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a b s t r a c t

In this paper, the combined hybrid method is applied to the Reissner–Mindlin plate model and a

corresponding variational formulation is presented. Based on this combined hybrid variational

formulation, we introduce the Wilson incompatible displacement mode, assumed moment modes

and two types of assumed shear stress to design two quadrilateral finite elements. A series of standard

numerical tests show that two new elements are free of locking and yield high performance on the

coarse mesh.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

It is known that, for the Reissner–Mindlin plate bending problem,
standard finite element methods always fail to give good approx-
imations when the plate thickness t is too small. This phenomenon
is known as shear locking. When t is close to 0, exact solutions of the
Reissner–Mindlin plate model approach those of the Kirchhoff plate
model, but C0�finite element solutions do not behave this way.

During the past several decades, much research has been
focused on how to construct a general class of finite elements
which can avoid locking. The first effective work involved reduced
integration and selective reduced integration techniques in the
displacement mode (proposed simultaneously by Zienkiewicz et al.
[24] and Pawsey and Clough [12]. This was demonstrated to be the
mixed finite element method by Malkus and Hughes in [9].).
However, these techniques often result in instability of elements
due to spurious zero-energy modes [4]. Another effective
work is the mixed/hybrid element method. According to this
method, many attractive elements are constructed that can avoid
locking and provide uniform approximations (see [2,5–7,11]). To
improve the accuracy, linked interpolation has been studied in
All rights reserved.
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[3,14,21,23-25]. By introducing the linking function, this method
ensures that one order higher polynomials can be used for the
representation of the transverse displacement without adding
additional element parameters. Several finite elements are well
designed based on these methods such as MITC4 and Q4-LIM, but
we still want to construct some new elements that can overcome
locking and achieve higher accuracy on the coarse mesh.

In the last decade, Zhou proposed the combined hybrid finite
element method for the linear elliptic problem (see [15]). This
method is based on a linear combination of two dual systems of
saddle point conditions, one of which is the domain-decomposed
Hellinger–Reissner principle, the other is the dual to the
former—primal hybrid variational principle. Through the adjust-
ment of combined parameters, this method always yields a close
approximation of the energy on coarse meshes. Analyses show
this method is stable and can overcome the Poisson-locking.2

Zhou also provided a general framework for studying how to
enhance accuracy on coarse meshes. In papers [16,17], numerical
examples show that combined hybrid finite elements have good
numerical performance. In particular, locking in the nearly
incompressible region disappears. An important key to such
success is to make the additional incompatible bubbles satisfy the
so-called energy compatibility condition (see [15]).

Recently, the authors of this paper applied the combined
hybrid method in the Reissner–Mindlin plate model and designed
2 This term is used for the problem of nearly incompressible elasticity.

www.elsevier.com/finel
dx.doi.org/10.1016/j.finel.2010.01.003
mailto:wangzhu@vt.edu


ARTICLE IN PRESS

B. Hu et al. / Finite Elements in Analysis and Design 46 (2010) 428–437 429
four kinds of quadrilateral elements (see [18]). Among them,
CHWu yields the best results in numerical experiments, which is
based on assumed constant shear stress, assumed constant
moment modes and the incompatible mode presented by Pian
and Wu (see [20]). Numerical solutions show the combined
hybrid finite elements are free of shear locking; meanwhile,
comparisons among results show that the performance of those
elements depend heavily on the option of incompatible modes.

Following these studies, in this paper, we use the same
variational formulation as CHWu but change the incompatible
modes to Wilson’s transversal displacement [13,22], and also
construct two new quadrilateral elements. One of them is based
on assumed constant shear stress, the other is designed,
especially, to make shear stress satisfy the complete energy
compatibility condition. By comparison with other well-estab-
lished elements (MITC4 and Q4-LIM), numerical experiments
show both elements are free of locking and perform well on the
coarse mesh in both thin and thick plate models.

This paper is organized as follows: in Section 2, the combined
hybrid variational formulation of the Reissner–Mindlin plate model
is reviewed with the existence and uniqueness of the solution
presented; in Section 3, we discretize the variational formulation
and analyze its convergence; in Section 4, two kinds of new
quadrilateral elements are given and corresponding error estima-
tions are analyzed, respectively; in Section 5, we present the
interval-contracting algorithm to determine optimal values of the
combined parameters; finally, both elements are tested in Section 6.
2. Combined hybrid variational formulation

Let O� ð�t=2; t=2Þ be the region occupied by a plate, where
O� R2 is a simply connected polygon and t40 is the plate
thickness, o denotes the transverse displacement of the midsec-
tion of the plate and b represents the rotation of fibers normal to
O. The original Reissner–Mindlin plate model determines o;b as
unique solutions to the following variational problem:

Find ðo;bÞAH1
0ðOÞ � ðH

1
0ðOÞÞ

2, such that

aðb;ZÞþlt�2ð,o�b;,v�ZÞ ¼ ðg; vÞ; 8ðv;ZÞAH1
0ðOÞ � ðH

1
0ðOÞÞ

2;

ð2:1Þ

where

aðb;ZÞ ¼ E

12ð1�n2Þ

Z
O

ndivbdivZþ 1�n
4

X2

i;j ¼ 1

@bi

@xj
þ
@bj

@xi

� �
@Zi

@xj
þ
@Zj

@xi

� �8<
:

9=
;dO;

where ð�; �Þ is the L2�inner product, l¼ Ek=2ð1þnÞ using E as
Young’s modulus, n as the Poisson ratio, and k as the shear
correction factor (taken to be 5

6), g is the scaled transverse loading
function.

By introducing the shear stress s¼ lt�2ðro�bÞ and moment
M¼DðeðbÞÞ, the combined hybrid variational principle reads: to
find ðs;M;b;oÞAG� Z � H � U, such thatYða1 ;a2Þ

CH
ðs;M;b;oÞ ¼ inf

Z;v
sup
t;m

Yða1 ;a2Þ

CH
ðt;m;Z; vÞ; ð2:2Þ

where the combined hybrid energy functional

Yða1 ;a2Þ

CH
ðt;m;Z; vÞ ¼

X
Oi

Z
Oi

1

2
½aðZ;ZÞþlt�2ðrv�Z;rv�ZÞ�ðg; vÞ�dOi

�b1ðt; vIÞ�
ð1�a1t2Þt2

2l
ðt�lt�2ðrv�ZÞ;

t�lt�2ðrv�ZÞÞ�a2

2
dðm�DeðZÞ;m�DeðZÞÞ;

where G¼
Q

iHðdiv;OiÞ, Z ¼ ðLðOÞÞ3, H¼ ðH1
0ðOÞÞ

2, U ¼ fvA
Q

i

H1ðOiÞ : vj@Oi
¼ 0g, U ¼Uc � UI , Uc ¼H1

0ðOÞ=
Q

iH
1
0ðOiÞ is a Lagrange
multiplier space, UIðOiÞ ¼ span/bubblesS, b1ðt; vIÞ ¼
P

i

H
@Oi
t � n
!
�

vI ds, dðM;mÞ ¼
R
OM � D�1m dO, D is the elasticity module matrix,

eðbÞ ¼ ½@bx=@x; @by=@y; @bx=@yþ@by=@x�T , a1A ð0; t�2Þ, a2Að0;1Þ are

combined parameters, T h ¼ fOig denotes the finite element
regular subdivision of O.

By using the optimality conditions on (2.2), assuming
oAC0ðOÞ and l¼ 1 for simplicity of notation, we get the
following combined hybrid variational formulation:

Find ðs;M;b;oÞAG� Z � H � U, such that

ð1�a2Þaðb;ZÞþa1

X
i

ðro�b;rv�ZÞOi
þð1�a1t2Þ

X
i

ðs;rv�ZÞOi

þa2ðM; eðZÞÞ�b1ðs; vIÞ ¼ ðg; vÞ; 8ðZ; vÞAH � U; ð2:3Þ

ð1�a1t2Þt2ðs; tÞ�ð1�a1t2Þ
X

i

ðt;ro�bÞOi
þa2dðM;mÞ�a2ðm; eðbÞÞ

þb1ðt;oIÞ ¼ 0; 8ðt;mÞAG� Z: ð2:4Þ

Here, H and Z are equipped with the general norm J � J1;O and
J � J0;O [8], G and U � Uc can be equipped with the norms:

JtJG ¼ JtJ2
0;Oþ

X
i

h2
i Jdiv tJ2

0;O

" #1=2

;

Jðv; vcÞJU�Uc
¼
X

i

JrvJ2
0;Oi
þJv�vcJ

2
1=2;@Oi

� �" #1=2

;

JvJ1=2;@Oi
¼ inf

uAH1
0
ðOiÞ

½h�2
i JvþuJ2

0;Oi
þJrðvþuÞJ2

0;Oi
�1=2;

where hi denotes the diameter of Oi.

Lemma 2.1. For the problem (2.3), (2.4), there exists a unique

solution ðs;M;b;oÞAG� Z � H � U.

Proof. It is obvious that the solution to the original differential
formulation of Reissner–Mindlin plate model is the solution to
(2.3), (2.4).

Let g ¼ 0, Z¼ b, t¼ s, m¼M, v¼o, vI ¼oI in Eqs. (2.3), (2.4),

then we have

ð1�a2Þaðb;bÞþa1

X
i

Jro�bJ2
0;Oi
þð1�a1t2Þt2ðs;sÞþa2dðM;MÞ ¼ 0;

ð2:5Þ

which implies that: b¼ 0, s¼ 0, M¼ 0 in O and rojOi
¼ 0.

Now plugging these values into (2.3), we get: b1ðt;oIÞ ¼ 0 for

every tAG, where oI ¼o�oc. Since ðo;ocÞAU � Uc , we have

oAH1
0ðOÞ. Then o¼ 0 in O and oIj@Oi

¼ 0 can be derived directly

(see [15]) . Thus, the existence and uniqueness are proved. &

3. Discretization and convergence

This section is to derive the discretized scheme of (2.3), (2.4)
and analyzes its convergence.

Let Gh, Zh, Hh, and Uh be the finite element spaces associated

with the domain partition T h such that Gh
�G, Zh � Z, Hh �H, and

Uh �U, then (2.3), (2.4) can be discretized as follows:
Find ðsh;Mh;bh;ohÞAGh

� Zh � Hh � Uh, such that

ð1�a2Þaðbh;ZÞþa1

X
i

ðroh�bh;rv�ZÞOi
þð1�a1t2Þ

X
i

ðsh;rv�ZÞOi

þa2ðMh; eðZÞÞ�b1ðsh; vIÞ ¼ ðg; vÞ; 8ðZ; vÞAHh � Uh; ð3:1Þ

ð1�a1t2Þt2ðsh; tÞ�ð1�a1t2Þ
X

i

ðt;roh�bhÞOi
þa2dðMh;mÞ

�a2ðm; eðbhÞÞþb1ðt;ohI
Þ ¼ 0; 8ðt;mÞAGh

� Zh: ð3:2Þ
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Remark 1. When the plate is homogeneous and isotropic rectan-

gular and meshed by a rectangular mesh T h, b1ðth; vIÞ ¼ 0, the
proposed discrete schemes collapse the formulation proposed in [1].

As to existence, uniqueness and convergence of solutions to the
above problem, we have the following theorem:

Theorem 3.1. Assume ðs;M;b;oÞ is the exact solution to the

original differential scheme of the Reissner–Mindlin plate problem

after introducing the shear stress s and moment M. Then the problem

described by (3.1), (3.2) has a unique solution ðsh;Mh;bh;ohÞAGh
�

Zh � Hh � Uh and

Js�shJ0;OþJM�MhJ0;OþJb�bhJ1;Oþ
X

i

Jrðo�ohÞJ
2
0;Oi

 !1=2

rC inf
tAG

Js�tJGþ inf
mAZh

JM�mJ0;Oþ inf
ZAHh

Jb�ZJ1;O

�

þ inf
vAUh

X
i

Jrðo�vÞJ2
0;Oi

�
:

"
þJvIJ

2
1=2;@Oi

�i1=2
�
; ð3:3Þ

where C40 is a constant independent of h.

Proof. From (3.1) and (3.2), the term ð1�a2ÞaðZ;ZÞþa1
P

iðrv�Z;
rv�ZÞOi

þð1�a1t2Þt2ðt; tÞþa2dðm;mÞ is coercive in Gh
� Zh � Hh�

Uh, thus the existence and uniqueness of the finite element
solution can be derived according to the Lax–Milgram theorem.
By using the same technique as in the proof of Theorem 3.1 in
[15], (3.3) can be easily proved. &

4. New elements

In this section, we will introduce the Wilson incompatible
mode, assumed shear stress and moment modes to design two
new combined hybrid finite elements.

4.1. Assumed incompatible modes

Let Uh
w, the Wilson’s quadrilateral element space, be a

substitution of Uh, i.e.

Uh
w :¼ fvAU : vjOi

¼ ðvcþvIÞjOi
¼ ðv̂cþ v̂IÞ3F

�1
i ;8OiAT hg;

v̂cðx;ZÞ ¼ vcðFiðx;ZÞÞ ¼ ½N1 N2 N3 N4�X
ðnÞ
c ¼: NcXðnÞc ;

v̂I ¼ ½1�x
2 1�Z2�Xn

I ¼: NIX
ðnÞ
I ; XðnÞI AR2; ð4:1Þ

where XðnÞc ¼ ðv1; v2; v3; v4Þ
T is the nodal transverse displacement

vector, Nj ¼
1
4 ð1þxjxÞð1þZjZÞ with ðxj;ZjÞ ðj¼ 1;2;3;4Þ be vertices

ð�1;�1Þ; ð1;�1Þ; ð1;1Þ; ð�1;1Þ. Fi is the isoparametric mapping

B. Hu et al. / Finite Elements in An430
Fig. 1. Bilinear isoparameter mapping Fi .
from the reference element ½�1;1� � ½�1;1� to Oi (see Fig. 1), i.e.

x

y

 !
¼ Fiðx;ZÞ ¼

X4

j ¼ 1

Niðx;ZÞ
xi

yi

 !
;

ðxj; yjÞ ðj¼ 1;2;3;4Þ are coordinates of four vertices on Oi.
4.2. Assumed shear resultant field

Two different types of assumed shear stress spaces, Gh
0 and

Gh
0�1, are used in this paper as follows:

Gh
0 :¼ ftAG : tjOi

¼ constant; 8OiAT hg; i:e:

tjOi
¼

1 0

0 1

� 	
XðtÞ ¼: S0XðtÞ; XðtÞAR2; ð4:2Þ

Gh
0�1 :¼ ftAGh

1 : b1ðt; vIÞ ¼ 0; 8vAUh
wg;

Gh
1 :¼ ftAG : tjOi

¼ p̂1 3F
�1
i ; 8OiAT hg;

p̂1ðx;ZÞ ¼
1 x Z 0 0 0

0 0 0 1 x Z

" #
XðtÞ ¼: S1XðtÞ; XðtÞAR6; ð4:3Þ

Obviously, Gh
0 is a constant shear resultant field and Gh

0�1, as a

constrained subspace of Gh
1, satisfies complete energy compat-

ibility condition (see [15]):

bðt; vIÞ ¼

I
@Oi

t � n
!
� vI ds¼ 0; 8vI AUh

w; ð4:4Þ

where

vIðFiðx;ZÞÞ ¼ v̂Iðx;ZÞ ¼ ½1�x2 1�Z2�XðnÞI ; XðnÞI AR2

and

tðFiðx;ZÞÞ ¼ t̂ðx;ZÞ ¼
1 x Z 0 0 0

0 0 0 1 x Z

" #
XðtÞ; XðtÞAR6:

Therefore, according to bðt; vIÞ ¼
H
@Oi
t � n
!
� vI ds¼ ðdiv t; vIÞOi

þ

ðt;rvIÞOi
¼ 0, we can eliminate two parameters. Then the shear

stress tAGh
0�1 can be expressed alternatively in the matrix form

generated by four independent parameters, as follows:
(1)
 if a1b3a0,

tjOi
¼ t̂3F�1

i ;t̂ðx;ZÞ ¼
1�

b2

b3
x Z a2

b3
x

a3

b3

b2

a1
Z b1

a1
Z 1�

a2

a1
Z x

2
6664

3
7775XðtÞ

¼: S0�1XðtÞ; XðtÞAR4; ð4:5Þ

2 3

(2)
 if a3b1a0, b2 a2 a1
tjOi
¼ t̂3F�1

i ;t̂ðx;ZÞ ¼
1�

b1
Z x

b1
Z

b1
Z

b2

a3
x

b3

a3
x 1�

a2

a3
x Z

6664
7775XðtÞ

¼: S0�1XðtÞ; XðtÞAR4; ð4:6Þ
where a1 ¼
1
4 ð�x1þx2þx3�x4Þ, a2 ¼

1
4 ðx1�x2þx3�x4Þ, a3 ¼

1
4 ð�x1�x2þx3þx4Þ; b1 ¼

1
4 ð�y1þy2þy3�y4Þ, b2 ¼

1
4 ðy1�y2þy3�

y4Þ, b3 ¼
1
4 ð�y1�y2þy3þy4Þ.

Remark 2. For a proper quadrilateral subdivision T h, cases (1)
and (2) do not occur at the same time, thus (4.6) is not necessarily
needed in coding (see [16]).
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4.3. Assumed moment modes

We will assume moment modes to be constant, that is, Zh is
supposed to be

Zh
0 :¼ fmAZ : mjOi

¼ constant; 8OiAT hg; i:e:

mjOi
¼

1 0 0

0 1 0

0 0 1

2
64

3
75XðmÞ ¼: E0XðmÞ; XðmÞAR3: ð4:7Þ

4.4. New elements

Utilizing discretized variational formulations (3.1) and (3.2),
we design two new quadrilateral elements as follows:

(I)
 CHRM(0,0) defined on

Gh
¼Gh

0; Zh ¼ Zh
0 ; Uh ¼Uh

w;

Hh ¼ fZAH;ZjOi
¼ ðQ1ðOiÞÞ

2; 8OiAT hg;

CHRM(0–1,0) defined on
(II)
Gh
¼Gh

0�1; Zh ¼ Zh
0 ; Uh ¼Uh

w;

Hh ¼ fZAH;ZjOi
¼ ðQ1ðOiÞÞ

2; 8OiAT hg;
where Hh is the bilinear quadrilateral element space, OiAT h is a
quadrilateral subdivision of O.

4.4.1. Error estimation of CHRM(0,0)

In order to estimate the error of the solution to the combined
hybrid element (I), we introduce a condition on the mesh
subdivision.

Condition (B) (see Shi [13]). The distance dOi
between the

midpoints of the diagonals of quadrilateral OiAT h is of order
Oðh2

i Þ uniformly for all elements as hi-0.

Theorem 4.1. Assume that oAH1
0ðOÞ \ H3ðOÞ, bAðH1

0ðOÞ
T

H2ðOÞÞ2, and Condition (B) is satisfied, then the unique solution

determined by CHRM(0,0) to the problems (3.1) and (3.2),
ðsh;Mh;bh;ohÞAGh

0 � Zh � Hh � Uh
w, satisfies

tJs�shJ0;OþJb�bhJ1;OþJM�MhJ0;Oþ
X

i

Jrðo�ohÞ�ðb�bhÞJ
2
0;Oi

 !1=2

rC
n

hJbJ2;Oþðh
2þh2=tÞðJoJ3;OþJbJ2;OÞþhð1þtÞJsJ1;O

þhJdivsJ0;OþhJMJ1;Oþðh
2=tÞJoJ2;O

o
: ð4:8Þ

Proof. Firstly, we suppose that ðP0b;P1o;P2s;P3MÞAHh �

Uh
w �Gh

� Zh is any interpolated approximation of ðb;o;s;MÞ.
Setting Z¼ dbh :¼ P0b�bh; v¼ doh :¼ P1o�oh; t¼ dsh :¼

P2s�sh; m¼ dMh :¼ P3M�Mh; subtracting Eqs. (3.1) and (3.2),

respectively, from (2.3) and (2.4); and noticing oIj@Oi
¼ 0, we have

S1 :¼ ð1�a2Þaðdbh; dbhÞþa1

X
i

JrðdohÞ�dbhJ
2
0;Oi

þð1�a1t2Þt2JdshJ
2
0;Oþa2dðdMh; dMhÞ

¼ I1þ I2þ I3þ I4þ I5;

where

I1 :¼ ð1�a2ÞaðP0b�b; dbhÞþa1

X
i

ðrðP1o�oÞ�ðP0b�bÞ;rðdohÞ

�dbhÞOi
þð1�a1t2Þt2ðP2s�s; dshÞþa2dðP3M�M; dMhÞ;

I2 :¼ ð1�a1t2Þ
X

i

ðP2s�s;rðdohÞ�dbhÞOi
þa2ðP3M�M; eðdbhÞÞ;
I3 :¼ �ð1�a1t2Þ
X

i

ðdsh;rðP1o�oÞ�ðP0b�bÞÞOi
�a2ðdMh; eðP0b�bÞÞ;

I4 :¼ b1ðdsh; ðP1oÞIÞ;
I5 :¼ �b1ðP2s�s; ðdohÞIÞ:

By using the Schwarz inequality, we have

I1rC JP0b�bJ1þ
X

i

JrðP1o�oÞ�ðP0b�bÞJ2
0;Oi

 !1=2
8<
:
þJP3M�MJ0;OþtJP2s�sJ0;O

)
� ðS1Þ

1=2;

I2rCðJP2s�sJ0;OþJP3M�MJ0;OÞ

� a1

X
i

JrðdohÞ�dbhJ
2
0;Oi
þð1�a2Þaðdbh; dbhÞ

 !1=2

;

I3rC � ð1=tÞ
X

i

JrðP1o�oÞ�ðP0b�bÞJ2
0;Oi

 !1=2

þJP0b�bJ1

0
@

1
A

�ðð1�at2Þt2JdshJ
2
0;Oþa2dðdMh; dMhÞÞ

1=2;

I4rC � ð1=tÞsup
dsh

ðb1ðdsh; ðP1oÞIÞ=JdshJGÞ � ðS1Þ
1=2;

I5rCJP2s�sJG � ðS1Þ
1=2:

Then it is easy to check

ðS1Þ
1=2rC JP0b�bJ1þð1þ1=tÞ

X
i

JrðP1o�oÞ�ðP0b�bÞJ2
0;Oi

 !1=2
8<
:
þð1þtÞJP2s�sJ0;OþJP2s�sJGþJP3M�MJ0;O

þð1=tÞsup
dsh

ðb1ðdsh; ðP1oÞIÞ=JdshJGÞ

)
:

By the triangle inequality, we get

Jb�bhJ1;Oþ
X

i

Jrðo�ohÞ�ðb�bhÞJ
2
0;Oi

 !1=2

þtJs�shJ0;OþJM�MhJ0;O

rC JP0b�bJ1þð1þ1=tÞ
X

i

JrðP1o�oÞ�ðP0b�bÞJ2
0;Oi

 !1=2
8<
:
þJP3M�MJ0;Oþð1þtÞJP2s�sJ0;OþJP2s�sJG

þð1=tÞ sup
tAGh

ðb1ðt; ðP1oÞIÞ=JtJGÞ
)
:

Since condition (B) is satisfied on the mesh subdivision,

considering Propositions 3.1 and 4.1 in [15], we have

sup
tAGh

ðb1ðt; ðP1oÞIÞ=JtJGÞrCh2
JoJ2;O:

Using the interpolation estimate, we have

tJs�shJ0;OþJb�bhJ1;OþJM�MhJ0;Oþ
X

i

Jrðo�ohÞ�ðb�bhÞJ
2
0;Oi

 !1=2

rC
n

hJbJ2;Oþðh
2þh2=tÞðJoJ3;OþJbJ2;OÞþhð1þtÞJsJ1;O

þhJdivsJ0;OþhJMJ1;Oþðh
2=tÞJoJ2;O

o
: &

4.4.2. Error estimation of CHRM(0–1,0)

Lemma 4.1. It is obvious that

b1ðt; vIÞ ¼ 0; 8tAGh
0�1; vAUh

w:

As for the combined hybrid element (II), we have the following
error estimate:
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Theorem 4.2. If oAH1
0ðOÞ \ H3ðOÞ and bA ðH1

0ðOÞ
T

H2ðOÞÞ2, the

unique solution determined by CHRM(0–1,0) to the problems (3.1)

and (3.2), ðsh;Mh;bh;ohÞAGh
0 � Zh � Hh � Uh

w, satisfies

tJs�shJ0;OþJb�bhJ1;OþJM�MhJ0;Oþ
X

i

Jrðo�ohÞ�ðb�bhÞJ
2
0;Oi

 !1=2

rC
n

hJbJ2;Oþðh
2þh2=tÞðJoJ3;OþJbJ2;OÞþhð1þtÞJsJ1;O

þhJdivsJ0;OþhJMJ1;O

o
: ð4:9Þ

Proof. From Lemma 4.1, the I4 term in the proof of Theorem 4.1
equals zero. Then the error estimate is easy to obtain. &
5. Optimal combined parameters

It is known that combined hybrid finite elements can achieve
highly accurate estimates of energy on coarse meshes by
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almost the same combined hybrid energy and central displacement results are obtain

approaches the exact solution as a2 increases, while the combined hybrid energy incre
adjusting the parameters [15–17], which makes combined hybrid
elements competitive comparing with other well-established
elements. In this section, we will discuss how to choose the
optimal values of these parameters, a�1 and a�2.

Assume that ðsH ;MH;bH;oHÞ is the solution to (2.3), (2.4) on
the coarse mesh with mesh size H. First consider (2.2),

Yða1 ;a2Þ

CH
ðsH;MH;bH;oHÞ ¼ inf

Z;v
sup
t;m

Yða1 ;a2Þ

CH
ðt;m;Z; vÞ;

¼ inf
Z;v

Y
P
ðZ; vÞ�b1ðt; vIÞ

n
�inf

t

ð1�a1t2Þt2

2l
ðt�lt�2ðrv�ZÞ; t�lt�2ðrv�ZÞÞ

�inf
m

a2

2
dðm�DeðZÞ;m�DeðZÞÞ

o
;

where
Q

PðZ; vÞ ¼
P

Oi

R
Oi

1
2 ½aðZ;ZÞþlt�2ðrv�Z;rv�ZÞ�ðg; vÞ�dOi.

Obviously, different choices of parameters lead to different values
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of the combined hybrid energy. As b1ðt; vIÞ ¼ 0, if both 1�a1t2 and
a2 are close to 0, the combined hybrid energy,

Qða1 ;a2Þ

CH ðsH;MH;

bH;oHÞ is always smaller than the exact energy value
Q

exact;
while if 1�a1t2 and a2 are close to 1, the combined hybrid
energy will always be much greater than the exact energy value
since the finite element solution diverges as they approach one.
Due to the continuity of parameters in the energy functional, we
have:

Proposition 1. There exist a�1Að0; t�2Þ and a�2Að0;1Þ such that

Yða�
1
;a�

2
Þ

CH
ðsH;MH ;bH ;oHÞ ¼

Y
exact

: ð5:1Þ

This shows that the combined hybrid scheme can achieve the
exact energy on a coarse mesh by adjusting parameters. We
believe that the optimal parameters, a�1;a�2 can be determined
through deeper theoretical analysis, which will be our future
work. Here, we present a way to approximate them in the
application by implementing the interval-contracting algorithm
(Algorithm 1).

To illustrate the idea, we take the square plate, whose
thickness is 1, with uniform load and clamped boundary for
example. We apply the element CHRM(0, 0). First set a2 ¼ 0:5,
and then solve (2.3)–(2.4) on different meshes, respectively,
with a1 varying from 0.01 to 0.99 by adding a constant step
0.049.

Fig. 2 shows the combined hybrid energy (left) and the
displacement at the center of the plate (right) at different values
of a1 on different meshes. As 32� 32 mesh is utilized, the
combined hybrid energy values at different a1 are all close to the
exact energy, which, on the one hand, shows the combined hybrid
method is stable for a large range of parameters; on the other
hand, this shows that the combined hybrid energy on the 32� 32
mesh at any parameter can be regard as a criterion (the combined
hybrid energy converges to the almost exact energy). The optimal
parameter can be found by comparing the combined hybrid
energy on the 2� 2 mesh with the criterion. When a 2� 2 mesh is
used, the optimal value of a1 is located at ½0:3;0:4� (close to the
intersection of the blue curve and the black one). By
implementing Algorithm 1, we get a good estimate of
a�1 ¼ 0:32148. Using a�1 and keeping a2 ¼ 0:5 causes a loss of
accuracy in the central displacement. We will improve it by
adjusting the value of a2 in the next step.

Secondly, we fix a1 ¼ a�1 and solve (2.3)–(2.4) on different
meshes with a2 varying from 0.01 to 0.99, respectively, by adding
the constant step 0.049. Fig. 3 shows the combined hybrid energy
(left) and the displacement at the center of the plate (right) at
different values of a2 on different meshes. Notice almost same
combined hybrid energy and central displacement results are
obtained on the 32� 32 mesh. On the coarse 2� 2 mesh, the
central transverse displacement approaches the exact solution as
a2 increases, while the combined hybrid energy increases slowly
at the same time. We can use this property to balance the
accuracy of the energy and the central displacement on the coarse
mesh. For instance, we adjust a2 to achieve higher accuracy for
the central displacement and retain

Qða�
1
;a�

2
Þ

CH ðsH ;MH;bH;oHÞQða�
1
;0:5Þ

CH ðsH;MH;bH;oHÞ
A ½0:99;1:01�:

By implementing Algorithm 1, we find a�2 ¼ 0:75308.
In the following, we describe the interval-contracting algo-

rithm.
Algorithm 1. Interval-contracting algorithm.

Input: ac
1 ¼ 0:5t2, ac

2 ¼ 0:5

Output: a�1, a�2
Set a0

1 ¼ ac
1, T ¼ t�2, compute Eða

0
1
Þ

e ¼ Eða
0
1
;ac

2
;ac

1
;ac

2
Þ

e , and compute

DaðEða
0
1
Þ

e Þ ¼DaðEða
0
1
;ac

2
;ac

1
;ac

2
Þ

e ; TÞ ;

while jEða
0
1
Þ

e j410�3 & jDaðEða
0
1
Þ

e Þj410�4 do

a1
1 ¼ a0

1þDaðE
ða0

1
Þ

e Þ;

if signðEða
1
1
Þ

e Þ ¼ �signðE
ða0

1
Þ

e Þ then

reset DaðEða

1
1
Þ

e Þ ¼
ja1

1�a0
1j

2
� signðEða

1
1
Þ

e Þ;

a0
1 ¼ a1

1;

666666666664
a�1 ¼ a0

1;

Set a0
2 ¼ ac

2, T ¼ 1, compute Eða
0
2
Þ

o ¼ Eða
�
1
;a0

2
;ac

1
;ac

2
Þ

o , and compute

DaðEða
0
2
Þ

o Þ ¼DaðEða
�

1
;a0

2
;ac

1
;ac

2
Þ

o ; TÞ;

while jEða
0
2
Þ

o j410�3 & jDaðEða
0
2
Þ

o Þj410�4 &

j1�
Qða�

1
;a0

2
Þ

CH =
Qða�

1
;ac

2
Þ

CH jr0:01 do

a1
2 ¼ a0

2þDaðE
ða0

2
Þ

o Þ;

if signðEða
1
2
Þ

o Þ ¼ �signðE
ða0

2
Þ

o Þ then

reset DaðEða

1
2
Þ

o Þ ¼
ja1

2�a0
2j

2
� signðEða

1
2
Þ

o Þ;

a0
2 ¼ a1

2;

666666666664
a�2 ¼ a0

2

Let
Qð ~a1 ; ~a2Þ

CH ðsH;MH;bH ;oHÞ and oð ~a1 ; ~a2Þ

H be the energy and the
central displacement on the coarse mesh (2� 2);Qða1 ;a2Þ

CH ðsh;Mh;bh;ohÞ and oða1 ;a2Þ

h be the energy and the central
displacement on the fine mesh (32� 32). Let

Eð ~a1 ; ~a2 ;a1 ;a2Þ
e

¼

Qð ~a1 ; ~a2Þ

CH ðsH ;MH;bH;oHÞ�
Qða1 ;a2Þ

CH ðsh;Mh;bh;ohÞ

j
Qð ~a1 ; ~a2Þ

CH ðsH ;MH;bH;oHÞþ
Qða1 ;a2Þ

CH ðsh;Mh;bh;ohÞj=2;

Eð ~a1 ; ~a2 ;a1 ;a2Þ
o ¼

oð ~a1 ; ~a2Þ

H �oða1 ;a2Þ

h

joð ~a1 ; ~a2Þ

H þoða1 ;a2Þ

h j=2;

DaðE; TÞ ¼
signðEÞ � 0:05T jsignðEÞjo0:03;

signðEÞ � 0:10T 0:03r jsignðEÞjr0:06;

signðEÞ � 0:15T jsignðEÞj40:06:

8><
>:

6. Numerical experiments

In this section, several standard test problems [19,23] are used
to examine the new elements, CHRM(0,0) and CHRM(0–1,0).
Results are compared with CHWu [18], and two other kinds of
well-established element: Q4-LIM ([3]) and MITC4 ([10]) for two
main purposes. One is to measure the quality of the new elements
on the coarse mesh to verify that the combined hybrid method
can achieve high accuracy on the coarse mesh. The other is to test
the overall behavior of new elements to tell whether the Wilson
displacement mode is a generally good choice or not.

For convergence criteria, the energy norm is the natural
convergence test for the finite element method [19]. But it is
common in the literature to examine convergence by analyzing
the displacement at characteristic points such as the center of a
plate. Thus, in this paper, not only the energy norm but also the
transverse displacement and moment at the center of the plate
are considered in the convergence test.
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Table 1
Notations.

t Thickness of plates

L Length of a side of square plates

R Radius of circular plates

oc Transverse displacement at the center of plates

Mc Moment at the center of plates

Energy Twice the internal strain energy

  x

y

Fig. 4. 1
4 square plate (16 elements).

Table 2
Material properties.

Thin plate Thick plate

E 10.92e+6 10.92

n 0.3 0.3

t 0.01 1

L 10.0 10.0

Table 3
Square plates: (a�1;a�2).

Boundary Element t¼ 0:01 t¼ 1

Clamped CHRM(0,0) (0.34857, 0.68091) (0.32148, 0.75308)

CHRM(0–1,0) (0.34857, 0.68091) (0.30508, 0.74985)

SS1 CHRM(0,0) (2.2302, 0.50000) (0.99906, 0.29360)

CHRM(0–1,0) (1.9364, 0.50000) (0.99906, 0.29067)
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Test problems contain both square plates and circular plates.
Only the case of uniform loading is examined. Notations are listed
in Table 1, where oc;Mc and Energy are functions of the number
of mesh elements.

6.1. Square plates

A square plate is modeled using uniform square elements. Due
to symmetry, only one quarter of the plate is discretized, and the
4� 4 mesh is shown in Fig. 4. The material properties used are
shown in Table 2. Optimal combined parameters used in tests are
listed in Table 3.

6.1.1. Clamped boundary

Numerical results for both thin and thick plates with clamped
boundary are summarized in Table 4. The exact solutions of the
thin plate are oc ¼ 12:653, Mc ¼�2:2905 [3]. Exact solutions of
the thick plate are oc ¼ 14:99, Mc ¼�2:31 [3].

For oc , when a 2� 2 mesh is considered, CHWu gets the best
result among three combined hybrid elements, which yields
99.50% of the exact solution for the thin plate and 100.36% of the
exact value for the thick plate. Meanwhile, both CHRM(0,0) and
CHRM(0–1,0) result in good performances on finer meshes. In the
case of 4� 4 mesh, in the thin plate, CHRM(0,0) yields 99.78% of
the exact solution and CHRM(0–1,0) obtains 99.58% of it; and in
the thick plate, CHRM(0,0) yields 100.38% of the exact value and
CHRM(0–1,0) obtains 100.10% of that.

For Mc , both CHRM(0,0) and CHRM(0–1,0) provide a little bit
more accurate results than CHWu. CHRM(0–1,0) reaches about
111.63% of exact solution of the thin plate at 2� 2 mesh. And
using the same mesh, both elements get about 104.97% of the
exact solution on the thick plate.

Three combined hybrid finite elements all lead to excellent
performance on the energy norm, which can be easily found from
the tables.

In this test, on the 16� 16 mesh, both new elements perform
better than Q4-LIM and MITC4.

6.1.2. Simply supported boundary

Table 5 gives the numerical results for a square plate with
simply supported boundary conditions (SS1, see [19]) for both
thin and thick plates. The exact values for the thin plate are
Energy¼ 425:62, oc ¼ 40:6237, Mc ¼�4:78863 [14].

CHRM(0–1,0) provides the best results in both cases at the
2� 2 mesh, which yields 100.00% of the exact energy, 100.01% of
the exact oc and 99.74% of the exact Mc for the thin plate problem.
It also yields 99.49% of the energy, 100.04% of oc , 102.08% of Mc

obtained on 1024 mesh elements for the thick plate.
On the 32� 32 mesh, both new elements get the same good

results as Q4-LIM and are better than MITC4.

6.2. Circular plates

Due to symmetry, only one quadrant of a circular plate is
discretized, and a typical mesh is shown in Fig. 5. The material
properties used are listed in Table 6. Optimal combined
parameters used in experiments are listed in Table 7.

6.2.1. Clamped boundary

Table 8 lists numerical results for thin and thick circular plates
with clamped boundary conditions. The exact solutions of the thin
plate are Energy¼ 64:09118, oc ¼ 9:78348 [19], Mc ¼�2:0313þ

[23]. Exact solutions of the thick plate are Energy¼ 81:4471 and
oc ¼ 11:5513 [19].

CHRM(0–1,0) provides the best results for both kinds of plates.
For the thin plate, it gets 100.69% of the exact energy and 97.61%
of the exact oc , and it also provides 103.63% of the exact Mc

solution when the mesh element number is 12. In the case of the
thick plate, CHRM(0–1,0) yields 100.49% of the accurate energy
solution, 98.54% of the exact oc and 100.36% of the Mc using 768
mesh elements.

When 768 mesh elements are used, both new elements
perform better than MITC4.

6.2.2. Simply supported boundary

Table 9 gives numerical results for thin and thick circular
plates with simply supported (SS1) boundary conditions,
respectively. The exact solutions of the thin plate are
Energy¼ 359:08748, oc ¼ 39:83156 [19], Mc ¼�5:1563 [23].
Exact solutions of the thick plate are Energy¼ 376:4434,
oc ¼ 41:599 [19], Mc ¼�5:1563 [3].

As for the thin plate, CHRM(0–1,0) provides the best results
among the combined hybrid elements, which obtains 100.13% of the
exact energy, 100.16% of exact Mc , and also provides 98.33% of
the exact oc when the mesh element number is 12. In the case of
the thick plate, CHRM(0–1,0) also gives the best results. On 12 mesh



ARTICLE IN PRESS

Table 4
Clamped square plate: displacement and moments at the center.

Element Mesh L=t¼ 1000ðt ¼ 0:01Þ L=t¼ 10ðt¼ 1Þ

oc
qL4

100

 !,
Mc

qL2

100

 !,
Energy

oc
qL4

100

 !,
Mc

qL2

100

 !,
Energy

CHRM(0, 0) 2� 2 0.12293 2.5568 98.1782 0.14718 2.3638 126.3658

4� 4 0.12625 2.3511 97.8587 0.15047 2.3647 125.7196

8� 8 0.12650 2.3066 97.4521 0.15050 2.3326 125.2829

16� 16 0.12653 2.2945 97.3269 0.15047 2.3232 125.1549

32� 32 0.12653 2.2915 97.2940 0.15047 2.3208 125.1218

CHRM(0–1, 0) 2� 2 0.12293 2.5569 98.1778 0.14583 2.4247 126.3396

4� 4 0.12625 2.3511 97.8586 0.15005 2.3661 125.6429

8� 8 0.12650 2.3066 97.4520 0.15038 2.3319 125.2485

16� 16 0.12653 2.2945 97.3268 0.15044 2.3230 125.1448

32� 32 0.12653 2.2915 97.2940 0.15046 2.3207 125.1191

CHWu 2� 2 0.12590 2.6187 98.2200 0.15044 2.3799 126.3019

32� 32 0.12653 2.2915 97.2868 0.15047 2.3208 125.1154

Q4-LIM 32� 32 0.12649 2.2886 - 0.15043 2.3180 –

MITC4 33� 33 0.126452 – – 0.150366 – –

Exact 0.12653 2.2905 – 0.1499 2.31 –

Table 5
Simply supported square plate: displacement and moments at the center.

Element Mesh L=t¼ 1000 ðt¼ 0:01Þ L=t¼ 10 ðt ¼ 1Þ

oc
qL4

100

 !,
Mc

qL2

100

 !,
Energy

oc
qL4

100

 !,
Mc

qL2

100

 !,
Energy

CHRM(0, 0) 2� 2 0.40633 4.8625 425.6503 0.46168 5.2004 488.3555

4� 4 0.41539 4.9519 435.4038 0.45772 5.0819 485.2306

8� 8 0.40969 4.8594 429.3920 0.45905 5.0778 487.6600

16� 16 0.40734 4.8116 426.8477 0.46081 5.0893 489.9789

32� 32 0.40673 4.7947 426.1871 0.46145 5.0939 490.8028

CHRM(0–1, 0) 2� 2 0.40626 4.7763 425.6244 0.46163 5.1997 488.3024

4� 4 0.41335 4.8710 433.0510 0.45770 5.0817 485.2119

8� 8 0.40843 4.8137 427.9318 0.45905 5.0778 487.6526

16� 16 0.40682 4.7953 426.2447 0.46081 5.0893 489.9766

32� 32 0.40641 4.7905 425.8106 0.46145 5.0939 490.8022

CHWu 2� 2 0.40736 5.7038 421.3396 0.45211 6.0399 495.7852

32� 32 0.40649 4.7927 425.8887 0.46164 5.0955 491.0683

Q4-LIM 32� 32 – – - 0.46144 5.0922 –

MITC4 33� 33 0.405284 – – 0.459240 – –

Exact 0.40623 4.78863 425.6276

Fig. 5. 1
4 circular plate (12 elements).

Table 6
Material properties.

Thin plate Thick plate

E 10.92e+3 10.92

n 0.3 0.3

t 0.1 1

R 5.0 5.0

Table 7
Circular plates: (a�1 ;a�2).

Boundary Element t¼ 0:1 t¼ 1

Clamped CHRM(0,0) (0.14727, 0.99991) (0.16571, 0.99910)

CHRM(0–1,0) (0.21969, 0.99985) (0.12299, 0.99995)

SS1 CHRM(0,0) (0.078437, 0.99995) (0.083313, 0.99995)

CHRM(0–1,0) (0.092187, 0.99995) (0.050964, 0.99985)
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elements, CHRM(0–1,0) yields 100.10% of the analytical energy
solution, 100.57% of the exact Mc and 98.82% of the exact oc .

New elements achieve almost the same results as Q4-LIM and
perform better than MITC4.



ARTICLE IN PRESS

Table 9
Simply supported circular plate: displacement and moments at the center.

Element Mesh R=t¼ 50 ðt¼ 0:1Þ R=t¼ 5 ðt¼ 1Þ

W
qð2RÞ4

100

 !,
M

qð2RÞ2

100

 !,
Energy

W
qð2RÞ4

100

 !,
M

qð2RÞ2

100

 !,
Energy

CHRM(0, 0) 12 0.38522 5.1625 359.4563 0.40338 5.1185 376.8089

48 0.39526 5.1996 359.6051 0.41296 5.1445 376.9721

192 0.39757 5.1574 359.2481 0.41524 5.1534 376.6046

768 0.39813 5.1556 359.1298 0.41581 5.1556 376.4434

CHRM(0–1, 0) 12 0.39165 5.1645 395.5451 0.41107 5.1856 376.8030

48 0.39701 5.1751 360.2409 0.41480 5.1632 376.8243

192 0.39800 5.1618 359.4383 0.41570 5.1581 376.5584

768 0.39824 5.1602 359.1791 0.41592 5.1567 376.4735

CHWu 12 0.36500 4.8963 357.4737 0.38215 4.8573 375.4244

768 0.39779 5.1517 359.0667 0.41547 5.1517 376.4335

Q4- LIM 768 0.39835 5.1548 - 0.41602 5.1548 –

MITC4 768 0.399063 – – 0.41723 – –

Exact 0.398316 5.1563 359.0875 0.41599 5.1563 376.4434

Table 8
Clamped circular plate: displacement and moments at the center.

Element Mesh R=t¼ 50 ðt¼ 0:1Þ R=t¼ 5 ðt¼ 1Þ

W
qð2RÞ4

100

 !,
M

qð2RÞ2

100

 !,
Energy

W
qð2RÞ4

100

 !,
M

qð2RÞ2

100

 !,
Energy

CHRM(0, 0) 12 0.090426 2.0178 64.4321 0.10847 1.9749 81.7877

48 0.095997 2.0427 64.2253 0.11368 2.0191 81.5932

192 0.097378 2.0286 64.1309 0.11505 2.0285 81.4877

768 0.097721 2.0306 64.1015 0.11540 2.0306 81.4575

CHRM(0–1, 0) 12 0.095498 2.1050 64.5364 0.11383 2.0398 81.8483

48 0.097317 2.0460 64.5102 0.11507 2.0345 81.5830

192 0.097705 2.0360 64.2117 0.11540 2.0323 81.4834

768 0.097802 2.0332 64.1224 0.11548 2.0325 81.4563

CHWu 12 0.090879 1.9677 64.3706 0.10825 1.9320 81.8580

768 0.097735 2.0304 64.1015 0.11541 2.0304 81.4606

Q4- LIM 768 – – – – – –

MITC4 768 0.098158 – – 0.116015 – –

Exact 0.097835 2.0313+ 64.09118 0.115513 – 81.4471
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7. Conclusion

This paper presents two kinds of new elements, CHRM(0,0)
and CHRM(0–1,0), for solving the Reissner–Mindlin plate model.
Both elements are based on the combined hybrid variational
formulation, assumed shear resultant field, assumed moment
modes and Wilson’s quadrilateral element space. The difference is
that CHRM(0,0) uses assumed constant shear stress while
CHRM(0–1) uses the constrained assumed shear stress to satisfy
the complete energy compatibility condition.

Numerical results of a series of standard test problems show
that both CHRM(0,0) and CHRM(0–1,0) are free of locking and
yield almost the same good results as Q4-LIM on the fine mesh
(and better than MITC4); but combined hybrid elements achieve
higher accuracy on the coarse mesh. In particular, CHRM(0–1,0)
obtains the best overall performance among the three combined
hybrid elements in numerical experiments. The main reasons are:
(1)
 The complete energy compatibility condition [15] is fulfilled
in constructing the elements, which is a guide to construct
‘good’ combined hybrid elements.
(2)
 The utilization of the Wilson incompatible displacement mode.
We present the interval-contracting algorithm to approximate
optimal parameters in this paper. An analytic expression for these
quantities will be studied in future work.
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