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HIGH ORDER EXPLICIT LOCAL TIME-STEPPING METHODS
FOR HYPERBOLIC CONSERVATION LAWS

THI-THAO-PHUONG HOANG, LILI JU, WEI LENG, AND ZHU WANG

Abstract. In this paper we present and analyze a general framework for con-
structing high order explicit local time stepping (LTS) methods for hyperbolic
conservation laws. In particular, we consider the model problem discretized
by Runge-Kutta discontinuous Galerkin (RK-DG) methods and design LTS
algorithms based on the strong stability preserving Runge-Kutta (SSP-RK)
schemes, that allow spatially variable time step sizes to be used for time in-
tegration in different regions of the computational domain. The proposed
algorithms are of predictor-corrector type, in which the interface information
along the time direction is first predicted based on the SSP-RK approximations
and Taylor expansions, and then the fluxes over the region of the interface are
corrected to conserve mass exactly at each time step. Following the proposed
framework, we detail the corresponding LTS schemes with accuracy up to the
fourth order, and prove their conservation property and nonlinear stability
for the scalar conservation laws. Numerical experiments are also presented to
demonstrate excellent performance of the proposed LTS algorithms.

1. Introduction

Numerical methods for hyperbolic conservation laws are a subject of great inter-
est and importance as these laws are extensively used for modeling a wide range
of physical phenomena such as gas dynamics, shallow water flows, advection of
contaminants, traffic flows, etc. It is well known that these problems are often
highly nonlinear and may develop discontinuous solutions with sharp and moving
fronts/shocks. To obtain accurate and stable numerical solutions to hyperbolic con-
servation laws, it is popular to use conservative high resolution methods in space
together with explicit time stepping. Examples of such spatial discretization in-
clude the MUSCL (monotonic upwind scheme for conservation laws) [56], the ENO
(essentially nonoscillatory) and WENO (weighted ENO) schemes [25, 26, 34, 29],
and the RK-DG (Runge-Kutta discontinuous Galerkin) methods [6, 7, 8, 9]. Note
that to guarantee numerical stability, the time step size needs to satisfy the CFL
condition, which is determined by the spatial mesh size and wave speed. The use of
local spatial refinements is efficient in resolving the sharp, moving fronts. However,
as the CFL condition needs to hold everywhere, the step size for time integration
would be controlled by the smallest cell size, or by the highest wave speed, which
certainly increases the computational cost as a small time step size has to be used
globally. Thus, to improve computational efficiency, the global CFL condition could
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be replaced by local ones so that different time step sizes can be used in different
regions: smaller time step sizes where the mesh is fine or the wave speed is high,
and larger time step sizes where the mesh is coarse or the wave speed is low.

Explicit local time-stepping (LTS) algorithms have a long tradition. To the best
of our knowledge, the first LTS algorithm for hyperbolic conservation laws was
introduced in [39] for the one-dimensional scalar case based on the forward Euler
method in time. It is of predictor-corrector type and is first order accurate in both
space and time. Extension to high resolution schemes with slope limiters for ad-
vection equations was presented in [12], and to second order in time for hyperbolic
conservation laws in [13]. The numerical results on two-dimensional test problems
confirm that these LTS schemes are very competitive to the global time-stepping
methods with respect to the accuracy in time. The application of LTS schemes
to the shallow water equations was investigated in [43] with a Godunov-type finite
volume discretization in space and later in [55] using the RK-DG finite element
methods. Note that the LTS scheme in [43] is only first order accurate in time,
while the one in [55] is second order accurate in time on regions away from the LTS
interface but its accuracy degrades to first order at the interface. The LTS scheme
in [55] is based on the second-order strong stability preserving Runge-Kutta (SSP-
RK) method, which is also known as a total variation diminishing (TVD) method
introduced in [45, 49]. Higher order RK-based explicit LTS methods were intro-
duced for conservation laws in [31, 1] and for wave propagation in [21]. In [14],
a space-time fully adaptive multi-resolution method based on natural continuous
extensions for RK methods was proposed, whose accuracy is of second order in
both space and time. Local space-time refinement based on the discontinuous
Galerkin (DG) approach was also extensively investigated in [35, 15, 52]. In par-
ticular, high-order one-step DG schemes based on ADER (arbitrary order using
derivatives) [54] with local spatial and temporal refinement were studied for one-
dimensional conservation laws in [35], for elastic waves with p-adaptivity in [15]
and for Maxwell equations in [52] on unstructured tetrahedral meshes. In [16] a
high order Lagrangian finite volume scheme on non-conforming space-time meshes
for hyperbolic conservation laws was presented in which LTS was constructed based
on high order accurate one-step ADER time discretization. Other works related
to LTS include the adaptive mesh refinement (AMR) method [2, 18, 3], the mul-
tirate time-stepping method [11, 44] and the Implicit-Explicit (IMEX) based LTS
methods [42, 22]. Among them, the AMR method involves the refinement in both
space and time, i.e., small time step sizes are taken on the refined mesh and large
time step sizes on the coarse mesh. It is different from our approach in the way
that refined grids are placed over regions of the coarse grid and information is ex-
changed between the grids by means of injection and interpolation. The multirate
time-stepping method allows different time step sizes in different regions but it re-
quires buffer regions to accommodate the time scale transition between regions. An
overview of LTS techniques over the last two decades can be found in [19].

In [27], inspired by the first order predictor-corrector scheme in [39], we have
designed conservative second and third order explicit LTS algorithms, incorporat-
ing with SSP-RK, for the rotating shallow water equations. The model is dis-
cretized in space by a C-grid staggering finite volume method, namely the TRiSK
scheme [53, 41], on orthogonal primal and dual meshes. Numerical results with
parallel implementation demonstrate excellent performance of the LTS algorithms
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in terms of stability, accuracy, efficiency and scalability. In this work, we extend
the approach to construct, in a systematic way, a framework of high order LTS
algorithms for hyperbolic conservative laws. In order to derive high order LTS
algorithms, the key idea is to find high order approximations on the interface at
intermediate time levels to handle the coupling between coarse and fine time step-
pings. Our proposed schemes are also of predictor-corrector type: we derive the
predictors based on Taylor series expansions of the solution at the current time
level and the SSP-RK stepping algorithms at each intermediate time level. Our
approach thus is different from the one proposed in [31, 1] where the predictors are
based on RK time-stepping and interpolating polynomials. We present up to fourth
order predictors within this framework, and show that the proposed LTS schemes
preserve the accuracy in time over the entire domain. Concerning the corrector, it
is designed to balance the fluxes from the regions with small time step sizes to the
ones with large time step sizes. As high order SSP-RK methods consist of multiple
stages, the fluxes at the same stage are accumulated over all the intermediate time
levels to update the interface solution associated with that stage. As a consequence,
the total mass is well conserved, though the corrector is no longer convex combi-
nations of forward Euler steps as in the global SSP-RK methods. Nevertheless, we
rigorously prove that the proposed LTS schemes for scalar conservation laws are
total variation bounded (TVB). Such nonlinear stability is a crucial feature of any
effective numerical methods for hyperbolic conservation laws because it guarantees
that the schemes can capture moving shocks without introducing nonphysical os-
cillations. Various numerical experiments are carried out to validate the accuracy,
conservation and stability of our LTS schemes. Since time advancement of the sim-
ulations in the fine regions and in the coarse ones can be implemented in parallel
(this will be discussed further in Section 3), the proposed LTS schemes preserve the
natural parallelism of explicit time-stepping schemes.

Consider the initial value problem for hyperbolic conservation laws:

(1.1)
∂uuu

∂t
+

d∑
i=1

∂fff i
∂xi

(uuu) = 000, in Rd × (0, T ),

uuu(xxx, 0) = uuu0(xxx), in Rd,
where uuu(xxx) := (u1(xxx), . . . , um(xxx)) is an m−dimensional vector of unknowns and
each flux function fff i : Rm −→ Rm defined by

uuu 7→ fff i(uuu) := (fi1(uuu), . . . , fim(uuu)) ,

is vector-valued and is of m components. Since we focus on the time discretization
techniques in this paper, we shall only consider the one-dimensional case, d = 1. In
particular, our model problem is the following scalar hyperbolic conservation law,
resulting from the system (1.1) with d = m = 1:

(1.2)
∂u

∂t
+

∂

∂x
f(u) = 0, in R× (0, T ),

u(x, 0) = u0, in R.

We shall construct and analyze high order Runge-Kutta discontinuous Galerkin
algorithms with local time-stepping for (1.2). The proposed LTS algorithms can be
straightforwardly extended to the case of one-dimensional systems of conservation
laws (m > 1), which will be presented in the numerical results, as well as to the
higher dimensional problems (d > 1).
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The rest of this paper is structured as follows. In Section 2 we briefly introduce
the RK-DG methods for scalar conservation laws (1.2). High order LTS algorithms
are carefully derived in Section 3, and their conservation and stability properties
are then proved in Section 4. Numerical results for various test cases are given in
Section 5 to demonstrate the performance of the proposed LTS schemes. Addition-
ally, coefficients of the SSP-RK methods used in the paper are given in Appendix A,
and detailed derivation of the predictors for the proposed LTS schemes is presented
in Appendix B.

2. Runge-Kutta discontinuous Galerkin methods

We first introduce the RK-DG methods and refer to [7] for a complete pre-
sentation of the methods. Within the framework of RK-DG, we first discretize
equation (1.2) in space by the discontinuous Galerkin method, then integrate it in
time by SSP-RK schemes, and finally apply a slope limiter to achieve stable and
high order accurate numerical solutions.

2.1. Spatial discretization by the discontinuous Galerkin. Assume a parti-
tion of the real line R to have the j-th intervals as Ij =

(
xj−1/2, xj+1/2

)
and define

∆j = xj+1/2 − xj−1/2 and h = max
j

∆j . Let Vh be the finite dimensional space

consisting of discontinuous, piecewise polynomial functions:

Vh = V kh =
{
v ∈ L1(R) : v |Ij∈ Pk(Ij), ∀ j

}
6⊂ H1(R),

where Pk(Ij) is the space of polynomials of degree at most k on Ij . Consider a
weak formulation of (1.2) obtained from testing it by any function vh ∈ Vh over Ij :

For a.e. t ∈ (0, T ), find uh(t) ∈ Vh such that: ∀ j and ∀ vh ∈ Vh

(2.1)

∫
Ij

∂tuh(x, t) vh(x) dx−
∫
Ij

f(uh(x, t)) ∂xvh(x) dx

+h(uh)j+1/2(t) vh(x−j+1/2)− h(uh)j−1/2(t) vh(x+
j−1/2) = 0,∫

Ij

uh(x, 0)vh(x) dx =

∫
Ij

u0(x)vh(x) dx.

Note that we have replaced the nonlinear flux f(u(xj+1/2, t)) in (2.1) by a Lipschitz,
consistent, monotone numerical flux h(u)j+1/2(t) that depends on the two values
of u at xj+1/2:

h(u)j+1/2(t) = h
(
u(x−j+1/2, t), u(x+

j+1/2, t)
)
.

The numerical flux h(·, ·) is required to satisfy the following properties: i) locally
Lipschitz continuous; ii) consistent with the flux f , that is, h(u, u) = f(u); and
iii) nondecreasing in the first argument and nonincreasing in the second argu-
ment. Examples of such a flux include the Godunov flux, Engquist-Osher flux,
Lax-Friedrichs flux and Roe flux.

A local orthogonal basis of Vh consists of functions ϕ(l)
j defined as, for any j,

ϕ
(l)
j := Pl

(
2(x− xj)

∆j

)
, for l = 0, 1, . . . , k,

in which Pl is the Legendre polynomial of degree l and xj is the middle point of Ij .
Consequently, the approximate solution uh is expressed uniquely as
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(2.2) uh(x, t) =

k∑
l=0

u
(l)
j (t)ϕ

(l)
j (x), for x ∈ Ij ,

where the degrees of freedom u
(l)
j (t) are determined by

u
(l)
j (t) :=

2l + 1

∆j

∫
Ij

u(x, t)ϕ
(l)
j (x) dx, for l = 0, 1, . . . , k.

Note that u(0)
j is the cell average of u in Ij . By taking vh = ϕ

(l)
j in (2.1), we obtain

the following ODE for u(l)
j for any j:

(2.3)

(
1

2l + 1

)
du

(l)
j (t)

dt
− 1

∆j

∫
Ij

f(uh(x, t)) ∂xϕ
(l)
j dx

+
1

∆j

[
h(uh)j+1/2(t)− (−1)lh(uh)j−1/2(t)

]
= 0, ∀ l = 0, 1, . . . , k,

with the initial condition

u
(l)
j (0) =

2l + 1

∆j

∫
Ij

u0(x)ϕ
(l)
j (x) dx.

Note that in (2.3) we have used the following properties of Legendre polynomials:

ϕ
(l)
j (x−j+1/2) = Pl(1) = 1, ϕ

(l)
j (x+

j−1/2) = Pl(−1) = (−1)l.

The numerical flux h is computed by h(uh)j+1/2(t) = h
(
u−j+1/2(t), u

+
j+1/2(t)

)
, where

u±j+1/2(t) = uh(x±j+1/2, t) are defined as

u−j+1/2(t) =

k∑
l=0

u
(l)
j , u+

j−1/2(t) =

k∑
l=0

(−1)lu
(l)
j .

Approximating the integral in (2.3) by Gauss-Lobatto quadrature rules that involve
the two endpoints of the interval yields (using the definition of uh in (2.2)):∫

Ij

f(uh) ∂xϕ
(l)
j dx =

∫
Ij

f
(
u+
j−1/2, (u

(l)
j )0≤l≤k, u

−
j+1/2

)
∂xϕ

(l)
j dx.

The system of ODEs (2.3) can be recast in an autonomous form as follows:

(2.4)
dUUUh
dt

= LLLh(UUUh), UUUh(0) = UUUh0,

where UUUh = (uuuj)∀ j with uuuj = (u
(l)
j )l=0,...,k, the right hand side

LLLh(UUUh) =
(
L

(l)
h,j(u

±
j−1/2,uuuj , u

±
j+1/2)

)
∀ j, l=0,1,...,k

,

with

(2.5)
L

(l)
h,j(u

±
j−1/2,uuuj , u

±
j+1/2) =

2l + 1

∆j

{∫
Ij

f
(
u+
j−1/2,uuuj , u

−
j+1/2

)
∂xϕ

(l)
j dx

−
[
h(u−j+1/2, u

+
j+1/2)− (−1)lh(u−j−1/2, u

+
j−1/2)

]}
,

and the initial data UUUh0 =
[

(2l + 1)/∆j

∫
Ij

u0(x)ϕ
(l)
j (x) dx

]
∀ j, l=0,1,...,k

. Next, we

solve (2.4) explicitly in time by the SSP-RK methods [48, 20].
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2.2. Strong stability preserving Runge-Kutta time discretization. The SSP-
RK methods have been proved to be effective for solving hyperbolic conservation
laws with discontinuous solutions. Given a uniform partition of (0, T ), 0 = t0 <
t1 < . . . < tN−1 < tN = T , with the time step size ∆t = T/N. The s-stage, rth-
order SSP-RK methods, referred to as SSP-RK(s, r), for solving the autonomous
system (2.4) read as follows: for n = 0, . . . , N − 1, compute

(2.6) UUU
n,(i)
h =

i−1∑
ν=0

αiνUUU
n,(ν)
h + βiν∆tLLLh(UUU

n,(ν)
h ), ∀ i = 1, . . . , s,

where UUUn,(0)
h = UUUnh and set UUUn+1

h = UUU
n,(s)
h . It is required that all the weights

αiν , βiν ≥ 0. To measure stability of RK-DG methods, we denote by uuu(l),n =

(u
(l),n
j )∀j and define the total variation of numerical solutions by

TV (uuu(l),n) =
∑
j

∣∣∣u(l),n
j+1 − u

(l),n
j

∣∣∣ , ∀ l = 0, . . . , k, and n = 0, . . . , N − 1.

A numerical method is total variation diminishing (TVD) if

TV (uuu(l),n+1) ≤ TV (uuu(l),n), ∀ l = 0, . . . , k and n = 0, . . . , N − 1,

and is total variation bounded (TVB) if

TV (uuu(l),n+1) ≤ TV (uuu(l),0) +BT, ∀ l = 0, . . . , k and n = 0, . . . , N − 1,

for some constant B independent of the time step size. The stability of the SSP-RK
schemes is given by the following lemma.

Lemma 2.1 ([20]). If the forward Euler method UUUn+1
h = UUUnh + ∆tLLLh(UUUnh) is TVD

under the CFL condition ∆t ≤ ∆tFE, then the SSP-RK(s, r) scheme (2.6) is TVD
under the modified CFL condition: ∆t ≤ C∆tFE , where C := min

i,ν

αiν
βiν

is the SSP

coefficient.

We present some commonly used SSP-RK schemes such as SSP-RK(2,2), SSP-
RK(3,3) and SSP-RK(5,4) in detail in Appendix A.

2.3. TVB corrected slope limiter. In order to handle moving shocks while pre-
serving high order accuracy in smooth regions, we follow [45] and define the TVB
corrected minmod function m̃:

m̃(a1, . . . , aν) =

{
a1, if |a1| ≤ CMh2,
m(a1, . . . , aν), otherwise.

where CM > 0 is a constant and m is the usual minmod function [23]:
(2.7)

m(a1, . . . , aν) = s min
1≤i≤ν

|ai|, with s =

{
sign(a1), if sign(a1) = . . . = sign(aν),
0, otherwise.

The corrected limiter leads to high order accuracy in any region where the solution
is smooth, even at local extrema. The resulting scheme is no longer TVD, instead
it is TVB. Next, we define the (k + 1)th-order limiter ΛΠk

h as in [5]. When k = 1,
we have

ΛΠ1
h(uh)|Ij = u

(0)
j + m̃(u

(1)
j , u

(0)
j+1 − u

(0)
j , u

(0)
j − u

(0)
j−1)ϕ

(1)
j (x).
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For k > 1, we first compute

u
−(mod)
j+1/2 = u

(0)
j + m̃(u−j+1/2 − u

(0)
j , u

(0)
j+1 − u

(0)
j , u

(0)
j − u

(0)
j−1),

u
+(mod)
j−1/2 = u

(0)
j − m̃(u

(0)
j − u

+
j−1/2, u

(0)
j+1 − u

(0)
j , u

(0)
j − u

(0)
j−1),

then define

ΛΠk
h(uh)|Ij =

 uh|Ij , if u−(mod)
j+1/2 = u−j+1/2 and u+(mod)

j−1/2 = u+
j−1/2,

ΛΠ1
h(uh)|Ij , otherwise.

We finally introduce the following notation

u
(mod)
h |Ij := ΛΠk

h(uh)|Ij =

k∑
l=0

u
(l)(mod)
j ϕ

(l)
j ,

and
ΛΠk

h(UUUh) := UUU
(mod)
h =

[
u

(l)(mod)
j

]
∀ j,∀ l=0,1,...,k

.

The complete RK-DG method with the TVB minmod limiter is given in Algo-
rithm 1, in which r = (k+1) to match the accuracy in space and in time, and s ≥ r
is the number of stages in SSP-RK.

Algorithm 1 Runge-Kutta local projection discontinuous Galerkin method

1: Compute UUU0(mod)
h = ΛΠk

h(UUUh0).
2: For each n = 0, 1, . . . , N − 1,

(1) Set UUUn,(0)(mod)
h = UUU

n(mod)
h .

(2) For i = 1, . . . , s, compute the solution at stage i:

UUU
n,(i)(mod)
h = ΛΠk

h

(
i−1∑
ν=0

αiνUUU
n,(ν)(mod)
h + βiν∆tLLLh

(
UUU
n,(ν)(mod)
h

))
.

(3) Set UUUn+1(mod)
h = UUU

n,(s)(mod)
h .

3. Local time-stepping algorithms

In this section, we present high order LTS algorithms incorporated with the
RK-DG methods for conservation laws. Given the solution UUUn(mod)

h at tn, possibly
with moving shocks, we approximate the solution at tn+1. To this end, we divide
the domain into coarse and fine regions, and assume shocks only appear in the
fine regions. This could be made possible by varying the LTS interfaces with time.
Consequently, we can use spatially variable time steps: large step sizes in the coarse
regions and small step sizes in the fine regions.

For simplicity of presentation, we decompose the domain into a coarse region Ωnc
and a fine region Ωnf . Extension to more complicated configurations with multiple
subdomains is straightforward. Denoted by xjn0 +1/2 the interface point at tn, Ωnc =
{Ij : j ≤ jn0 } the coarse region, and Ωnf = {Ij : j ≥ jn0 + 1} the fine region. As
depicted in Figure 1, we enforce a larger time step size ∆tcoarse = ∆t in Ωnc and
a smaller time step size ∆tfine = ∆t/M in Ωnf . We remark that the coarse time
increment must be a union of fine time increments:[

tn, tn+1
)

=

M−1⋃
p=0

[
tn,p, tn,p+1

)
.
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Figure 1. Partition in time with local time-stepping.

To proceed in time in the fine region, one needs to find (k + 1)-th order in
time approximation of the flux at the interface at intermediate time levels tn,p

for p = 1, . . . ,M − 1. This is obtained via a predictor based on kth-order Taylor
expansions and the (k+1)−th order SSP-RK algorithm, assuming that the solution
is smooth enough near the LTS interface. After advancing in the fine region to
tn+1, we will correct the flux at the interface in order to conserve mass exactly. The
derivation of the predictors up to fourth order accuracy is presented in Appendix B.
The proposed LTS algorithm of order (k + 1) consists of the following three steps:

Step 1: Predicting the interface values. We first compute the solution of
the first (s−1) stages of the SSP-RK(s, k+ 1) scheme on the interface cell Ijn0 with
the coarse time step size:

uuu
n,(i)
jn0

=
(
u

(l),n,(i)
jn0

)
∀ j, l=0,...,k

, ∀ i = 1, . . . , s− 1.

It is important to note that we compute uuun,(i)jn0
locally on Ij0 by enforcing un,(i),−jn0 −1/2 =

u
n,(i),+
jn0 −1/2 and un,(i),+jn0 +1/2 = u

n,(i),−
jn0 +1/2 in (2.5). This is obtained under the assumption that

the solution near the LTS interface is continuous (for k ≤ 1) or sufficiently smooth
(for k > 1). Thus, applying the limiter is not necessary in this case and we have
uuu
n,(i)(mod)
jn0

= uuu
n,(i)
jn0

.We then use these values to predict the solution on the interface
xjn0 +1/2 at intermediate time levels tn,p:

(3.1) u
n,p,(i),−(mod)
jn0 +1/2 = u

n,p,(i),−
jn0 +1/2 =

k∑
l=0

u
(l),n,p,(i)
jn0

, ∀ p = 0, 1, . . . ,M − 1,

where u(l),n,p,(i)
jn0

are computed by the formulas in Appendix B. In particular:

For the second order SSP-RK(2,2):

(3.2)
u

(l),n,p,(0)
jn0

= (1− θp)u(l),n,(0)
jn0

+ θpu
(l),n,(1)
jn0

,

u
(l),n,p,(1)
jn0

= (1− ηp)u(l),n,(0)
jn0

+ ηpu
(l),n,(1)
jn0

,

for l = 0, 1, where θp = p
M and ηp = p+1

M for p = 0, 1, . . . ,M − 1.
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For the third order SSP-RK(3,3):

(3.3)

u
(l),n,p,(0)
jn0

= (1− θp − θ̂p)u(l),n,(0)
jn0

+ (θp − θ̂p)u(l),n,(1)
jn0

+ 2θ̂pu
(l),n,(2)
jn0

,

u
(l),n,p,(1)
jn0

= (1− ηp − η̂p)u(l),n,(0)
jn0

+ (ηp − η̂p)u(l),n,(1)
jn0

+ 2η̂pu
(l),n,(2)
jn0

,

u
(l),n,p,(2)
jn0

= (1− γp − γ̂p)u(l),n,(0)
jn0

+ (γp − γ̂p)u(l),n,(1)
jn0

+ 2γ̂pu
(l),n,(2)
jn0

,

for l = 0, 1, 2, with θp and ηp as above, and θ̂p = p2

M2 , η̂p = p(p+2)
M2 , γp = 2p+1

2M and
γ̂p = 2p2+2p+1

2M2 for p = 0, 1, . . . ,M − 1.

For the fourth order SSP-RK(5,4): we approximate u(l),n,p,(i)
jn0

, for p = 0, 1, . . . ,M− 1

as linear combinations of u(l),n,(i)
jn0

for i = 0, . . . , 4, as presented in Appendix B.3.
Step 2: Advancing in the coarse and fine regions in parallel.

Step 2a). Advancing the coarse region excluding the interface cell: with the solution
at the current time level, we advance solution to the next time level by running the
SSP-RK with the coarse time step size.
For all the cells Ij with j < jn0 , we perform:

(1) For i = 1, . . . , s,

(3.4) u
(l),n,(i)
j =

i−1∑
ν=0

αiνu
(l),n,(ν)
j + βiν∆t L

(l)
h,j

(
u
n,(ν),±
j−1/2 ,uuu

n,(ν)
j , u

n,(ν),±
j+1/2

)
.

(2) Set uuun+1
j = uuu

n,(s)
j for all j < jn0 .

Step 2b). Advancing in the fine region: with the predicted values on the interface,
we evaluate the interface flux h(un,p,−jn0 +1/2, u

n,p,+
jn0 +1/2) at the intermediate time levels,

and consequently obtain the solution un,pj for all the cells Ij with j > jn0 in the
fine region. The TVB limiter is performed to obtain un,p(mod)

j for j > jn0 and the
predicted values are updated on the interface after limiting.
For all the cells Ij with j ≥ jn0 + 1, we perform:

For p = 0, . . . ,M − 1,

(1) Set u(l),n,p,(0)(mod)
j = u

(l),n,p(mod)
j , for l = 0, . . . , k.

(2) For i = 1, . . . , s, we compute the solution at stage i:

u
(l),n,p,(i)
j =

i−1∑
ν=0

αiνu
(l),n,p,(ν)(mod)
j

+βiν

(
∆t

M

)
L

(l)
h,j

(
u
n,p,(ν),±(mod)
j−1/2 ,uuu

n,p,(ν)(mod)
j , u

n,p,(ν),±(mod)
j+1/2

)
,

for l = 0, . . . , k. If p < M − 1, limit the solution in the fine region

uuu
n,p,(i)(mod)
j = ΛΠk

h

(
uuu
n,p,(i)
j′≥jn0

)
|Ij ,

and update the predicted interface value un,p,(i),−(mod)
jn0 +1/2 (cf. (3.1)) after

limiting:

u
n,p,(i),−(mod)
jn0 +1/2 = u

(0),n,p,(i)
jn0

+ m̃
(
u
n,p,(i),−(mod)
jn0 +1/2 − u(0),n,p,(i)

jn0
,

u
(0),n,p,(i)
jn0 +1 − u(0),n,p,(i)

jn0
, u

(0),n,p,(i)
jn0

− u(0),n,(i)
jn0 −1

)
.
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(3) For all j > jn0 , set:{
u

(l),n,p+1(mod)
j = u

(l),n,p,(s)(mod)
j , if p < M − 1,

u
(l),n+1
j = u

(l),n,p,(s)
j , if p = M − 1.

Step 3: Correcting the interface solution and limiting the global so-
lution at tn+1 locally. With the predicted interface value un,p,(ν),−

jn0 +1/2 , we calculate
the flux at the interface x = xjn0 +1/2. Together with the flux at x = xjn0 −1/2, which
is frozen over [tn, tn+1), we correct the solution of the interface cell Ijn0 . Finally,
the TVB limiter is applied, which can be implemented in parallel as [10], to limit
the solution on Ij , ∀j in which only information on elements sharing edges with Ij
is necessary.

(1) For i = 1, . . . , s, we compute the solution at stage i at the interface:

(3.5)

û
(l),n,(i)
jn0

=

i−1∑
ν=0

αiν û
(l),n,(ν)
jn0

+βiν
∆t

M

M−1∑
p=0

L
(l)
h,jn0

(
u
n,(ν),±(mod)
jn0 −1/2 ,uuu

n,(ν)(mod)
jn0

, u
n,p,(ν),±(mod)
jn0 +1/2

)
,

where û(l),n,(0)
jn0

= u
(l),n,(0)(mod)
jn0

.

(2) Set u(l),n+1
jn0

= û
(l),n,(s)
jn0

and perform the limiter: UUUn+1(mod)
h = ΛΠk

h(UUUn+1
h ).

Remark 3.1. The proposed LTS algorithms can be naturally extended to the case
in which more than two types of time step sizes are used in the entire domain,
provided the larger time step size in any two adjacent subdomains is an integer
multiple of the smaller one. A common procedure for implementing the predictor-
corrector type LTS algorithms with multiple time step sizes can be applied: common
global time levels are set corresponding to the coarsest time step; local time levels
are synchronized as needed; and the LTS interface solutions between the subdomains
will be corrected sequentially, from the smallest time level to the global time level.
A detailed description of such a procedure can be found in [31, Section 4.5], though
the predictor and corrector in our algorithm are defined in this section. Numerical
tests with multiple time step sizes will be presented in Section 5.

4. Properties of LTS schemes

First, we notice that the proposed LTS schemes preserve the accuracy in time of
the corresponding global SSP-RK methods due to the construction of the predictor
and the corrector (see also Remark B.1). In the following, we prove that the LTS
schemes conserve mass exactly, and importantly, they satisfy the TVB stability.

4.1. Conservation. Mass conservation of the proposed LTS schemes is obtained
via the construction of the corrector. For simplicity, we assume that the solutions
are obtained after performing the limiter defined in Subsection 2.3 and write u(l),n

j

for u(l),n(mod)
j .

Theorem 4.1. The LTS schemes exhibit exact conservation of mass:∫
R
un+1
h =

∫
R
unh, ∀n = 0, . . . , N − 1.
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Proof. We only need to show that mass is conserved in the region of the LTS
interface x = xjn0 +1/2, Ijn0 ∪ Ijn0 +1, under the assumption that no flux is imposed at
xjn0 −1/2 and xjn0 +3/2:

(4.1)
∫
Ijn0
∪Ijn0 +1

un+1
h =

∫
Ijn0
∪Ijn0 +1

unh.

Next, we prove (4.1) for the second order LTS scheme based on SSP-RK(2, 2) (cf.
Equations (A.1)). The proof for the third and fourth order LTS schemes can be
done in a similar manner; in fact, the result holds for any high order LTS schemes
with the corrector defined by (3.5).

For the fine cell Ijn0 +1, the second order LTS algorithm reads:

u
(l),n+1
jn0 +1 =

1

2
u

(l),n,M−1
jn0 +1 +

1

2

[
u

(l),n,M−1,(1)
jn0 +1

+

(
∆t

M

)
L

(l)
h,jn0 +1

(
u
n,M−1,(1),±
jn0 +1/2 ,uuu

n,M−1,(1)
jn0 +1 , u

n,M−1,(1),±
jn0 +3/2

)]
= u

(l),n,M−1
jn0 +1 +

1

2

∆t

M

1∑
ν=0

L
(l)
h,jn0 +1

(
u
n,M−1,(ν),±
jn0 +1/2 ,uuu

n,M−1,(ν)
jn0 +1 , u

n,M−1,(ν),±
jn0 +3/2

)
.

Thus, by recursion, we obtain:

(4.2) u
(l),n+1
jn0 +1 = u

(l),n
jn0 +1 +

1

2

∆t

M

M−1∑
p=0

1∑
ν=0

L
(l)
h,jn0 +1

(
u
n,p,(ν),±
jn0 +1/2 ,uuu

n,p,(ν)
jn0 +1 , u

n,p,(ν),±
jn0 +3/2

)
.

Taking vh = 1 in (2.1), using (4.2) and the definition of L(l)
h,j in (2.5), we have

(4.3)∫
Ijn0 +1

un+1
h =

∫
Ijn0 +1

unh+
1

2

∆t

M

M−1∑
p=0

(
−h(un,p,−jn0 +1/2, u

n,p,+
jn0 +1/2)− h(u

n,p,(1),−
jn0 +1/2 , u

n,p,(1),+
jn0 +1/2 )

)
.

as no flux is imposed at xjn0 +3/2.
For the interface cell Ijn0 , the corrector (3.5) associated with SSP-RK(2, 2) is

given by

û
(l),n,(1)
jn0

= u
(l),n
jn0

+
∆t

M

M−1∑
p=0

L
(l)
h,jn0

(
un,±jn0 −1/2,uuu

n
jn0
, un,p,±jn0 +1/2

)
,

u
(l),n+1
jn0

=
1

2
u

(l),n
jn0

+
1

2

[
û

(l),n,(1)
jn0

+
∆t

M

M−1∑
p=0

L
(l)
h,jn0

(
u
n,(1),±
jn0 −1/2 ,uuu

n,(1)
jn0

, u
n,p,(1),±
jn0 +1/2

)]
,

from which we deduce that

(4.4) u
(l),n+1
jn0

= u
(l),n
jn0

+
1

2

∆t

M

M−1∑
p=0

1∑
ν=0

L
(l)
h,jn0

(
u
n,(ν),±
jn0 −1/2 ,uuu

n,(ν)
jn0

, u
n,p,(ν),±
jn0 +1/2

)
.

As for the fine cell j = jn0 + 1, we choose vh = 1 in (2.1) and use (4.4) to obtain
(4.5)∫

Ijn0

un+1
h =

∫
Ijn0

unh +
1

2

∆t

M

M−1∑
p=0

(
h(un,p,−jn0 +1/2, u

n,p,+
jn0 +1/2) + h(u

n,p,(1),−
jn0 +1/2 , u

n,p,(1),+
jn0 +1/2 )

)
,
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noting that no flux at xjn0 −1/2 is assumed. Thus, the proof is completed by adding
(4.3) and (4.5) together. �

4.2. Stability. Numerical methods for conservation laws need to satisfy certain
nonlinear stability requirements in order to prevent spurious oscillations when the
solution is discontinuous. In [39], the first order LTS scheme based on forward
Euler is proved to be TVD with the predictor obtained by freezing the value at tn:

un,pjn0 +1/2 = unjn0 +1/2, ∀p = 0, . . . ,M − 1.

For higher order LTS schemes as proposed in Section 3, multiple stage time-stepping
algorithms are employed and the predictors are obtained by taking linear combi-
nations of the interface solution at different stages with the coarse time step size.
Therefore, the proof of nonlinear stability for high order LTS schemes is not an ob-
vious generalization from the first order one. Additionally, the corrector designed
to conserve mass is not a convex combination of forward Euler steps as in the case
of the global SSP-RK. As a consequence, the high order LTS schemes are not TVD
anymore, instead they are TVB.

We next prove the stability of the second order LTS scheme by first showing that
it is TVBM (total variation bounded in the means). The generalization to higher
order LTS schemes can be done in a similar manner. We introduce some notation
to be used in the proof. Denoted by ∆+ and ∆− the forward and backward finite
difference operators, respectively:

∆+uj = uj+1 − uj , and ∆−uj = uj − uj−1.

Following [7], we decompose the interface values u±j+1/2 as

u−j+1/2 = uj + ũj , u+
j−1/2 = uj − ˜̃uj ,

where uj := u
(0)
j is the mean value of u on the cell Ij . As in [6], we denote:

(4.6) Cj+1/2 = −h2 ·

(
1− ∆+

˜̃uj
∆+uj

)
, and Dj−1/2 = h1 ·

(
1 +

∆−ũj
∆−uj

)
,

where

h1 =
h(u−j+1/2, u

+
j−1/2)− h(u−j−1/2, u

+
j−1/2)

u−j+1/2 − u
−
j−1/2

, h2 =
h(u−j+1/2, u

+
j+1/2)− h(u−j+1/2, u

+
j−1/2)

u+
j+1/2 − u

+
j−1/2

.

Note that h1 and −h2 are nonnegative due to the monotonicity of h(·, ·). Then
the flux associated with the mean value uj (cf. Equation (2.5) with l = 0) can be
rewritten equivalently as

−
(
h(u−j+1/2, u

+
j+1/2)− h(u−j−1/2, u

+
j−1/2)

)
= Cj+1/2 ∆+uj −Dj−1/2 ∆−uj .

Using the above notation, the second order LTS scheme as presented in Section 3
for the mean value uj reads as follows: for n = 0, . . . , N − 1,
(1) Compute the predicted mean on the interface cell at the intermediate time

levels from the solutions with the coarse time step size: for p = 0, . . . ,M − 1,

(4.7)
un,pjn0 =

(
1− p

M

)
unjn0 +

p

M
u
n,(1)
jn0 +1/2,

u
n,p,(1)
jn0

=

(
1− p+ 1

M

)
unjn0 +

p+ 1

M
u
n,(1)
jn0 +1/2.
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(2) Advance in the coarse region, for all j < jn0 :

(4.8)
u
n,(1)
j = unj +

∆t

∆xj

(
Cnj+1/2∆+u

n
j −Dn

j−1/2∆−u
n
j

)
,

un+1
j =

1

2
unj +

1

2

[
u
n,(1)
j +

∆t

∆xj

(
C
n,(1)
j+1/2∆+u

n,(1)
j −Dn,(1)

j−1/2∆−u
n,(1)
j

)]
,

and in the fine region, for all j > jn0 : for p = 0, . . . ,M − 1,
(4.9)

u
n,p,(1)
j = un,pj +

∆t

M∆xj

(
Cn,pj+1/2∆+u

n,p
j −Dn,p

j−1/2∆−u
n,p
j

)
,

un,p+1
j =

1

2
un,pj +

1

2

[
u
n,p,(1)
j +

∆t

M∆xj

(
C
n,p,(1)
j+1/2 ∆+u

n,p,(1)
j −Dn,p,(1)

j−1/2 ∆−u
n,p,(1)
j

)]
.

Note that the interface values un,p,(i),−jn0 +1/2 , for i = 1, 2, and p = 0, . . . ,M − 1 are
computed by using the second order predictor (4.7) and (3.1).

(3) Correcting the interface values for which the flux at x = xjn0 −1/2 is frozen over
[tn, tn+1):

(4.10)

û
n,(1)

jn0
= unjn0 − ∆t

M∆xjn0

M−1∑
p=0

(
h(un,p,−jn0 +1/2, u

n,p,+
jn0 +1/2) − h(un,−jn0 −1/2, u

n,+
jn0 −1/2)

)
,

un+1
jn0

=
1

2
unjn0 +

1

2

[
û
n,(1)

jn0
− ∆t

M∆xjn0

M−1∑
p=0

(
h(u

n,p,(1),−
jn0 +1/2 , u

n,p,(1),+

jn0 +1/2 ) − h(u
n,(1),−
jn0 −1/2 , u

n,(1),+

jn0 −1/2 )

)]
.

The flux term in the right-hand side of (4.10) can be rewritten as

−
(
h(un,p,−jn0 +1/2, u

n,p,+
jn0 +1/2)− h(un,−jn0 −1/2, u

n,+
jn0 −1/2)

)
= Cn,pjn0 +1/2∆+u

n,p
jn0

−Dn
jn0 −1/2∆−u

n
jn0
−
(
h(un,p,−jn0 +1/2, u

n,p,+
jn0 −1/2)− h(un,−jn0 +1/2, u

n,+
jn0 −1/2)

)
,

where un,p,+jn0 −1/2 is computed by the same predictor as un,p,−jn0 +1/2. In addition, we write

−
(
h(un,p,−jn0 +1/2, u

n,p,+
jn0 −1/2)− h(un,−jn0 +1/2, u

n,+
jn0 −1/2)

)
= −hn,p2,jn0 −1/2 ·

(
un,p,+jn0 −1/2 − u

n,+
jn0 −1/2

)
− hn,p1,jn0 +1/2 ·

(
un,p,−jn0 +1/2 − u

n,−
jn0 +1/2

)
,

where

(4.11)

hn,p1,jn0 +1/2 :=
h(un,p,−jn0 +1/2, u

n,+
jn0 −1/2)− h(un,−jn0 +1/2, u

n,+
jn0 −1/2)

un,p,−jn0 +1/2 − u
n,−
jn0 +1/2

≥ 0,

−hn,p2,jn0 −1/2 := −
h(un,p,−jn0 +1/2, u

n,p,+
jn0 −1/2)− h(un,p,−jn0 +1/2, u

n,+
jn0 −1/2)

un,p,+jn0 −1/2 − u
n,+
jn0 −1/2

≥ 0.

Moreover, using the second order predictor (3.2), we deduce that

un,p,+jn0 −1/2 − u
n,+
jn0 −1/2 =

p

M

(
u
n,(1),+
jn0 −1/2 − u

n,+
jn0 −1/2

)
and

un,p,−jn0 +1/2 − u
n,−
jn0 +1/2 =

p

M

(
u
n,(1),−
jn0 +1/2 − u

n,−
jn0 +1/2

)
.
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Therefore, we can rewrite the correction (4.10) as follows:
(4.12)

û
n,(1)

jn0
= unjn0 +

∆t

M∆xjn0

M−1∑
p=0

(
Cn,pjn0 +1/2∆+u

n,p
jn0
−Dn

jn0 −1/2∆−u
n
jn0

+
p

M
(−hn,p2,jn0 −1/2)

(
u
n,(1),+
jn0 −1/2 − u

n,+
jn0 −1/2

)
− p

M
hn,p1,jn0 +1/2

(
u
n,(1),+
jn0 +1/2 − u

n,+
jn0 +1/2

))
.

Similarly,
(4.13)

un+1
jn0

=
1

2
unjn0 +

1

2

[
û
n,(1)

jn0
+

∆t

M∆xjn0

M−1∑
p=0

(
C
n,p,(1)
jn0 +1/2∆+u

n,p,(1)
jn0

−Dn,(1)
jn0 −1/2∆−u

n,(1)
jn0

+
p+ 1

M
(−hn,p,(1)

2,jn0 −1/2)
(
u
n,(1),+
jn0 −1/2 − u

n,+
jn0 −1/2

)
− p+ 1

M
h
n,p,(1)
1,jn0 +1/2

(
u
n,(1),+
jn0 +1/2 − u

n,+
jn0 +1/2

))]
,

in which h
n,p,(1)
1,jn0 +1/2 and h

n,p,(1)
2,jn0 −1/2 are defined in a similar way as in (4.11) but with

the solutions of the first stage un,p,(1),±
jn0 ±1/2 and un,(1),±

jn0 ±1/2 . The TVBM property of the
second order LTS scheme is guaranteed by the following theorem.

Theorem 4.2 (TVBM). Assume that there exists some θ > 0 such that

(4.14)

−θ ≤
∆+
˜̃un,(i)j

∆+u
n,(i)
j

≤ 1, ∀ j < jn0 , −θ ≤
∆+
˜̃un,p,(i)j

∆+u
n,p,(i)
j

≤ 1, ∀ j ≥ jn0 ,

−θ ≤ −
∆+ũ

n,(i)
j

∆+u
n,(i)
j

≤ 1, ∀ j < jn0 , −θ ≤ −
∆+ũ

n,p,(i)
j

∆+u
n,p,(i)
j

≤ 1, ∀ j ≥ jn0 ,

for n = 0, . . . , N − 1, p = 0, . . . ,M − 1 and i = 0, 1. In addition, if a local CFL
condition is satisfied:

(4.15) λn,pj (h1 − h2) ≤ 1

1 + θ
,

where h1 and −h2 are the Lipschitz coefficients of h(·, ·) with respect to the first
and second arguments respectively, and λn,pj is defined by

λn,pj =


∆t

∆xj
, if j ≤ jn0 + 1,

∆t

M∆xj
, if j > jn0 + 1,

for n = 0, . . . , N − 1,

and p = 0, . . . ,M − 1.

Then the second order LTS scheme is TVBM.

Proof. Following the techniques in [39], we first introduce some important facts
that will be used later in the proof. From the monotonicity of h(·, ·) and (4.14), we
deduce that, in (4.6):

(4.16) C
n,(i)
j+1/2, D

n,(i)
j+1/2 ≥ 0, ∀j < j0, and C

n,p,(i)
j+1/2 , D

n,p,(i)
j+1/2 ≥ 0, ∀j ≥ j0.

We may omit the superscripts for the ease of presentation. Given any two nonneg-
ative numbers α, β and suppose λn,pj = max(α, β) that satisfies (4.15), we have

αCj+1/2 + βDj+1/2 ≤ 1,
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and consequently,∣∣uj+1 − uj − αDj+1/2∆−uj+1 − βCj+1/2∆+uj
∣∣ = |∆+uj |

∣∣1− αDj+1/2 − βCj+1/2

∣∣
= |uj+1 − uj | − αDj+1/2 |∆−uj+1| − βCj+1/2 |∆+uj |,

in which the functions must be evaluated at the same time level. Then, together
with (4.16), we deduce that

∣∣uj+1 − uj + α
(
Cj+3/2∆+uj+1 −Dj+1/2∆−uj+1

)
− β

(
Cj+1/2∆+uj −Dj−1/2∆−uj

)∣∣(4.17)

≤
∣∣uj+1 − uj − αDj+1/2∆−uj+1 − βCj+1/2∆+uj

∣∣+ αCj+3/2 |∆+uj+1|+ βDj−1/2 |∆−uj |
≤ |uj+1 − uj |+ α

(
Cj+3/2 |∆+uj+1| −Dj+1/2 |∆−uj+1|

)
− β

(
Cj+1/2 |∆+uj | −Dj−1/2 |∆−uj |

)
.

In the following, we compute the variation |uj+1 − uj | for all j. Particularly, we
consider four cases:

i) If j < (jn0 − 1): from (4.8), we find that

(4.18)
u
n,(1)
j+1 − u

n,(1)
j =

(
unj+1 − unj

)
+

∆t

∆xj+1

(
Cnj+3/2∆+u

n
j+1 −Dn

j+1/2∆−u
n
j+1

)
− ∆t

∆xj

(
Cnj+1/2∆+u

n
j −Dn

j−1/2∆−u
n
j

)]
.

Applying (4.17) with α =
∆t

∆xj+1
and β =

∆t

∆xj
, we deduce from (4.18) that∣∣∣un,(1)

j+1 − u
n,(1)
j

∣∣∣ ≤ ∣∣unj+1 − unj
∣∣+ ∆+

[
∆t

∆xj

(
Cnj+1/2

∣∣∆+u
n
j

∣∣−Dn
j−1/2

∣∣∆−unj ∣∣)] .
From this we obtain∣∣un+1

j+1 − u
n+1
j

∣∣ ≤ 1

2

∣∣unj+1 − unj
∣∣+

1

2

∣∣∣un,(1)
j+1 − u

n,(1)
j

∣∣∣
+

1

2
∆+

[
∆t

∆xj

(
C
n,(1)
j+1/2

∣∣∣∆+u
n,(1)
j

∣∣∣−Dn,(1)
j−1/2

∣∣∣∆−un,(1)
j

∣∣∣)]
≤
∣∣unj+1 − unj

∣∣+
1

2

1∑
ν=0

∆+

[
∆t

∆xj

(
C
n,(ν)
j+1/2

∣∣∣∆+u
n,(ν)
j

∣∣∣−Dn,(ν)
j−1/2

∣∣∣∆−un,(ν)
j

∣∣∣)] .
or equivalently∣∣un+1

j+1 − u
n+1
j

∣∣ ≤ ∣∣unj+1 − unj
∣∣+

1

2

M−1∑
p=0

1∑
ν=0

∆+

[
∆t

M∆xj

(
C
n,(ν)
j+1/2

∣∣∣∆+u
n,(ν)
j

∣∣∣(4.19)

−Dn,(ν)
j−1/2

∣∣∣∆−un,(ν)
j

∣∣∣ )], ∀ j < jn0 − 1.

ii) If j > jn0 : By the same argument applied to (4.9) with the fine time step size,
we find that∣∣un+1
j+1 − u

n+1
j

∣∣ ≤ ∣∣∣un,M−1
j+1 − un,M−1

j

∣∣∣
+

1

2

1∑
ν=0

∆+

[
∆t

M∆xj

(
C
n,M−1,(ν)
j+1/2

∣∣∣∆+u
n,M−1,(ν)
j

∣∣∣−Dn,M−1,(ν)
j−1/2

∣∣∣∆−un,M−1,(ν)
j

∣∣∣)] .
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Repeating this argument inductively, we obtain a similar bound as (4.19):
(4.20)∣∣un+1

j+1 − u
n+1
j

∣∣ ≤ ∣∣unj+1 − unj
∣∣+

1

2

M−1∑
p=0

1∑
ν=0

∆+

[
∆t

M∆xj

(
C
n,p,(ν)
j+1/2

∣∣∣∆+u
n,p,(ν)
j

∣∣∣
−Dn,p,(ν)

j−1/2

∣∣∣∆−un,p,(ν)
j

∣∣∣ )], ∀ j > jn0 .

iii) If j = jn0 (the interface cell)
We aim to show that (4.20) again holds for j = jn0 , which is the main part of
the proof. Using the formulation for the corrector (4.12)-(4.13), as well as the
time-stepping scheme in the fine region, we obtain

un+1
jn0 +1 − u

n+1
jn0

= unjn0 +1 − unjn0

+
1

2

M−1∑
p=0

1∑
ν=0

[
∆t

M∆xjn0 +1

(
C
n,p,(ν)
jn0 +3/2 ∆+u

n,p,(ν)
jn0 +1 −D

n,p,(ν)
jn0 +1/2 ∆−u

n,p,(ν)
jn0 +1

)
− ∆t

M∆xjn0

(
C
n,p,(ν)
jn0 +1/2 ∆+u

n,p,(ν)
jn0

−Dn,(ν)
jn0 −1/2∆−u

n,(ν)
jn0

)]

− 1

2

M−1∑
p=0

∆t

M∆xjn0

[(
p

M
(−hn,p2,jn0 −1/2) +

p+ 1

M
(−hn,p,(1)

2,jn0 −1/2)

)(
u
n,(1),+
jn0 −1/2 − u

n,+
jn0 −1/2

)
−
(
p

M
hn,p1,jn0 +1/2 +

p+ 1

M
h
n,p,(1)
1,jn0 +1/2

)(
u
n,(1),−
jn0 +1/2 − u

n,−
jn0 +1/2

))]
.

Since un,(1),±
jn0 −1/2 − u

n,±
jn0 −1/2 = O(∆t), and by the CFL condition, we can bound

∣∣∣un+1
jn0 +1 − u

n+1
jn0

∣∣∣ ≤ ∣∣∣∣unjn0 +1 − unjn0 +
1

2

M−1∑
p=0

1∑
ν=0

[
∆t

M∆xjn0 +1

(
C
n,p,(ν)
jn0 +3/2 ∆+u

n,p,(ν)
jn0 +1

(4.21)

−Dn,p,(ν)
jn0 +1/2 ∆−u

n,p,(ν)
jn0 +1

)
− ∆t

M∆xjn0

(
C
n,p,(ν)
jn0 +1/2 ∆+u

n,p,(ν)
jn0

−Dn,(ν)
jn0 −1/2∆−u

n,(ν)
jn0

)]∣∣∣∣
+

M

1 + θ
O(∆t).

We have

unjn0 +1 − unjn0 =
1

2M

M−1∑
p=0

{[(
unjn0 +1 − unjn0

)
−
(
un,pjn0 +1 − u

n,p
jn0

)](4.22)

+
[(
unjn0 +1 − unjn0

)
−
(
u
n,p,(1)
jn0 +1 − u

n,p,(1)
jn0

)]
+
(
un,pjn0 +1 − u

n,p
jn0

)
+
(
u
n,p,(1)
jn0 +1 − u

n,p,(1)
jn0

)}
.

Regarding the first two terms, let us write

1

2

[(
unjn0 +1 − unjn0

)
−
(
un,pjn0 +1 − u

n,p
jn0

)]
+

1

2

[(
unjn0 +1 − unjn0

)
−
(
u
n,p,(1)
jn0 +1 − u

n,p,(1)
jn0

)](4.23)

=
(
unjn0 +1 − u

n,p
jn0 +1

)
+

1

2

(
un,pjn0 +1 − u

n,p,(1)
jn0 +1

)
+

1

2

[(
un,pjn0 − u

n
jn0

)
+
(
u
n,p,(1)
jn0

− unjn0
)]
.
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By definition of the second order predictor (3.2), the last term in (4.23) is given by

(4.24)
1

2

[(
un,pjn0 − u

n
jn0

)
+
(
u
n,p,(1)
jn0

− unjn0
)]

=
2p+ 1

2M

(
u
n,(1)
jn0

− unjn0
)

= O(∆t).

On the other hand, the first and second terms in (4.23) can be computed by using
the time-stepping in the fine region (4.9):

(4.25)

(
unjn0 +1 − u

n,p
jn0 +1

)
+

1

2

(
un,pjn0 +1 − u

n,p,(1)
jn0 +1

)
= −1

2

p∑
q=0

∆t

M∆xjn0 +1

(
Cn,qjn0 +3/2 ∆+u

n,q
jn0 +1 −D

n,q
jn0 +1/2 ∆−u

n,q
jn0 +1

)
−1

2

p−1∑
q=0

∆t

M∆xjn0 +1

(
C
n,q,(1)
jn0 +3/2 ∆+u

n,q,(1)
jn0 +1 −D

n,q,(1)
jn0 +1/2 ∆−u

n,q,(1)
jn0 +1

)
.

Summing (4.25) over p = 0, . . . ,M − 1 yields

M−1∑
p=0

{(
unjn0 +1 − u

n,p
jn0 +1

)
+

1

2

(
un,pjn0 +1 − u

n,p,(1)
jn0 +1

)}(4.26)

= −1

2

M−1∑
p=0

(
1− p

M

) ∆t

∆xjn0 +1

(
Cn,pjn0 +3/2 ∆+u

n,p
jn0 +1 −D

n,p
jn0 +1/2 ∆−u

n,p
jn0 +1

)

− 1

2

M−1∑
p=0

(
1− p+ 1

M

)
∆t

∆xjn0 +1

(
C
n,p,(1)
jn0 +3/2 ∆+u

n,p,(1)
jn0 +1 −D

n,p,(1)
jn0 +1/2 ∆−u

n,p,(1)
jn0 +1

)
.

Substituting (4.24) and (4.26) into (4.22) and then (4.21), and using (4.17) with
α = p

M

(
∆t

∆xjn0 +1

)
or α = p+1

M

(
∆t

∆xjn0 +1

)
and β = ∆t

∆xjn0
, we obtain:

(4.27)∣∣∣un+1
jn0 +1 − u

n+1
jn0

∣∣∣ ≤ 1

2M

M−1∑
p=0

{ ∣∣∣un,pjn0 +1 − u
n,p
jn0

∣∣∣+
∣∣∣un,p,(1)
jn0 +1 − u

n,p,(1)
jn0

∣∣∣
+
p

M

∆t

∆xjn0 +1

(
Cn,pjn0 +3/2

∣∣∣∆+u
n,p
jn0 +1

∣∣∣−Dn,p
jn0 +1/2

∣∣∣∆−un,pjn0 +1

∣∣∣)
+
p+ 1

M

∆t

∆xjn0 +1

(
C
n,p,(1)
jn0 +3/2

∣∣∣∆+u
n,p,(1)
jn0 +1

∣∣∣−Dn,p,(1)
jn0 +1/2

∣∣∣∆−un,p,(1)
jn0 +1

∣∣∣)
− ∆t

∆xjn0

1∑
ν=0

(
C
n,p,(ν)
jn0 +1/2

∣∣∣∆+u
n,p,(ν)
jn0

∣∣∣−Dn,(ν)
jn0 −1/2

∣∣∣∆−un,(ν)
jn0

∣∣∣)}+O(∆t).

Furthermore, by the definition of the second order predictor, we have un,p,(1)
jn0

= un,pjn0 +

1
M

(
u
n,(1)
jn0

− unjn0
)

= un,pjn0 +O(∆t). This together with using (4.17) for α = ∆t
M∆xjn0 +1
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and β = 0, we have that
(4.28)∣∣∣un,p,(1)

jn0 +1 − u
n,p,(1)
jn0

∣∣∣ =

∣∣∣∣un,pjn0 +1 − u
n,p
jn0

+
∆t

M∆xjn0 +1

(
Cn,pjn0 +3/2 ∆+u

n,p
jn0 +1 −D

n,p
jn0 +1/2 ∆−u

n,p
jn0 +1

) ∣∣∣∣+O(∆t)

≤
∣∣∣un,pjn0 +1 − u

n,p
jn0

∣∣∣+
∆t

M∆xjn0 +1

(
Cn,pjn0 +3/2

∣∣∣∆+u
n,p
jn0 +1

∣∣∣−Dn,p
jn0 +1/2

∣∣∣∆−un,pjn0 +1

∣∣∣)+O(∆t).

Plugging this into (4.27) yields:

(4.29)

∣∣∣un+1
jn0 +1 − u

n+1
jn0

∣∣∣ ≤ 1

M

M−1∑
p=0

{ ∣∣∣un,pjn0 +1 − u
n,p
jn0

∣∣∣
+
p+ 1

2M

∆t

∆xjn0 +1

(
Cn,pjn0 +3/2

∣∣∣∆+u
n,p
jn0 +1

∣∣∣−Dn,p
jn0 +1/2

∣∣∣∆−un,pjn0 +1

∣∣∣)
+
p+ 1

2M

∆t

∆xjn0 +1

(
C
n,p,(1)
jn0 +3/2

∣∣∣∆+u
n,p,(1)
jn0 +1

∣∣∣−Dn,p,(1)
jn0 +1/2

∣∣∣∆−un,p,(1)
jn0 +1

∣∣∣)
−1

2

1∑
ν=0

∆t

∆xjn0

(
C
n,p,(ν)
jn0 +1/2

∣∣∣∆+u
n,p,(ν)
jn0

∣∣∣−Dn,(ν)
jn0 −1/2

∣∣∣∆−un,(ν)
jn0

∣∣∣)}+O(∆t).

On the other hand, by the SSP-RK(2, 2) time-stepping in the fine cell (jn0 + 1) and
using (4.28), we deduce that∣∣∣un,pjn0 +1 − u

n,p
jn0

∣∣∣ =

∣∣∣∣12 (un,p−1
jn0 +1 − u

n,p−1
jn0

)
+

1

2

(
u
n,p−1,(1)
jn0 +1 − un,p−1,(1)

jn0

)
+

1

2

∆t

M∆xjn0 +1

(
C
n,p−1,(1)
jn0 +3/2 ∆+u

n,p−1,(1)
jn0 +1 −Dn,p−1,(1)

jn0 +1/2 ∆−u
n,p−1,(1)
jn0 +1

)
+

1

2

(
un,p−1
jn0

+ u
n,p−1,(1)
jn0

− 2un,pjn0

) ∣∣∣∣ ≤ ∣∣∣un,p−1
jn0 +1 − u

n,p−1
jn0

∣∣∣
+

1

2

∆t

M∆xjn0 +1

1∑
ν=0

(
C
n,p−1,(ν)
jn0 +3/2

∣∣∣∆+u
n,p−1,(ν)
jn0 +1

∣∣∣−Dn,p−1,(ν)
jn0 +1/2

∣∣∣∆−un,p−1,(ν)
jn0 +1

∣∣∣)+O(∆t),

in which we have used definition of the second order predictor to obtain

1

2

(
un,p−1
jn0

+ u
n,p−1,(1)
jn0

− 2un,pjn0

)
=

1

2

(
un,p−1
jn0

− un,pjn0
)

=
1

2M

(
unjn0 − u

n,(1)
jn0

)
= O(∆t).

Repeat the above argument inductively, we arrive at∣∣∣un,pjn0 +1 − u
n,p
jn0

∣∣∣ ≤ ∣∣∣unjn0 +1 − unjn0
∣∣∣

+
1

2

∆t

M∆xjn0 +1

p−1∑
q=0

1∑
ν=0

(
C
n,q,(ν)
jn0 +3/2

∣∣∣∆+u
n,q,(ν)
jn0 +1

∣∣∣−Dn,q,(ν)
jn0 +1/2

∣∣∣∆−un,q,(ν)
jn0 +1

∣∣∣)+O(∆t).

Consequently,
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M−1∑
p=0

∣∣∣un,pjn0 +1 − u
n,p
jn0

∣∣∣ ≤M ∣∣∣unjn0 +1 − unjn0
∣∣∣

+
1

2

∆t

M∆xjn0 +1

M−1∑
p=0

p−1∑
q=0

1∑
ν=0

(
C
n,q,(ν)
jn0 +3/2

∣∣∣∆+u
n,q,(ν)
jn0 +1

∣∣∣−Dn,q,(ν)
jn0 +1/2

∣∣∣∆−un,q,(ν)
jn0 +1

∣∣∣)+O(∆t)

≤M
∣∣∣unjn0 +1 − unjn0

∣∣∣+
1

2

∆t

M∆xjn0 +1

M−1∑
p=0

1∑
ν=0

(
1− p+ 1

M

)(
C
n,p,(ν)
jn0 +3/2

∣∣∣∆+u
n,p,(ν)
jn0 +1

∣∣∣
−Dn,p,(ν)

jn0 +1/2

∣∣∣∆−un,p,(ν)
jn0 +1

∣∣∣ )+O(∆t),

where the last inequality is obtained by reversing the order of summation. Plugging
this into (4.29), we find that
(4.30) ∣∣∣un+1

jn0 +1 − u
n+1
jn0

∣∣∣ ≤ ∣∣∣unjn0 +1 − unjn0
∣∣∣

+
1

2

M−1∑
p=0

1∑
ν=0

[
∆t

M∆xjn0 +1

(
C
n,p,(ν)
jn0 +3/2

∣∣∣∆+u
n,p,(ν)
jn0 +1

∣∣∣−Dn,p,(ν)
jn0 +1/2

∣∣∣∆−un,p,(ν)
jn0 +1

∣∣∣)
+

∆t

M∆xjn0

(
C
n,p,(ν)
jn0 +1/2

∣∣∣∆+u
n,p,(ν)
jn0

∣∣∣−Dn,(ν)
jn0 −1/2

∣∣∣∆−un,(ν)
jn0

∣∣∣) ]+O(∆t).

iv) If j = jn0 − 1: It remains to investigate the case of the interface cell and its
neighbor in Ωnc . As for (4.21), we have∣∣∣un+1

jn0
− un+1

jn0 −1

∣∣∣ ≤ ∣∣∣∣unjn0 − unjn0 −1 +
1

2

M−1∑
p=0

1∑
ν=0

∆t

M∆xjn0

(
C
n,p,(ν)
jn0 +1/2 ∆+u

n,p,(ν)
jn0

−Dn,(ν)
jn0 −1/2 ∆−u

n,(ν)
jn0

)
− ∆t

M∆xjn0 −1

(
C
n,(ν)
jn0 −1/2∆+u

n,(ν)
jn0 −1 −D

n,(ν)
jn0 −3/2∆−u

n,(ν)
jn0 −1

) ∣∣∣∣
+

M

1 + θ
O(∆t).

By performing similar manipulations as for the case j = jn0 , one arrives at

(4.31)

∣∣∣un+1
jn0
− un+1

jn0 −1

∣∣∣ ≤ ∣∣∣unjn0 − unjn0 −1

∣∣∣
+

1

2

M−1∑
p=0

1∑
ν=0

[
∆t

M∆xjn0

(
C
n,p,(ν)
jn0 +1/2

∣∣∣∆+u
n,p,(ν)
jn0

∣∣∣−Dn,(ν)
jn0 −1/2

∣∣∣∆−un,(ν)
jn0

∣∣∣)
+

∆t

M∆xjn0 −1

(
C
n,(ν)
jn0 −1/2

∣∣∣∆+u
n,(ν)
jn0 −1

∣∣∣−Dn,(ν)
jn0 −3/2

∣∣∣∆−un,(ν)
jn0 −1

∣∣∣) ]+O(∆t).

Finally, we combine (4.19), (4.20), (4.30) and (4.31) and obtain:

TV (un+1) ≤ TV (un) +O(∆t), or TV (un) ≤ TV (u0) + CT.

Hence, the second order LTS scheme is TVBM. �

The condition (4.14) is fulfilled if the solution is limited by the minmod function
m defined in (2.7) (see [7]). The scheme remains TVB when the modified minmod
function m̃ is used, which is achieved by Theorem 2.2 in [45] (see also [7, Lemma
2.3]). Finally, the TVB property of the means uj can be passed to the whole
solution uh in the same manner as the RK-DG method [7, Propositition 2.11]. We
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remark that it is assumed that the solution near the time-dependent LTS interface
is sufficiently smooth so that the condition (4.14) is satisfied in the region of the
LTS interface without limiting. In practice, local time-stepping should be coupled
with adaptive spatial meshing to achieve computational efficiency and accuracy
when dealing with hyperbolic conservation laws.

5. Numerical experiments

We consider several standard test cases of one dimensional scalar conservation
laws (Subsection 5.1) and system of conservation laws (Subsection 5.2). We aim to
verify the accuracy, mass conservation and stability of the LTS schemes as predicted
theoretically and compare them with the global time-stepping (GTS) schemes. As
a first step towards studying the behavior of the proposed schemes, we use a fixed
LTS interface (i.e., jn0 = j0 for all n) in all the tests, instead of a time-varying
LTS interface as discussed in Section 3, and leave the investigation on parallel
performance of the methods with space-time adaptive multiresolution meshes in
two and three dimensions to future work. Note that for the prediction step, if the
solution is discontinuous at the fixed LTS interface, then it is necessary to limit the
solution on the interface with the coarse time step size uuun,(i)(mod)

j0
for i = 1, . . . , s−1

before calculating the predicted interface values (3.1) at intermediate time levels.

5.1. Scalar conservation laws. We first consider two model problems that obey
the scalar conservation laws: the linear advection equation and Burgers’ equation.
For problems with a smooth solution, we confirm the convergence order in time
of our LTS algorithms. The effectiveness of LTS algorithms is demonstrated by
comparing with the GTS schemes in terms of accuracy and CFL conditions.

Example 1: Linear problem. We solve the linear advection problem with a smooth
initial condition
(5.1) ut + ux = 0, u(x, 0) = sinπx,

in −1 ≤ x ≤ 1 with periodic boundary conditions. The exact solution is given
by u(x, t) = sinπ(x − t). The spatial domain is divided into two subdomains,
Ω1 = [−1, 0] and Ω2 = [0, 1]. The mesh size and time step size in Ωi are respectively
∆xi and ∆ti, which are fine when i = 1 and are coarse when i = 2:

∆x1 =
∆xcoarse
M

, ∆x2 = ∆xcoarse, ∆t1 =
C

2k + 1
∆x1 =

∆tcoarse
M

, ∆t2 = ∆tcoarse,

for M = 1, 2, 4, 8, and for k = 1, 2, 3 corresponding to the second, third and fourth
order LTS methods. The L1 relative errors at T = 2 of the three LTS algorithms
are listed in Table 1. We observe that for all schemes, the errors decrease as M
increases; and the LTS schemes (withM = 2, 4, 8) preserve the order of convergence
as in the GTS case (M = 1), regardless of how large M is.

Now to show that the LTS algorithms are stable with a local CFL condition, we
still consider the linear problem (5.1) but with a discontinuous initial condition

u(x, 0) =

{
2, x ≤ −1,
−1, x > −1.

We are interested in the behavior of the approximate solution near the discontinuity
x = −0.5 at T = 0.5 and x = 0 (the LTS interface) at T = 1. Again, the fine region
is Ω1 = [−1, 0] and the coarse one is Ω2 = [0, 1]. We use second order RK-DG
method and consider three schemes as follows:
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Table 1. [Linear advection with a smooth initial condition] L1

relative errors at T = 2 for different M . The rates of convergence
“CR” for fixed M are shown in square brackets.

Linear advection

∆xcoarse M RK-DG2 RK-DG3 RK-DG4

Rel. L1 error [CR] Rel. L1 error [CR] Rel. L1 error [CR]

1/5

1 5.70e-02 – 1.39e-03 – 4.43e-05 –

2 3.59e-02 – 8.09e-04 – 2.40e-05 –

4 3.13e-02 – 7.65e-04 – 2.32e-05 –

8 3.04e-02 – 7.62e-04 – 2.33e-05 –

1/10

1 1.36e-02 [2.07] 1.66e-04 [3.07] 2.73e-06 [4.02]

2 8.71e-03 [2.04] 9.76e-05 [3.05] 1.46e-06 [4.04]

4 7.60e-03 [2.04] 9.20e-05 [3.06] 1.39e-06 [4.06]

8 3.91e-03 [2.04] 9.17e-05 [3.06] 1.41e-06 [4.05]

1/20

1 3.30e-03 [2.04] 2.04e-05 [3.03] 1.71e-07 [4.00]

2 2.14e-03 [2.03] 1.20e-05 [3.02] 9.07e-08 [4.01]

4 1.87e-03 [2.02] 1.14e-05 [3.01] 8.66e-08 [4.01]

8 1.81e-03 [2.03] 1.13e-05 [3.02] 8.83e-08 [4.00]

1/40

1 8.11e-04 [2.03] 2.54e-06 [3.01] 1.07e-08 [4.00]

2 5.31e-04 [2.01] 1.49e-06 [3.01] 5.67e-09 [4.00]

4 4.64e-04 [2.01] 1.41e-06 [3.02] 5.42e-09 [4.00]

8 4.50e-04 [2.01] 1.41e-06 [3.00] 5.53e-09 [4.00]

(1) Coarse GTS scheme with a coarse global time step size ∆t = ∆tcoarse.
(2) Fine GTS scheme with a fine global time step size ∆t = ∆tcoarse/M.
(3) LTS scheme with spatial variable time step sizes ∆t1 = ∆tcoarse/M and ∆t2 =

∆tcoarse.

Note that the spatial mesh is refined in Ω1 by a factor of M . Table 2 shows the
L1 relative errors of the three schemes at T = 0.5 and T = 1 respectively. It is
seen that the coarse GTS becomes unstable as the spatial mesh is refined due to
the violation of the CFL condition, while the LTS scheme, with a valid local CFL
condition, gives stable solution with the same accuracy as the fine GTS scheme.

Table 2. [Linear advection with a discontinuous initial condition]
L1 relative errors at T = 0.5 and T = 1 of the RK-DG2 global
time-stepping (GTS) and local time-stepping (LTS) schemes.

Linear advection, RK-DG2

∆xcoarse M
At T = 0.5 At T = 1

coarse GTS fine GTS LTS coarse GTS fine GTS LTS

1/40

1 2.58e-02 2.53e-02

2 3.46e-02 1.52e-02 3.46e-02 1.50e-02

4 – 9.00e-03 – 8.99e-03

8 – 5.40e-03 – 5.46e-03
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Example 2: Burgers’ equation. Next, we test the proposed algorithms on the Burg-
ers’ equation with a smooth initial condition:

(5.2) ut +

(
u2

2

)
x

= 0, u(x, 0) =
1

4
+

1

2
sinπx,

in −1 ≤ x ≤ 1. The exact solution of the problem is given by [26]:

(5.3) w(x, t) =
1

4
+

1

2
v(x− t, t

2
),

in which v(x, t) is the solution of the Burgers’ equation with v(x, 0) = sinπx. We
compute v by Newton iterations to solve the characteristic relation:

v = sin(πx− vt), 0 ≤ x < 1.

The solution v in (−1, 0) is computed from v in (0, 1) via: v(−x, t) = −v(x, t). The
solution of (5.2) is smooth up to t = 2/π then it develops a moving shock. For
details, see [26].

We divide the spatial domain into two zones and use the same discretization in
space and in time as in Example 1. In Figure 2, we show the exact solution and the
approximate solution by the fourth order LTS algorithm with ∆xcoarse = 1/40 and
M = 4. We see that LTS scheme clearly captures the shock with local refinement
in space and in time. In Figure 3, mass evolution as a function of time of different
LTS schemes with ∆xcoarse = 1/40 and M = 4 is displayed. The LTS schemes
conserve the mass in the region of the LTS interface, and thus in the whole domain.
The relative L1 errors at T = 0.3 when the solution is still smooth are shown in
Table 3. Again, the LTS schemes converge at the same order as the associated
GTS schemes and the errors are improved as M increases. At T = 1.1, the errors
of different LTS schemes in the smooth regions (0.1 away from the shock) have the
same magnitude as the GTS approximation error as displayed in Table 4.
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Figure 2. [Burgers’ equation] Snapshots of the solution by the
fourth order LTS scheme with 2 subdomains, ∆x1 = ∆x2/4 and
∆x2 = 1/40,

Next we consider the case of multiple levels of refinement as explained in Re-
mark 3.1. The spatial domain is divided into five equal intervals:

Ω1 = [−1,−0.6], Ω2 = [−0.6,−0.2], . . . ,Ω5 = [0.6, 1],

with different mesh sizes ∆xi = ∆xcoarse/2
5−i for i = 1, . . . , 5. Different time

step sizes are imposed that are determined by local CFL conditions. In particular,
the local time step size ∆t1 is the smallest and ∆ti+1 = 2∆ti for i = 1, . . . , 4.
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Figure 3. [Burgers’ equation] Time evolution of mass for the sec-
ond, third and fourth order LTS schemes at ∆xcoarse = 1/40 and
M = 4. Note that the third and fourth order approximations
coincide with each other.

Table 3. [Burgers’ equation] L1 relative errors at T = 0.3 for
different M . The rates of convergence “CR” for fixed M are shown
in square brackets.

∆xcoarse M RK-DG2 RK-DG3 RK-DG4

Rel. L1 error [CR] Rel. L1 error [CR] Rel. L1 error [CR]

1/10

1 6.49e-03 – 3.27e-04 – 2.26e-05 –

2 3.97e-03 – 1.10e-04 – 6.75e-06 –

4 3.37e-03 – 8.97e-05 – 5.97e-06 –

8 3.22e-03 – 8.73e-05 – 5.93e-06 –

1/20

1 1.62e-03 [2.00] 4.10e-05 [3.00] 1.31e-06 [4.11]

2 9.63e-04 [2.04] 1.45e-05 [2.92] 4.19e-07 [4.01]

4 8.11e-04 [2.06] 1.17e-05 [2.94] 3.60e-07 [4.05]

8 7.74e-04 [2.06] 1.14e-05 [2.94] 3.57e-07 [4.05]

1/40

1 4.03e-04 [2.01] 5.01e-06 [3.03] 8.68e-08 [3.92]

2 2.38e-04 [2.02] 1.81e-06 [3.00] 2.63e-08 [3.99]

4 1.99e-04 [2.03] 1.43e-06 [3.03] 2.30e-08 [3.97]

8 1.89e-04 [2.03] 1.40e-06 [3.03] 2.28e-08 [3.97]

1/80

1 1.00e-04 [2.01] 6.18e-07 [3.02] 5.44e-09 [4.00]

2 5.95e-05 [2.00] 2.25e-07 [3.01] 1.75e-09 [3.91]

4 4.95e-05 [2.01] 1.78e-07 [3.01] 1.56e-09 [3.88]

8 4.71e-05 [2.01] 1.74e-07 [3.01] 1.55e-09 [3.88]

To illustrate the performance of the proposed LTS algorithm for this multiple time
stepping case, we only consider the second-order RK-DG scheme, but the extension
to higher order schemes is straightforward. The L1 errors at T = 0.3 and T = 1.1
are shown in Table 5 with expected accuracy and convergence orders. The snapshots
of solution at different times are depicted in Figure 4 with ∆xcoarse = 1/20. The
time evolution of mass plotted in Figure 5 for ∆xcoarse = 1/80 confirms that the
LTS scheme also conserves mass up to machine precision for the case of multiple
levels of refinement.
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Table 4. [Burgers’ equation] L1 relative errors in smooth regions
at T = 1.1 of different local time-stepping schemes.

At T = 1.1, errors in smooth regions ‖x− shock‖ >= 0.1

∆xcoarse M 2nd order LTS 3rd order LTS 4th order LTS

1/40

1 6.16e-05 4.25e-07 4.31e-09

2 4.67e-05 1.73e-07 1.71e-09

4 4.37e-05 1.53e-07 1.59e-09

8 4.35e-05 1.52e-07 1.60e-09

Table 5. [Burgers’ equation] L1 relative errors at T = 0.3 and
T = 1.1 for the case of five levels of refinement with ∆xi =
∆xcoarse/2

5−i for i = 1, . . . , 5.

∆xcoarse

At T = 0.3 At T=1.1

Rel. L1 error [CR] Rel. L1 error [CR] Rel. L1 error [CR]
in smooth regions globally

1/20 7.80e-04 – 8.85e-05 – 1.73e-03 –

1/40 1.98e-04 [1.98] 2.51e-05 [1.82] 8.54e-04 [1.02]

1/80 4.77e-05 [2.05] 6.32e-06 [1.99] 4.19e-04 [1.03]

1/160 1.13e-05 [2.08] 1.59e-06 [1.99] 2.06e-04 [1.02]
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Figure 4. [Burgers’ equation] Snapshots of the solution at
T = 0.3 and T = 1.1 for the case of five levels of refinement
with ∆xi = ∆xcoarse/2

5−i for i = 1, . . . , 5. Here ∆xcoarse = 1/20.

5.2. Euler equations of gas dynamics. We next apply the proposed LTS al-
gorithms to solve a system of one dimensional conservation laws. For the spatial
discretization, we employ the DG methods for systems of equations presented in [8]
with the local projection limiting in the characteristic fields. The time-stepping is
still SSP-RK and thus it is straightforward to apply the proposed LTS algorithms
for such a system. We consider the Euler equations of gas dynamics for a polytropic
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Figure 5. [Burgers’ equation] Time evolution of mass obtained
by the second order LTS on meshes with five resolutions ∆xi =
∆xcoarse/2

5−i for i = 1, . . . , 5. Here ∆xcoarse = 1/80.

gas:

(5.4) uuut + fff(uuu)x = 000, uuu = (ρ,m,E)T , fff(uuu) = quuu+ (0, P, qP )T ,

with P = (γ−1)
(
E − 1/2ρq2

)
. Here ρ, q, P and E are the density, velocity, pressure

and total energy, respectively; m = ρ q is the momentum and γ is the ratio of specific
heats. In the following computation, we use γ = 1.4 and present numerical results
of applying the second order LTS algorithm to solve Riemann problems of Euler
equations and the problem of interaction of blast waves. Note that for these test
cases, there is no advantage of using higher order schemes as investigated in [8].

Example 3: Shock tube problem. Consider the Riemann problem

(5.5) uuu(x, 0) =

{
uuuL, x < 0,
uuuR, x > 0,

with two sets of initial conditions:

a) The Sod problem [50]: (ρL, qL, PL) = (1, 0, 1) and (ρR, qR, PR) = (0.125, 0, 0.10);
b) The Lax problem [33]: (ρL, qL, PL) = (0.445, 0.698, 3.528) and (ρR, qR, PR) =

(0.5, 0, 0.571).
The Sod problem has become a standard test problem of Euler equations with

a monotone decreasing density profile. For this problem, we consider two settings
of the decomposition into fine and coarse regions:

(1) two subdomains with the coarse region [−4.9,−0.5) and fine region [−0.5, 5.1);
(2) three subdomains with the coarse regions [−4.9,−2.9) and [4, 5.1], and the

fine region [−2.9, 4).
The exact solution and approximation solution by the second order LTS algorithm
at T = 2.0 with ∆xcoarse = 1/5 and M = 4 are shown in Figure 6 for the case of
two subdomains and in Figure 7 for the case of three subdomains. The L1 relative
errors are displayed in Table 6 in which we observe that for both settings, the errors
decrease as M increases, especially for the three subdomain case, and the order of
convergence is first order as the solution is discontinuous. The three subdomain
setting, as expected, has a better performance since the fine region includes the
contact discontinuities and the corners of rarefaction waves.

For the Lax problem, the density profile has a “built-up” intermediate state, thus
we divide the domain into two subdomains with the coarse region [−4.9, 0) and the
fine region [0, 5.1). The second order LTS approximate solution at T = 1.3 with
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Figure 6. [Sod shock tube problem] Snapshots of the density,
velocity and pressure at T = 2.0 by the second order LTS scheme
with 2 subdomains, ∆xcoarse = 1/5 and M = 4.
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Figure 7. [Sod shock tube problem] Snapshots of the density,
velocity and pressure at T = 2.0 by the second order LTS scheme
with 3 subdomains, ∆xcoarse = 1/5 and M = 4.

Table 6. [Sod shock tube problem] L1 relative errors at T = 2.0
of the second order LTS algorithm for the Sod shock tube problem.

∆xcoarse M Density Velocity Pressure

2 domains 3 domains 2 domains 3 domains 2 domains 3 domains

1/5

1 1.79e-02 3.88e-02 1.76e-02

2 8.96e-03 8.28e-03 2.03e-02 1.75e-02 8.46e-03 7.22e-03

4 6.35e-03 4.25e-03 1.39e-02 8.82e-03 6.82e-03 3.62e-03

8 6.06e-03 2.22e-03 1.27e-02 4.46e-03 7.34e-03 1.81e-03

1/10

1 8.28e-03 1.78e-02 7.24e-03

2 4.41e-03 4.23e-03 9.79e-03 8.83e-03 3.89e-03 3.61e-03

4 2.88e-03 2.21e-03 6.11e-03 4.46e-03 2.76e-03 1.80e-03

8 2.50e-03 1.16e-03 5.19e-03 2.30e-03 2.80e-03 9.03e-04

∆xcoarse = 1/5 and M = 4 is shown in Figure 8 together with the exact solution.
We observe that the LTS scheme captures very well the “built-up” density profile
with local refinement in space and in time. The L1 relative errors are presented in
Table 7 that match our expectation.
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Figure 8. [Lax shock tube problem] Snapshots of the density,
velocity and pressure at T = 1.3 by the second order LTS scheme
with two subdomains, ∆xcoarse = 1/5 and M = 4.

Table 7. [Lax shock tube problem] L1 relative errors at T = 1.3
of the second order LTS algorithm.

∆xcoarse M Density Velocity Pressure

1/5

1 4.74e-02 2.15e-02 1.44e-02

2 2.94e-02 1.69e-02 1.07e-02

4 2.11e-02 1.73e-02 9.12e-03

8 1.18e-02 1.37e-02 7.63e-03

1/10

1 2.52e-02 1.20e-02 6.55e-03

2 1.51e-02 9.07e-03 4.74e-03

4 8.88e-03 7.13e-03 3.91e-03

8 5.70e-03 7.41e-03 4.19e-03

Example 4: Interaction of blast waves. We finally consider the problem of two
interacting blast waves:

(5.6) uuu(x, 0) =

 uuuL, 0 ≤ x < 0.1,
uuuM , 0.1 ≤ x < 0.9,
uuuR, 0.9 ≤ x < 1,

with (ρL, qL, PL) = (1, 0, 103), (ρM , qM , PM ) = (1, 0, 10−2) and (ρR, qR, PR) =
(1, 0, 100). Reflection boundary conditions are applied at x = 0 and x = 1. For
details, see [57, 26].

We divide Ω = [0, 1] into 3 subdomains Ω1 = [0, 0.2), Ω2 = [0.2, 0.9) and Ω3 =
[0.9, 1]. The mesh and time step sizes in Ω2 are M times smaller than those in Ω1

and Ω3. The solutions at T = 0.038 with the second order global time-stepping
(M = 1) and local time-stepping (M = 2) are shown in Figure 9. We see that
the LTS scheme with a local refinement in space and time gives a much better
resolution, especially for the density profile.

6. Conclusion

In this work, high order explicit local time-stepping algorithms have been pro-
posed and analyzed for hyperbolic conservation laws. The approaches are of predictor-
corrector type, and algorithms of up to fourth order accuracy are constructed in a
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Figure 9. [Blast waves’ interaction problem] Snapshots of the
density, velocity and pressure at T = 0.038 by the second order
GTS (M = 1) and LTS (M = 2) schemes with ∆xcoarse = 1/200.

general setting of Runge-Kutta discontinuous Galerkin methods with the modified
minmod limiter. With our LTS schemes, different time-step sizes can be used based
on a local CFL condition instead of the more restrictive global CFL condition.
Thus, they outperform the global time-stepping for simulations on multi-resolution
meshes or of multiple scales. In addition, we rigorously prove the conservation prop-
erty and nonlinear stability of these schemes. Numerical results confirm their accu-
racy and efficiency. Future work includes the coupling of adaptive multi-resolution
meshes with our local time-stepping to carry out simulations in parallel and further
investigations on the numerical performance of the proposed approaches for large
scale simulations on modern supercomputer systems.
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Appendices

A. SSP-RK time stepping schemes

We first present the SSP-RK(2,2) and SSP-RK(3,3) schemes for solution of the
system (2.4), which are optimal in the sense that the number of stages equals the
order of accuracy and the coefficients βi,ν are nonnegative [20]. In both cases, the
schemes possess the SSP coefficient C = 1.

Second order SSP-RK(2,2): α10 = β10 = 1, α20 = α21 = β21 = 1/2 and β20 = 0,
which is equivalent to the Heun’s method:

(A.1)
UUU
n,(1)
h = UUUnh + ∆tLLLh(UUUnh),

UUUn+1
h = 1/2UUUnh + 1/2

(
UUU
n,(1)
h + ∆tLLLh(UUU

n,(1)
h )

)
.

Third order SSP-RK(3,3): α10 = β10 = 1, α20 = 3/4, α21 = β21 = 1/4, α30 =
1/3, α32 = β32 = 2/3 and β20 = β30 = α31 = β31 = 0, or explicitly:

(A.2)

UUU
n,(1)
h = UUUnh + ∆tLLLh(UUUnh),

UUU
n,(2)
h = 3/4UUUnh + 1/4

(
UUU
n,(1)
h + ∆tLLLh(UUU

n,(1)
h )

)
,

UUUn+1
h = 1/3UUUnh + 2/3

(
UUU
n,(2)
h + ∆tLLLh(UUU

n,(2)
h )

)
.

For higher order schemes r ≥ 4, we can not avoid negative βiν without using
additional stages. We shall use the SSP-RK(5,4) proposed in [32] with the SSP
coefficient C = 1.652, and the coefficients of the scheme are listed in Table 8.

αiν

1 0 0 0 0
0.261216512493821 0.738783487506179 0 0 0
0.623613752757655 0 0.376386247242345 0 0
0.444745181201454 0.120932584902288 0 0.434322233896258 0
0.213357715199957 0.209928473023448 0.063353148180384 0 0.513360663596212

βiν

0.605491839566400 0 0 0 0
0 0.447327372891397 0 0 0

0.000000844149769 0 0.227898801230261 0 0
0.002856233144485 0.073223693296006 0 0.262978568366434 0
0.002362549760441 0.127109977308333 0.038359814234063 0 0.310835692561898

Table 8. [32] Coefficients of the SSP-RK (5,4) scheme with C = 1.652.

B. Derivation of the predictors

We derive the predictors up to the fourth order accuracy (k = 1, 2, 3) in the DG-
RK setting. To simplify the notation, in the following, we consider an arbitrary
equation in the system (2.4) and write it in the form:

(B.1) ∂twj = Lj(www),

where www = (wj(t))∀ j (wj represents u(l)
j and we have dropped the superscript (l)

for simplicity) and Lj is a multivariable, real-valued function.
Given the time partition with coarse and fine time steps as defined in Sec-

tion 3 and assume that the solution wwwn at tn is known, we shall construct the
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approximation of www at the interface xj+1/2 at the intermediate time levels tn,p for
p = 1, . . . ,M − 1. Performing Taylor expansion of wj at tn yields:

(B.2) wj(t) = wj(t
n)+(t−tn)

dwj
dt

(tn)+. . .+
1

k!
(t−tn)k

d(k)wj
dt

(tn)+O
(
(∆t)k+1

)
.

The time derivatives of wj up to order k are approximated by the SSP-RK solution
of the first (s− 1) stages with the coarse time step size, wn,(i)j for i = 1, . . . , s− 1.
These approximations are detailed in the following for the second, third and fourth
order schemes respectively.

B.1. Predictor for the SSP-RK(2,2) scheme. We obtain the approximation
for wn,pj = w

n,p,(0)
j by truncating (B.2) to the second term:

(B.3) w
n,p,(0)
j = w

n,(0)
j +

p∆t

M
∂tw

n,(0)
j +O(∆t2p), p = 0, 1, . . . ,M − 1,

where ∆tp = p∆t/M. To compute the first time derivative, we first notice that
∂tw

n,(0)
j = Lj(www

n,(0)) according to (B.1). Thus, by using the solution at stage 1 of
SSP-RK(2,2) with the coarse time step size

w
n,(1)
j = w

n,(0)
j + ∆tLj(www

n,(0)),

we deduce that

(B.4) ∂tw
n,(0)
j = Lj(www

n,(0)) =
w
n,(1)
j − wn,(0)

j

∆t
+O (∆t) .

Substituting this into (B.3) yields:

(B.5) w
n,p,(0)
j = w

n,(0)
j +

p

M

(
w
n,(1)
j − wn,(0)

j

)
+O(∆t2).

We also need to predict wn,p,(1)
j , the solution at stage 1 at intermediate time levels,

for p = 0, . . . ,M − 1. By definition of the SSP-RK(2,2) scheme, we have:

w
n,p,(1)
j = w

n,p,(0)
j +

∆t

M
Lj(www

n,p,(0)),

As Lj(wwwn,p,(0)) = Lj(www
n,(0)) +O(∆t), we deduce from (B.6) that

w
n,p,(1)
j = w

n,p,(0)
j +

∆t

M
Lj(www

n,(0)) +O(∆t2),

or equivalently via (B.5)

(B.6) w
n,p,(1)
j = w

n,p,(0)
j +

p+ 1

M

(
w
n,(1)
j − wn,(0)

j

)
+O(∆t2).

It is clear from (B.5) and (B.6) that the proposed predictor gives second order
accurate approximations of the solutions at intermediate time levels tn,p, for p =
0, . . . ,M − 1.
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B.2. Predictor for the SSP-RK(3,3) scheme. As in the second order case, we
approximate wn,p,(0)

j by truncating (B.2), but now to the third term:
(B.7)

w
n,p,(0)
j = w

n,(0)
j +

p∆t

M
∂tw

n,(0)
j +

1

2

(
p∆t

M

)2

∂ttw
n,(0)
j +O(∆t3p), p = 0, 1, . . . ,M−1.

The time derivatives are computed from the solutions at stage 1 and stage 2 of
SSP-RK(3,3) with the coarse time step size:

w
n,(1)
j = w

n,(0)
j + ∆tLj(www

n,(0)),(B.8)

w
n,(2)
j =

3

4
w
n,(0)
j +

1

4
w
n,(1)
j +

1

4
∆tLj(www

n,(1)).(B.9)

The first time derivative can be obtained as in (B.4), for the second time derivative,
by the chain rule we deduce from (B.1) that

∂ttwj = ∇Lj(www) · ∂twww,

and we will compute the right-hand side by using (B.9). In particular, by performing
first order Taylor expansion, we obtain:

Lj(www
n,(1)) = Lj(www

n,(0)) +∇Lj(wwwn,(0)) · (wwwn,(1) −wwwn,(0)) +O(∆t2).

Substituting this into (B.9) yields

w
n,(2)
j =

3

4
w
n,(0)
j +

1

4
w
n,(1)
j +

1

4
∆tLj(www

n,(0))+
1

4
∆t2∇Lj(wwwn,(0))·∂t(wwwn,(0))+O(∆t3),

from which we deduce that

∆t2∇Lj(wwwn,(0)) · ∂t(wwwn,(0)) = 4w
n,(2)
j − 3w

n,(0)
j − wn,(1)

j −∆tLj(www
n,(0)) +O(∆t3)

= 4w
n,(2)
j − 2w

n,(0)
j − 2w

n,(1)
j +O(∆t3),

where the last equality is obtained by (B.4). Inserting this and (B.4) into (B.7), we
arrive at

w
n,p,(0)
j = w

n,(0)
j +

p

M
(w

n,(1)
j −wn,(0)

j )+
p2

M2

(
2w

n,(2)
j − wn,(0)

j − wn,(1)
j )

)
+O(∆t3),

for p = 0, 1, . . . ,M − 1. Similarly, we can approximate wn,p,(1)
j and w

n,p,(2)
j , the

solutions at stage 1 and stage 2 of SSP-RK(3,3) as follows:

w
n,p,(1)
j = w

n,p,(0)
j +

∆t

M
Lj(www

n,p,(0)
j )

= w
n,p,(0)
j +

∆t

M

(
Lj(www

n,(0)) +∇Lj(wwwn,(0)) · (wwwn,p,(0) −wwwn,(0)) +O(∆t2)
)

= w
n,p,(0)
j +

∆t

M
Lj(www

n,(0)
j ) +

∆t

M
∇Lj(wwwn,(0)) · p∆t

M
∂twww

n,(0) +O(∆t3)

= w
n,(0)
j +

p+ 1

M
(w

n,(1)
j − wn,(0)

j ) +
p(p+ 2)

M2

(
2w

n,(2)
j − wn,(0)

j − wn,(1)
j )

)
+O(∆t3),
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and

w
n,p,(2)
j =

3

4
w
n,p,(0)
j +

1

4
w
n,p,(1)
j +

1

4

∆t

M
Lj(www

n,p,(1))

=
3

4
w
n,p,(0)
j +

1

4
w
n,p,(1)
j +

1

4

∆t

M

(
Lj(www

n,(0)) +∇Lj(wwwn,(0)) · (wwwn,p,(1) −wwwn,(0))

+O(∆t2)
)

= w
n,p,(0)
j +

∆t

M
Lj(www

n,(0)) +
∆t

M
∇Lj(wwwn,(0)) · (p+ 1)∆t

M
∂twww

n,(0) +O(∆t3)

= w
n,(0)
j +

2p+ 1

2M
(w

n,(1)
j − wn,(0)

j ) +
2p2 + 2p+ 1

2M2

(
2w

n,(2)
j − wn,(0)

j − wn,(1)
j )

)
+O(∆t3).

B.3. Predictor for the SSP-RK(5,4) scheme. Again, we approximate wn,p,(0)
j

by truncating (B.2), now to the fourth term:
(B.10)

w
n,p,(0)
j = w

n,(0)
j +

p∆t

M
∂tw

n,(0)
j +

1

2

(
p∆t

M

)2

∂ttw
n,(0)
j +

1

6

(
p∆t

M

)3

∂tttw
n,(0)
j +O(∆t4p),

for p = 0, 1, . . . ,M − 1. As for the second and third order cases, we approximate
the time derivatives

∂tw
n,(0)
j = Lj(www

n,(0)), ∂ttw
n,(0)
j = ∇Lj(wwwn,(0)) · ∂twwwn,(0),(B.11)

∂tttw
n,(0)
j = (∂twww

n,(0))T HHHLj (www
n,(0)) ∂twww

n,(0) +∇Lj(wwwn,(0)) · ∂ttwwwn,(0),(B.12)

by using the solution the first four stages of SSP-RK(5,4) with the coarse time step
size:

w
n,(1)
j = α10w

n,(0)
j + β10∆tLj(www

n,(0)),(B.13)

w
n,(2)
j = α20w

n,(0)
j + α21w

n,(1)
j + β21∆tLj(www

n,(1)),(B.14)

w
n,(3)
j = α30w

n,(0)
j + β30∆tLj(www

n,(0)) + α32w
n,(2)
j + β32∆tLj(www

n,(2)),(B.15)

w
n,(4)
j = α40w

n,(0)
j + β40∆tLj(www

n,(0)) + α41w
n,(1)
j + β41∆tLj(www

n,(1))(B.16)

+ α43w
n,(3)
j + β43∆tLj(www

n,(3)).

Denote by

(B.17) ∆tn,(i) = γ(i)∆t, i = 0, 1, 2, 3,

with

(B.18) γ(0) = 0, γ(1) = β10, γ
(2) = α21γ

(1) + β21, γ
(3) = α32γ

(2) + β32 + β30.

From (B.13) we have

∆t ∂tw
n,(0)
j = ∆t Lj(www

n,(0)) =
1

β10

(
w
n,(1)
j − α10w

n,(0)
j

)
.
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Next, we approximate the flux by Taylor expansion with O(∆t3) truncated error:

Lj(www
n,(1)) = Lj(www

n,(0)) +∇Lj(wwwn,(0)) · (wwwn,(1) −wwwn,(0))

(B.19)

+
1

2
(wwwn,(1) −wwwn,(0))HHHLj (www

n,(0)) (wwwn,(1) −wwwn,(0)) +O(∆t3)

= Lj(www
n,(0)) +∇Lj(wwwn,(0)) ·

(
∆tn,(1) ∂twww

n,(0) +
(∆tn,(1))2

2
∂ttwww

n,(0)

)
+

(∆tn,(1))2

2
(∂twww

n,(0))T HHHLj (www
n,(0)) ∂twww

n,(0) +O(∆t3),

= Lj(www
n,(0)) + ∆tn,(1) ∂ttw

n,(0)
j +

(∆tn,(1))2

2
∂tttw

n,(0)
j +O(∆t3),

in which ∆tn,(1) is defined in (B.17) and the last equality is obtained by substituting
the derivatives in time (B.11)-(B.12). Similarly,

Lj(www
n,(2)) = Lj(www

n,(0)) + ∆tn,(2) ∂ttw
n,(0)
j +

(
∆tn,(2)

)2
2

∂tttw
n,(0)
j +O(∆t3),

(B.20)

and

Lj(www
n,(3)) = Lj(www

n,(0)) + ∆tn,(3) ∂ttw
n,(0)
j +

(
∆tn,(3)

)2
2

∂tttw
n,(0)
j +O(∆t3).

(B.21)

For the fourth order SSP-RK scheme, the number of stages is larger than the
order of the scheme. Consequently, we can compute different approximations of
the time derivatives ∂ttw

n,(0)
j and ∂tttw

n,(0)
j using either equations (B.19)-(B.20)

or (B.20)-(B.21). In particular, if we substitute the equations (B.19)-(B.20) into
(B.14)-(B.15), we obtain the following system for ∂ttw

n,(0)
j and ∂tttw

n,(0)
j :

w
n,(2)
j = Aj + β21β10∆t2∂ttw

n,(0)
j + β21β

2
10

∆t3

2
∂tttw

n,(0)
j +O(∆t4),

(B.22)

w
n,(3)
j = Bj + β32(α21β10 + β21)∆t2∂ttw

n,(0)
j + β32(α21β10 + β21)2 ∆t3

2
∂tttw

n,(0)
j

+O(∆t4),(B.23)

where

Aj = α20w
n,(0)
j + α21w

n,(1)
j +

β21

β10

(
w
n,(1)
j − α10w

n,(0)
j

)
,

Bj = α30w
n,(0)
j + α32w

n,(2)
j +

(β30 + β32)

β10

(
w
n,(1)
j − α10w

n,(0)
j

)
.

By solving (B.22)-(B.23), we can compute fourth order approximations of ∂ttw
n,(0)
j

and ∂tttw
n,(0)
j , denoted by ∂ttw

n,(0)
j and ∂tttw

n,(0)
j , as linear combinations of the

solutions at different stages with the coarse time step size wn,(0)
j , w

n,(1)
j , w

n,(2)
j and
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w
n,(3)
j :

(B.24)
∂ttw

n,(0)
j = ∂ttw

n,(0)
j (w

n,(0)
j , w

n,(1)
j , w

n,(2)
j , w

n,(3)
j ),

∂tttw
n,(0)
j = ∂tttw

n,(0)
j (w

n,(0)
j , w

n,(1)
j , w

n,(2)
j , w

n,(3)
j ).

Similarly, we can substitute the equations (B.20)-(B.21) into (B.15)-(B.16) to obtain
alternative approximations of ∂ttw

n,(0)
j and ∂tttw

n,(0)
j , denoted by ∂ttw

n,(0)
j and

∂tttw
n,(0)
j , as linear combinations of the solutions wn,(0)

j , w
n,(1)
j , w

n,(3)
j and wn,(4)

j :

(B.25)
∂ttw

n,(0)
j = ∂ttw

n,(0)
j (w

n,(0)
j , w

n,(1)
j , w

n,(3)
j , w

n,(4)
j ),

∂tttw
n,(0)
j = ∂tttw

n,(0)
j (w

n,(0)
j , w

n,(1)
j , w

n,(3)
j , w

n,(4)
j ).

To take into account values at all four stages, we choose the average of (B.24) and
(B.25) as approximations of ∂ttw

n,(0)
j and ∂tttw

n,(0)
j respectively and insert them

into (B.10) to obtain a fourth order approximation of wn,p,(0)
j .

Next, we approximate wn,p,(i)j , i = 1, 2, 3, 4 based on the definition of the SSP-
RK(5,4) scheme:

w
n,p,(i)
j =

i−1∑
ν=0

αiνw
n,p,(ν)
j + βiν

∆t

M
Lj(www

n,p,(ν)), ∀ i = 1, 2, 3, 4.

Denote by
∆tn,p,(i) = (p+ γ(i))

∆t

M
, i = 0, 1, 2, 3,

with γ(i) defined in (B.18). We approximate Lj(wwwn,p,(i)), i = 0, 1, 2, 3, as in (B.19)-
(B.21) and use (B.24) and (B.25) to approximate the time derivatives:

Lj(www
n,p,(i)) = Lj(www

n,(0)) + ∆tn,p,(i)∂ttw
n,(0)
j +

1

2
(∆tn,p,(i))2∂tttw

n,(0)
j +O

(
∆t3

)
.

Using this we can compute wn,p,(i)j , i = 1, 2, 3, 4 with fourth order accuracy in time.

Remark B.1. By construction, the predictors for SSP-RK(2, 2), SSP-RK(3, 3) and
SSP-RK(5, 4) are respectively second, third and fourth order accurate in time.
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