscillations displayed by the latter are
dramatically decreased. This is confirmed by the VMS-POD model’s average er-

ror 1
N+1

∑N
n=0 ‖un − un

r ‖ = 4.48 × 10−3, where un
r is the VMS-POD solution at

t = nΔt; this error is more than 20 times lower than the error of the POD-G model.
In conclusion, the VMS-POD model (2.9) dramatically decreases the error of the
POD-G model (2.7) by adding numerical stabilization, while keeping the same level
of computational efficiency.

Table 2. VMS-POD model’s average error e = 1
N+1

∑N
n=0 ‖un −

un
r ‖ and its e3 component for different values of R.

R e3
1

N+1

N∑
n=0

‖un − un
r ‖

1 1.29×10−1 2.55×10−2

4 9.34×10−2 1.78×10−2

7 6.69×10−2 1.37×10−2

10 4.68×10−2 9.80×10−3

13 3.20×10−2 6.99×10−3

We now turn our attention to the second major goal of this section — the numer-
ical illustration of the theoretical error estimate (3.42). Specifically, we investigate
whether the asymptotic behavior of the RHS of estimate (3.42) with respect to R
is reflected in the numerical results. We focus on the asymptotic behavior with
respect to R since this is the main parameter introduced by the VMS formulation;
the asymptotic behavior with respect to r was investigated in [7], whereas the as-
ymptotic behavior with respect to h and Δt is standard [8, 40]. To investigate the

asymptotic behavior with respect to R, we have to ensure that
√
α
√∑d

j=R+1 λj

(the only term that depends on R) dominates all the other terms on the RHS of
(3.42). To this end, we start collecting all the terms that depend on the exact
solution u and we include them in the generic constant C. Next, we assume that
the POD interpolation error in the initial condition ‖u0−u0

r‖ is negligible. We also
assume that the time-step is small enough to neglect Δt ‖utt‖L2(L2). With these
assumptions, the error estimate (3.42) can now be written as e ≤ C (e1 + e2 + e3),
where e is the VMS-POD model’s average error, C a generic constant indepen-

dent of r, R, h,Δt and α, e1 = ‖M−1
r ‖

1
2
2 h

m+1, e2 = ‖M−1
r ‖

1
2
2

√∑d
j=r+1 λj , and

e3 =
√
α
√∑d

j=R+1 λj . To ensure that e3 dominates the other terms, we choose

r = 100 and consider relatively low values for R. This choice for r, which is not op-
timal for practical computations, ensures, however, that e3 dominates e2. We also
note that, when h is small, e3 dominates e1 also. Thus, to investigate the asymp-
totic behavior with respect to R of the RHS of (3.42), we fix α = 5× 10−3, vary R
from 1 to 14, and monitor the changes in e3. We restrict R to this parameter range

to ensure that
√∑d

j=R+1 λj (and thus e3) dominates e2 and e1. Table 2 lists the
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VMS-POD model’s average error e = 1
N+1

∑N
n=0 ‖un − un

r ‖ and its e3 component
for different values of R. We emphasize that, in this case, e3 dominates the other
two error components e1 = 3.81 × 10−3 and e2 = 2.87 × 10−3. To see whether the
theoretical linear dependency predicted by the theoretical error estimate (3.42) is
recovered in the numerical results in Table 2, we utilize a linear regression analysis
in Figure 2. This plot shows that the rate of convergence of e with respect to e3 is
0.9, which is close to the theoretical value of 1 predicted by (3.42). We believe that
this slight discrepancy is due to the fact that the mesh-size h = 0.01 that we have
employed in this numerical investigation is not small enough for our asymptotic
study.

Summarizing the results above, we conclude that the theoretical error estimate in
(3.42) is recovered asymptotically (with respect to R) in our numerical experiments.

10 
-1

10 
-2

A
v
er

a
g
e 

E
rr

o
r

10 -2

0.02 0.05 0.1 0.2
e

3

VMS–POD

e=0.15 e 3 
0.90

Figure 2. Linear regression of VMS-POD model’s average error
with respect to e3. The convergence rate is 0.9, which is close to
the theoretical value of 1 predicted by (3.42).

Next, we use Theorem 3.5 to provide theoretical guidance in choosing an opti-
mal value for the artificial viscosity coefficient α. The main challenge is that the
theoretical error estimate (3.42) is asymptotic with respect to h,Δt, and r, while
in practical computations we are using small, yet nonnegligible values for these
parameters. Furthermore, the generic constant C is problem-dependent and can
play a significant role in practical computations. Notwithstanding these hurdles,
we choose a value for α that minimizes the RHS of (3.42):

α̃ =

hm+1 +

√
d∑

j=r+1

λj

2hm +
√∑d

j=r+1 λj +

√
d∑

j=R+1

λj

.

In the derivation of this formula, we made the same assumptions as those made in
the numerical investigation of the asymptotic behavior of the VMS-POD model’s
error and we again considered that (3.42) can be written as e ≤ C (e1 + e2 + e3).
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We note that, if
√∑d

j=r+1 λj <<
√∑d

j=R+1 λj and hm <<
√∑d

j=R+1 λj , then

α̃ becomes too small in practical computations and the VMS-POD model becomes
similar to the inaccurate POD-G model. To circumvent this, we use in our numerical
tests a “clipping” procedure by setting α∗ = max

{
α̃, h

2

}
.

Table 3 lists the VMS-POD model’s average error e = 1
N+1

∑N
n=0 ‖un − un

r ‖ for
the following values of r, R and α: r = 20, 40 and 60; R from 5 to r−5 in increments
of 5; and α = 0.01α∗, α∗, and 100α∗. Note that the VMS-POD model consistently
performs best for α = α∗. The only two slight deviations from this rule are for
r = 60 (R = 20 and R = 30); we again believe that this is due to the mesh-size
h = 0.01, which is not small enough for the asymptotic regime in Theorem 3.5.

Table 3. VMS-POD model’s average error e =
1

N+1

∑N
n=0 ‖un − un

r ‖ for different values of r and R, and
α = 0.01α∗, α∗, and 100α∗. Note that the VMS-POD model
consistently performs best for α = α∗.

r R 0.01α∗ e α∗ e 100α∗ e

20
5 1.2× 10−3 1.0× 10−1 1.2× 10−1 5.8× 10−2 1.2× 101 7.8× 10−2

10 2.0× 10−3 9.5× 10−2 2.0× 10−1 2.4× 10−2 2.04× 101 2.6× 10−2

15 3.3× 10−3 8.2× 10−2 3.3× 10−1 2.0× 10−2 3.3× 101 2.5× 10−2

40

5 6.4× 10−5 1.09× 10−1 6.4× 10−3 3.0× 10−2 6.4× 10−1 7.2× 10−2

10 1.1× 10−4 1.0× 10−1 1.1× 10−2 1.8× 10−2 1.1× 100 2.5× 10−2

20 4.2× 10−4 9.7× 10−2 4.2× 10−2 4.4× 10−3 4.2× 100 4.1× 10−3

30 1.7× 10−3 6.8× 10−2 1.7× 10−1 8.1× 10−3 1.7× 101 1.0× 10−2

35 3.0× 10−3 4.9× 10−2 3.0× 10−1 2.1× 10−2 3.0× 101 2.4× 10−2

60
5 5.0× 10−5 8.7× 10−2 5.0× 10−3 1.8× 10−2 5.0× 10−1 7.0× 10−2

10 5.0× 10−5 8.7× 10−2 5.0× 10−3 1.3× 10−2 5.0× 10−1 2.4× 10−2

20 5.0× 10−5 8.7× 10−2 5.0× 10−3 1.0× 10−2 5.0× 10−1 3.9× 10−3

30 1.2× 10−4 8.0× 10−2 1.2× 10−2 4.4× 10−3 1.2× 100 7.4× 10−4

40 5.4× 10−4 5.5× 10−2 5.4× 10−2 1.2× 10−3 5.4× 100 2.4× 10−3

50 1.8× 10−3 2.6× 10−2 1.8× 10−1 1.3× 10−2 1.8× 101 1.4× 10−2

55 2.9× 10−3 2.2× 10−2 2.9× 10−1 1.1× 10−2 2.9× 101 1.2× 10−2

The next step in our numerical investigation is the VMS-POD model’s sensitivity
with respect to changes in the diffusion coefficient ε. To this end, we run the
VMS-POD model (2.9) with the same parameters as above (r = 40, R = 20 and
α = α∗) for different values of the diffusion coefficient: ε = 10−2, 10−4, 10−6 and
10−8. Table 4 lists the average errors for DNS, POD-G and VMS-POD models for
different values of ε. It is clear from this table that the POD-G model’s average
error is significantly higher than the error of the DNS. The VMS-POD model,
however, performs well for all values of ε and displays a low sensitivity with respect
to changes in the diffusion coefficient. Thus, we provide numerical support for the
theoretical estimate (3.42), which is uniform with respect to ε.

Finally, we investigate numerically the influence of the reaction term g in (1.1)
on the VMS-POD model’s results. The motivation for this investigation is that
the theoretical estimate (3.42), which is uniform with respect to ε, relies on (3.1),
the restriction on g imposed in Assumption 1. Thus, a natural question is whether
the low sensitivity with respect to changes in ε displayed by the VMS-POD model
(which was proved in Theorem 3.5 and illustrated numerically in Table 4) is also
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Table 4. Average errors of DNS, POD-G and VMS-POD models
for different values of the diffusion coefficient ε. The POD-G model
performs poorly. The VMS-POD model performs well and displays
low sensitivity with respect to changes in ε.

ε
DNS POD-G VMS-POD

1
N+1

N∑

n=0

‖un − uN
h ‖ 1

N+1

N∑

n=0

‖un − un
r ‖ α 1

N+1

N∑

n=0

‖un − un
r ‖

10−2 1.10× 10−4 1.10× 10−2 4.05× 10−2 4.27× 10−3

10−4 2.04× 10−4 1.11× 10−1 4.29× 10−2 4.48× 10−3

10−6 1.88× 10−4 1.17× 10−1 9.65× 10−2 4.05× 10−3

10−8 2.46× 10−4 1.17× 10−1 1.01× 10−1 4.05× 10−3

displayed when the reaction coefficient g in (1.1) approaches zero. To answer this
question, in Table 5 we rerun the numerical tests summarized in Table 4, this time
without a reaction term (i.e., g = 0 in (1.1)). Comparing the results in Tables 4
and 5, we notice that the results without a reaction term are, as expected, worse
than the results with a reaction term for all the numerical tests (DNS, POD-G and
VMS-POD). We emphasize, however, that the results for the VMS-POD model
without a reaction term display, as before, a low sensitivity with respect to changes
in the diffusion coefficient. Thus, although the theoretical support in Theorem 3.5
is no longer available, the numerical results in Table 5 suggest that the VMS-POD
model’s low sensitivity with respect to changes in the diffusion coefficient holds
even when the reaction term is not present in (1.1). We believe that the robustness
of the VMS-POD model with respect to changes in ε is due to the fact that, in
this study, we are focusing on the POD modeling and analysis, rather than the
underlying FE methodology. Indeed, the entire POD framework relies on the fact
that an accurate DNS is available, so that the representative POD modes can be
extracted and used in the POD reduced-order model. Thus, the mesh-size h = 0.01
used in our numerical study is chosen fine enough to ensure that a DNS resolution is
employed. (This fact is confirmed by a mesh refinement study.) Had a coarser mesh
been employed without a reaction term in (1.1), the DNS results would have been,
most probably, less accurate. This, in turn, could have resulted in a significant loss
of accuracy of the POD-VMS model.

Table 5. Average errors of DNS, POD-G and VMS-POD models
for different values of the diffusion coefficient ε, without a reaction
term (i.e., g = 0 in (1.1)). The POD-G model performs poorly.
The VMS-POD model performs well and displays low sensitivity
with respect to changes in ε.

ε
DNS POD-G VMS-POD

1
N+1

N∑

n=0

‖un − uN
h ‖ 1

N+1

N∑

n=0

‖un − un
r ‖ α 1

N+1

N∑

n=0

‖un − un
r ‖

10−2 1.28× 10−4 1.25× 10−2 4.05× 10−2 4.76× 10−3

10−4 2.41× 10−4 1.42× 10−1 4.29× 10−2 4.98× 10−3

10−6 2.83× 10−4 1.50× 10−1 1.01× 10−1 4.96× 10−3

10−8 2.92× 10−4 1.50× 10−1 1.07× 10−1 4.96× 10−3
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5. Conclusions

We presented a new VMS closure modeling strategy for the numerical stabi-
lization of POD-ROMs of convection-dominated equations. The new POD-ROM,
denoted VMS-POD, utilizes an artificial viscosity term to add numerical stabiliza-
tion to the model. Following the guiding principle of the VMS methodology, we
only add artificial viscosity to the small resolved scales. Thus, no artificial viscosity
is used for the large resolved scales. The POD setting represents an ideal framework
for the VMS approach, since the POD modes are listed in descending order of their
kinetic energy content.

A thorough numerical analysis for the FE discretization of the new VMS-POD
model was presented. The numerical tests showed the increased numerical stability
of the new VMS-POD model and illustrated the theoretical error estimates. We
also employed the theoretical error estimates to provide guidance in choosing the
artificial viscosity coefficient in practical computations. We emphasize that the
theoretical error estimates were uniform with respect to ε, the diffusion coefficient.
The numerical tests confirmed the theoretical results: The average error of the
VMS-POD model showed a low sensitivity with respect to changes in ε.

Although the new VMS-POD model targets general convection-domainted prob-
lems, it was analyzed theoretically and tested numerically by using the convection-
dominated convection-diffusion-reaction equations. We chose this simplified math-
ematical and numerical setting as a first step in a thorough investigation of the new
VMS-POD model. Next, we will utilize the new VMS-POD model in the numerical
simulation of turbulent flows, such as 3D flow past a circular cylinder [41, 42]. We
also note that, to our knowledge, this is the first time that the VMS formulation
used in [30] for the numerical stabilization of FE discretizations has been used in a
POD setting. We will investigate in a future study the alternative VMS formulation
proposed in [14] and compare it with the VMS-POD model that we introduced in
this report.
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