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Abstract

In this paper we develop explicit local time-stepping (LTS) schemes with second and third order
accuracy for the shallow water equations. The system is discretized in space by a C-grid stagger-
ing method, namely the TRiSK scheme adopted in MPAS-Ocean, a global ocean model with the
capability of resolving multiple resolutions within a single simulation. The time integration is de-
signed based on the strong stability preserving Runge-Kutta (SSP-RK) methods, but different time
step sizes can be used in different regions of the domain through the coupling of coarse-fine time
discretizations on the interface, and are only restricted by respective local CFL conditions. The
proposed LTS schemes are of predictor-corrector type in which the predictors are constructed based
on Taylor series expansions and SSP-RK stepping algorithms. The schemes preserve some impor-
tant physical quantities in the discrete sense, such as exact conservation of the mass and potential
vorticity and conservation of the total energy within time truncation errors. Moreover, they inherit
the natural parallelism of the original explicit global time-stepping schemes. Extensive numerical
tests are presented to illustrate the performance of the proposed algorithms.

Keywords: Shallow water equations, local time-stepping, strong stability preserving
Runge-Kutta, finite volume, mass conservation, potential vorticity

1. Introduction

MPAS-Ocean (Model for Prediction Across Scales) is a global ocean model recently introduced
in [34] with the capability of resolving multiple resolutions within a single simulation. It, hence,
can be used for both global ocean climate-change applications and coastal applications with dif-
ferent spatial scales between different regions of the domain. Because of its natural parallelism
and low computational cost, explicit global time-stepping has been implemented and widely used
in MPAS-Ocean. However, it is very restrictive due to the CFL condition controlled by the size
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of the smallest cell and results in computational inefficiency in the context of a multi-resolution
approach. Therefore, the use of multi-resolution spherical centroidal Voronoi tessellation (SCVT)
meshes [9, 10, 32, 22] in MPAS naturally requires the development of multiscale time-stepping algo-
rithms, especially for the coastal-ocean modeling in which the time step sizes taken near the coast
should be much smaller than those for the ocean, ensuring preservation of important physical prop-
erties such as the conservation of mass, potential vorticity, and energy. Taking this challenge, we
develop conservative, explicit, local time-stepping (LTS) algorithms in this work, in which local time
refinement is coupled with local spatial refinement and the time step size depends on the locally
varying CFL condition, but not on the global CFL condition. Although we will restrict ourselves
to explicit time-stepping schemes, one surely can enforce nonconforming time grids implicitly using
the domain decomposition approach [13, 4, 18, 19].

A conservative, LTS algorithm was first introduced in [29] for one-dimensional scalar conservation
laws based on the forward Euler discretization in time. The proposed scheme is first order accurate
in both space and time. Extension to high resolution schemes with slope limiters for advection
equations was presented in [7], and to second order in time was thoroughly analyzed for one-
dimensional scalar conservation laws in [8] with two-dimensional numerical results showing that
LTS schemes are very competitive to the global time-stepping with respect to the accuracy in
time. In addition, numerical studies of LTS schemes for two and three dimensional problems in
[11, 44, 45, 28] confirm that the schemes are most advantageous when coupled with local spatial
refinement. Application of LTS schemes to the shallow water equations (SWEs) was investigated
in [38] using a Godunov-type finite volume method for the spatial discretization and in [47] using
Runge-Kutta discontinuous Galerkin finite element methods. Note that the LTS scheme in [38]
is first order accurate in time while the one in [47] is second order in time away from the local
time-stepping interface and first order at the interface. The time-stepping scheme used in [47] is
the second order strong stability preserving Runge-Kutta (SSP-RK) method, also known as a total
variation diminishing method introduced in [40, 43]. High-order Runge-Kutta (RK) based explicit
LTS methods were introduced for conservation laws in [24, 1] and for wave propagation in [16].

Other works related to LTS include the adaptive mesh refinement (AMR) method [2, 3], the
multirate time-stepping method [6] and the Implicit-Explicit (IMEX) based LTS methods [36, 17].
The AMRmethod involves the refinement in both space and time, i.e., small time step sizes are taken
on the refined mesh and large time step sizes on the coarse mesh. It is different from our approach
in the way that refined grids are placed over regions of the coarse grid and information is exchanged
between the grids by means of injection and interpolation. The multirate time-stepping method
allows different time step sizes in different regions but it requires buffer regions to accommodate
the time scale transition between regions. An overview of LTS techniques over the last two decades
can be found in [12].

As a first step toward developing efficient local time-stepping algorithms for the ocean model
by MPAS-Ocean, in this work we consider discretizing the shallow water equations in space by the
TRiSK scheme [46, 35]. The TRiSK scheme is a C-grid staggering, finite-volume type scheme used
in MPAS-Ocean for the horizontal discretization and is up to second order accurate in space [46, 35].
It involves both primal and dual variables in a way such that many desirable properties, such as
the conservation of some important nonlinear physical quantities on highly variable meshes, could
be achieved. The objective of this study is to design LTS algorithms working with TRiSK spatial
discretization such that the conservation properties are still preserved after time integration. We
construct up to third order accurate LTS algorithms based on the SSP-RK method. For long time
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simulations, the third order SSP-RK scheme is preferable to the second order one as it allows larger
time step sizes and has a much better stability region; in particular, it is well known that the second
order SSP-RK method is identical to the classical Heun’s method whose stability region does not
contain any purely imaginary number. Extension to even higher order in time schemes could be
done in a similar way.

The proposed LTS schemes are of predictor-corrector type which was first introduced in [29]
using the forward Euler time-stepping. In order to construct high order LTS algorithms, the key
idea is to find high order approximations on the interface at intermediate time levels to handle the
coupling between coarse and fine time steppings. Here we derive the predictors based on Taylor
series expansions of the solution at the current time level and the SSP-RK stepping algorithms at
each intermediate time level. The resulting LTS scheme is (p + 1)-th order accurate (for p = 1, 2)
provided that the predictor is a p-th order Taylor series approximation (with a truncation error
of (p + 1)-th order) and the SSP-RK scheme is of (p + 1)-th order accuracy. It should be noted
that for the first order time-stepping (p = 0), this approach is identical to the first LTS scheme
introduced in [29], where the predictor is obtained by freezing the values at the current time level.
Therefore, the approach presented in this paper can be seen as a generalization of [29] to high order
time discretizations. In addition, because of the well-defined predictor, the accuracy in time of
the proposed schemes is consistent on the whole domain; in particular, the LTS algorithm based
on SSP-RK2 is second order accurate in time even at the local time-stepping interface, instead
of only first order accurate in time at the interface as in [47]. Exact conservation of mass is
guaranteed through the use of the corrector which is defined based on the idea in [29]. Note that
high order LTS schemes of predictor-corrector type were also introduced in [24, 1] for conservation
laws. However, the predictors in [24, 1] are designed for Runge-Kutta time-steppings and obtained
by using interpolating polynomials of degree (p+ 1) for the (p+ 1)-th order Runge-Kutta method.
In fact, it is not necessary to use interpolating polynomials of degree higher than p to construct the
predictor for the (p + 1)-th order LTS scheme because the predicted values for the interface only
contribute to the fluxes at the interface when advancing in time in regions with smaller time step
sizes. These interface values are corrected later by following the current time-stepping scheme (and
in such a way as to conserve fluxes). Thus, the predictors proposed in this work are essentially
different from those in [24, 1]. Additionally, the proposed LTS algorithms built on the TRiSK
discretization in space have some specific features due to the use of C-grids and staggered variables,
for example, the introduction of two interface layers (instead of one layer as usual) to balance fluxes
between regions of different time step sizes. Numerical tests confirm that there is no loss of accuracy
due to local time-stepping for our LTS schemes when compared to using the globally defined CFL
time step size, and that the total energy (sum of the potential and kinetic energy) is well conserved
within the time truncation error. The proposed schemes also inherit the natural parallelism of the
explicit global time-stepping schemes.

The paper is outlined as follows: in Section 2, we introduce the model shallow water equations at
the continuous level and discuss the dynamics of potential vorticity. Then we give a brief description
of the TRiSK scheme for the spatial discretization of the problem in Section 3. Our main results
are then presented in Section 4 in which the second and third order local time-stepping schemes are
derived and conservation of mass is proved. Numerical results on various test cases are discussed
in Section 5 and some concluding remarks are finally given in Section 6. Additionally, detailed
derivation of the predictors used in the LTS schemes is presented in Appendix A.
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2. Nonlinear shallow water equations

We consider the nonlinear, inviscid shallow water equations in the “vector-invariant” form [35]
as follows:

∂h

∂t
+∇ · (huuu) = 0, (1)

∂uuu

∂t
+ ηuuu⊥ = −g∇(h+ b)−∇K (2)

with the initial conditions h(·, 0) = h0, uuu(·, 0) = uuu0 and appropriate boundary conditions if needed.
The above hyperobolic system describes the motion of a layer of fluid on a two-dimensional surface
in a rotating reference frame, where h represents the fluid layer thickness, uuu the fluid vector velocity
along the surface of the sphere, uuu⊥ := kkk × uuu the velocity rotated through a right angle with kkk the
unit vector pointing in the local vertical direction such that kkk · uuu = 0, the absolute vorticity η is
defined as kkk · ∇ ×uuu+ f and the kinetic energy K is |uuu|2/2. The parameters involved are gravity g,
Coriolis parameter f and bottom topography b.

The fluid potential vorticity (PV), denoted by q, is related to the absolute vorticity and thickness
field as

q =
η

h
. (3)

Substituting (3) into (2), we obtain another form of the momentum equation:

∂uuu

∂t
+ q(huuu⊥) = −g∇(h+ b)−∇K, (4)

where q(huuu⊥) is the nonlinear Coriolis force that contains the quasi-linear Coriolis force fuuu⊥ and
the rotational part of the nonlinear transport term. It has been observed and proven that the PV
is a key quantity in the interpretation of atmosphere and ocean dynamics (e.g. [5, 21, 27]) and it
is important for numerical models to faithfully represent some aspects of the PV dynamics, such as
its compatibility with the momentum equation and its Lagragian behavior. In particular, one can
derive the PV equation by manipulating the momentum equation (2):

∂η

∂t
+∇ · [ηuuu] = 0, (by taking kkk · ∇× (2)) (5)

or equivalently, given the relationship between the absolute vorticity and the PV,

∂(hq)

∂t
+∇ · [hquuu] = 0. (6)

Thus the evolution of the thickness-weighted PV (hq) depends solely on the divergence of the PV
flux (hquuu), and so the conservation of PV is guaranteed.

Concerning the PV Lagrangian property, it means that PV evolves, in the frictionless and
adiabatic limit, as Dq/Dt = 0 where D/Dt is the material derivative. This can be recovered from
(6) and the thickness equation (1):

Dq

Dt
=
∂q

∂t
+ uuu · ∇q = 0. (7)

A numerical scheme is considered to be consistent with respect to the Lagrangian behavior of PV
if a discrete analog of (7) is satisfied.

4



Remark 2.1. It is shown in Equations (2) and (4) that the nonlinear Coriolis force plays a fun-
damental role in both system energetics and potential vorticity dynamics. Consequently, robust
construction of the discrete Coriolis force is critical to ensure the accuracy of the simulation of
geophysical flows. We also can obtain from (6) the relationship between the PV-weighted thickness
flux hquuu and the nonlinear Coriolis force hquuu⊥ in the momentum equation (4):

∂(hq)

∂t
= −∇ · [hquuu] = −kkk · ∇ × (hquuu⊥). (8)

Such a relationship is a key point of the discretization of the momentum equation so that the discrete
PV equation is both consistent and conservative.

3. Spatial discretization of the SWEs: the TRiSK scheme

The TRiSK scheme provides a unified approach to the conservation of total energy and a robust
simulation of potential vorticity on unstructured, locally orthogonal meshes. In this section, we
briefly recall the TRiSK scheme (we refer to [46, 35] for a full presentation of the scheme). We
begin with a description of the spherical centroidal Voronoi tessellation (SCVT) [9, 10] as the primal
mesh for the TRiSK scheme and some notations that will be used in the spatially semi-discretized
system, then we present the spatially discrete operators involved in the scheme.

3.1. SCVT meshes
Let us consider a SCVT of the surface of a sphere and its dual Delaunay triangulation, which

will be used as the primal and dual meshes for the TRiSK scheme. Note that the dual edges are
perpendicular to and bisected by the primal edges in the SCVT as illustrated in Figure 1. Notations
used in the semi-discrete system are defined in Tables 1-3 for the mesh elements and quantities, the
mesh connectivity, the normal and tangential vectors respectively.

The target primal mesh is a Voronoi diagram of the surface of the sphere. The primal mesh cell centers xi are generated by
recursive bisection of the icosahedron [13]. The xi locations are then iteratively modified to produce a Spherical Centroidal
Voronoi Tessellation (SCVT) (see [9,10]). SCVTs are a special subset of Voronoi diagrams where the xi location is not only a
Voronoi generator, but also the centroid of cell Pi.

It is important to note that the bisection method can lead to meshes that may or may not be Voronoi diagrams. For exam-
ple, the bisection method used by [13] leads to a Voronoi diagram, while the bisection method used by [36] does not. The
difference arises due to the positioning of the dual mesh centers xv . Confusion can arise since both [13,36] refer to their

Fig. 1. Definition of elements in discrete system. Also see Table 1.

Table 1
Definition of elements used to build the discrete system.

Element Type Definition

xi Point Location of center of primal mesh cells
xv Point Location of center of dual-mesh cells
xe Point Location of edge points where velocity is defined
de Line segment Distance between neighboring xi locations
le Line segment Distance between neighboring xv locations
Pi Cell A cell on the primal mesh
Dv Cell A cell on the dual-mesh

Table 2
Definition of element groups used to build the discrete system. Examples are provided in Fig. 2.

Syntax Output

e 2 ECðiÞ Set of edges that define the boundary of Pi

e 2 EVðvÞ Set of edges that define the boundary of Dv
i 2 CEðeÞ Two primal mesh cells that share edge e
i 2 CVðvÞ Set of primal mesh cells that form the vertices of dual mesh cell Dv
v 2 VEðeÞ The two dual-mesh cells that share edge e
v 2 VIðiÞ The set of dual-mesh cells that form the vertices of primal mesh cell Pi

e 2 ECPðeÞ Edges of cell pair meeting at edge e
e 2 EVCðv ; iÞ Edge pair associated with vertex v and mesh cell i

3070 T.D. Ringler et al. / Journal of Computational Physics 229 (2010) 3065–3090

Figure 1: An illustration of the primal and dual cells used for the TRiSK scheme [35].
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Notation Definition
xi centers of primal mesh cells
xv centers of dual mesh cells
xe the intersection point between the primal and dual edges
Pi primal cells corresponding to xi

Dv dual cells corresponding to xv

le length of the primal edge e
de length of the dual edge intersecting e
Ai area of the primal cell Pi

Ad
v area of the dual cell Dv

Ae
e area associated with the primal edge e: Ae

e = 1/2 lede

Table 1: List of notations used to describe the mesh elements and quantities.

Notation Definition
e ∈ EC(i) set of edges of the primal cell Pi

i ∈ CE(e) two primal cells either side of primal edge e
e ∈ EV (v) set of primal edges sharing vertex v
i ∈ CV (v) set of primal cells having v as their vertex
v ∈ V E(e) two endpoints of primal edge e
e′ ∈ ECP (e) set of primal edges nearby e

Table 2: List of notations used to describe the mesh connectivity.

Notation Definition
nnne the unit vector at xe normal to e in the direction corresponding

to positive ue
ttte the unit tangential vector at xe: ttte = kkk ×nnne
ne,i normal indicator function

ne,i =

{
1 if nnne is an outward normal of Pi,
−1 otherwise. (9)

te,v tangential indicator function

te,v =

{
1 if v is in the direction kkk ×nnne ,
−1 otherwise, (10)

i.e., counterclockwise circulation about vertex v contributes posi-
tively to the vorticity at v.

Table 3: List of notations used to describe normal and tangential vectors.

3.2. The spatially semi-discretized system
We first rewrite the continuous SWE system in a more convenient form:

∂h

∂t
+∇ · (FFF ) = 0,

∂uuu

∂t
+ q(FFF⊥) = − (g∇(h+ b) +∇K) ,

(11)

where FFF := huuu is the thickness flux, and FFF⊥ := kkk × huuu is perpendicular to FFF . By using a C-grid
staggering in which the fluid thickness is stored at the primal cell centers, the normal component
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of velocity stored at the primal edges and the PV stored at the dual cell centers, we obtain the
discrete mass and momentum equations as follows:

∂hi
∂t

= −[∇ · Fe]i,

∂ue
∂t

= −F⊥e q̂e − [g∇(hi + bi) +∇Ki]e ,

(12)

where hi represents the mean thickness over the primal cell Pi and ue the component of the velocity
vector in the direction normal to the primal edge e. The thickness flux is defined per unit length
across the primal edge e as

Fe := ĥeue,

in which ĥe = [h]i→e denotes an average value of h on the primal edge e computed from its values
hi on the neighboring primal cells. We remark that this choice of average for computing ĥe is
dependent on the desired physics applications. For wetting and drying cases, it is essential to use
upwinding rather than averaging. Similarly, q̂e := [q]v→e is an average value of q on the primal edge
e computed from its values qv on the neighboring dual cells. Note that the discrete PV qv represents
the mean PV over the dual cell Dv and will be defined later.

As in the continuous equation (11), the flux F⊥e is perpendicular to Fe and it is defined by
using the robust flux interpolation scheme derived in [46]. This will be discussed further in Subsec-
tion 3.2.2. In the following, let us define in detail the discrete divergence [∇ · (·)]i, discrete gradient
[∇(·)]e, discrete curl [∇× (·)]v and four scalar terms F⊥e , q̂e, ĥe and Ki involved in the semi-discrete
system (12). We note the spatial accuracy of the TRiSK scheme is usually between first and second
orders depending on the quality of the meshes [46, 35].

3.2.1. Discrete operators
Using finite volume and finite difference approaches, the formulation for discrete divergence,

gradient and curl operators in the TRiSK scheme are defined as follows:

i) Discrete divergence [∇ · (·)]i:

(∇ ·FFF )i :=
1

Ai

∑
e∈EC(i)

ne,iFele. (13)

ii) Discrete gradient [∇(·)]e:
(∇h)e :=

1

de

∑
i∈CE(e)

−ne,ihi. (14)

iii) Discrete curl [∇× (·)]v:

kkk · (∇×FFF )v :=
1

A
(d)
v

∑
e∈EV (v)

te,vFede. (15)

3.2.2. Flux interpolation
Following the flux interpolation scheme in [46], F⊥e is defined as a weighted combination of Fe′

at the edges e′ surrounding the two cells either side of e:

F⊥e :=
1

de

∑
e′∈ECP (e)

we,e′ le′Fe′ = M(Fe), (16)
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in which we,e′ is the weight to be specified in the following. Denote by δFFFi := (∇·FFF )i, the divergence
of FFF on the primal cell Pi, and by δF

⊥
v := (∇ ·FFF⊥)v, the divergence of FFF⊥ on the dual cell Dv.

Then the weight we,e′ is chosen as in [35] so that δFFF
⊥

v is a convex combination of the surround-
ing δFFFi :

δFFF
⊥

v =
1

A
(d)
v

∑
i∈CV (v)

Ri,vAiδ
FFF
i = I(δFFFi ), (17)

where Ri,v ≥ 0 is the weight associated with each primal-dual mesh intersection area and satisfies∑
v∈V C(i)

Ri,v = 1.

Explicit formulas for we,e′ are given in [46] as follows: we,e = 0 for all primal edges e and

we,e′ =

(∑
v

Ri,v −
1

2

)
ne′,ite,v∗ , ∀ e′ ∈ ECP (e), e′ 6= e, (18)

in which i = CE(e) ∩ CE(e′) and the sum is taken over all vertices v between the edge e′ and
the edge e (either clockwise or counterclockwise around cell i). In addition, v∗ is the last vertex
encountered when traversing from the edge e′ to the edge e.

3.2.3. Discrete PV
The discrete PV is defined at the centers of the dual cells

qv =
ηv
hv
, (19)

where
ηv = kkk · [∇× uennne]v + fv, and fv =

1

Ad
v

∫
Dv

f.

The dual-mesh thickness hv is computed from the primal-mesh thickness using the interpolation
function I (cf. Equation (17)):

hv = I(hi). (20)

The relationship between Fe and F⊥e is used here to obtain consistent thickness, and consistent,
compatible and conservative PV as proven in [35].

The averaging operator q̂e is defined in a way such that the nonlinear Coriolis force is energetically-
neutral: ∑

e

Ae
e Fe F

⊥
e q̂e = 0. (21)

In particular, the following choice is suggested in [35]:

q̂e =
Q⊥e
F⊥e

, (22)

where

Q⊥e =
1

de

 ∑
e′∈ECP (e)

we,e′ le′Fe′

(
q̃e + q̃e′

2

) . (23)
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To define q̃e, one can use the arithmetic mean to guarantee the energy conservation

q̃e =
1

2

∑
v∈V E(e)

qv. (24)

Note that the choice of q̂e in (22) to obtain an energetically-neutral formulation of the nonlinear
Coriolis force on C-grids might not be the optimal choice from a potential enstrophy perspective.
Alternatives to (22) including the potential enstrophy conserving and potential enstrophy dissipating
schemes as discussed in [35, Subsection 3.8] can be accommodated within the TRiSK framework,
though in that case conservation properties are not necessarily followed.

3.2.4. Averaging operators from primal cells to primal edges and vice versa
To ensure a conservative exchange between the potential energy gh(h/2 + b) and the kinetic

energy h|uuu|2/2 in the discrete sense, the discrete thickness on the primal edges is defined as

ĥe =
1

2

∑
i∈CE(e)

hi, (25)

and the discrete kinetic energy on primal cells as

Ki =
1

Ai

∑
e∈EC(i)

A(e)
e

u2e
2
, (26)

where A(e)
e the area associated with the velocity point at xe:

A(e)
e =

1

2
lede.

With the definitions of discrete operators and scalar terms above (in particular, (13),(14) and (15)
for the discrete divergence, gradient and curl operators, (16) and (18) for flux F⊥e , (19), (22) and
(24) for q̂e, (25) and (26) for ĥe and Ki), the semi-discrete system (12) used by MPAS-Ocean is
fully described.

4. Conservative explicit local time-stepping schemes

For time integration of the discrete nonlinear system (12), explicit methods are usually preferred
because they are easy to implement and naturally parallel, facilitating good parallel scalability. We
consider in this work the explicit, strong stability preserving Runge-Kutta (SSP-RK) methods of
second and third order accuracy. In the context of multi-resolution meshes, these explicit schemes
could become inefficient because the global CFL condition is restricted by the size of the smallest
cell. Therefore, we propose LTS schemes with spatially varying time step sizes, which only requires
a local CFL condition instead of the more restrictive, global CFL condition. In this section, we first
describe global time-stepping schemes in which a single time step size ∆t is enforced over the whole
domain and then LTS schemes in which coarse and fine time step sizes are used in different regions
of the problem domain. We will also prove that the proposed LTS schemes conserve mass exactly
on the whole domain.
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4.1. Global time-stepping by the SSP-RK methods
Consider a partition of the time interval [0, T ] into N subintervals

0 = t0 < t1 < . . . < tn < tn+1 < . . . < tN = T, ∆tn = tn+1 − tn.

The fully discrete system associated with (12) is then obtained by using the SSP-RK time discretiza-
tion methods [42, 41] which were introduced to solve systems of ordinary differential equations
(ODEs) resulting from spatial discretization of hyperbolic conservation laws. These methods satisfy
the so-called total variation diminishing (TVD) property, i.e. the total variation of the discrete
solution does not increase in time, which ensures stability of the solution. A thorough description
and analysis of the SSP-RK methods can be found in [42, 41, 14, 15]. For the sake of simplicity of
presentation, we rewrite the semi-discrete system (12) as

∂hi
∂t

= Fi(hhh,UUU),

∂ue
∂t

= Ge(hhh,UUU),

(27)

where hhh = {hi}, UUU = {ue}, Fi(hhh,UUU) = −[∇ · Fe]i and Ge(hhh,UUU) = −F⊥e q̂e − [g∇(hi + bi) +∇Ki]e.

Assume that (hhh0,UUU0) is given. The second order, two-stage SSP-RK scheme, SSP-RK2, for
solving (27) is defined as follows:

i) Stage 1: {
h
n+1
i = hni + ∆tnFi(hhh

n,UUUn),

un+1
e = une + ∆tnGe(hhhn,UUUn),

(28)

ii) Stage 2: 
hn+1
i =

1

2
hni +

1

2

(
h
n+1
i + ∆tnFi(hhh

n+1
,UUU

n+1
)
)
,

un+1
e =

1

2
une +

1

2

(
un+1
e + ∆tnGe(hhh

n+1
,UUU

n+1
)
)
.

(29)

for n = 0, 1, . . . , N − 1.

The SSP-RK2 method is identical to the Heun’s method which is essentially a predictor-corrector
method with forward Euler’s method as predictor and trapezoidal method as corrector. By in-
creasing the number of stages, one can enlarge the regions of absolute stability of the second order
SSP-RK methods (see [25, Figure 4]); however, these regions never contain purely imaginary num-
bers. The accuracy and stability can be improved by using higher order SSP-RK methods, in
particular, here we use the third order, three-stage SSP-RK scheme, SSP-RK3, as follows:

i) Stage 1: {
h
n+1
i = hni + ∆tnFi(hhh

n,UUUn),

un+1
e = une + ∆tnGe(hhhn,UUUn),

(30)

ii) Stage 2: 
h
n+1/2
i =

3

4
hni +

1

4

(
h
n+1
i + ∆tnFi(hhh

n+1
,UUU

n+1
)
)
,

un+
1/2

e =
3

4
une +

1

4

(
un+1
e + ∆tnGe(hhh

n+1
,UUU

n+1
)
)
.

(31)

10



iii) Stage 3: 
hn+1
i =

1

3
hni +

2

3

(
h
n+1/2
i + ∆tnFi(hhh

n+1/2
,UUU

n+1/2
)
)
,

un+1
e =

1

3
une +

2

3

(
un+

1/2
e + ∆tnGe(hhh

n+1/2
,UUU

n+1/2
)
)
.

(32)

for n = 0, . . . , N − 1.

The above SSP-RK2 and SSP-RK3 schemes are also known as the optimal (in the sense of number
of stages required and the CFL coefficient) second and third order SSP-RK method [15]. It should
be noted that SSP-RK3 allows the use of larger time step sizes compared to SSP-RK2 and its region
of absolute stability contains purely imaginary numbers (see [26, Figure 2]), thus it is more efficient
and practically more stable for long time simulations of the shallow water equations. This will be
illustrated in the numerical experiments. Next we present our local time-stepping algorithms based
on these two SSP-RK schemes.

4.2. Local time-stepping (LTS) schemes
For simplicity, we consider a partition of the computational domain into two zones, one with

coarse time increments and the other with fine time increments as depicted in Figure 2:

[tn, tn+1) = ∪M−1k=0 [tn,k, tn,k+1), where tn,0 = tn, and tn,k+1 = tn,k +
∆tn

M
, (33)

for all k = 0, . . . ,M − 1.
In order to define the LTS algorithms for the discrete nonlinear system (12) obtained by the

TRiSK scheme, we need to divide the primal cells into four different sets (see Figure 3):

i) FP is the set of primal cells with fine time increments (‘fine’ cells),

ii) CIF-L1P is the set of primal cells with coarse time increments and neighboring the ‘fine’ cells
(interface-layer 1 cells),

iii) CIF-L2P is the set of primal cells with coarse time increments and neighboring the interface-layer
1 cells (interface-layer 2 cells), and

iv) CintP is the set of remaining cells with coarse time increments (‘coarse’ internal cells).

The edges of the cells in these sets belong to FE (‘fine’ edges), CIF-L1E (interface-layer 1 edges), CIF-L2E

(interface-layer 2 edges), and CintE (‘coarse’ internal edges) respectively. Note that the common edge
between an interface cell and a ‘fine’ cell belongs to F IF

E , the common edge between an interface-layer
1 cell and an interface-layer 2 cell belongs to CIF-L1E and the common edge between an interface layer
2 cell and a ‘coarse’ internal cell belongs to CIF-L2E as depicted in Figure 3. Here we have introduced
two interface layers with coarse time increments, layer 1 and layer 2, to couple the systems in the
‘fine’ region with small time step sizes and in the ‘coarse’ region with large time step sizes. These
two interface layers are treated differently, in particular, the interface-layer 1 is more crucial as it
neighbors the ‘fine’ region and the introduction of the interface-layer 2 is specific to our proposed
schemes as described next.

The proposed LTS algorithms are of predictor-corrector type. In order to advance between
the intermediate time levels tn,k in the ‘fine’ region, we need to first predict the solution on the
interface-layer 1 at all tn,k. We have designed a predictor particularly associated with the SSP-RK

11



Figure 2: Coarse and fine time increments.

Figure 3: An illustration of different types of cells and edges with either coarse or fine time increments.

time discretization, which is based on Taylor series expansion in time of the solution at tn on the
interface-layer 1 with a coarse time step. The derivation of the predictors is presented in detail
in Appendix A. Once the predictor is obtained, we can advance in time in the ‘fine’ region and
in the internal ‘coarse’ region (excluding the two interface layers). The last step is correcting the
interface values using the fluxes at intermediate time levels. Note that the introduction of the
interface-layer 2 is necessary for exact mass conservation (cf. Theorem 4.4) in the context of the
C-grid staggering spatial discretization; in particular, it helps to balance the nonlinear fluxes coming
from the interface-layer 1 computed with approximate values by Taylor expansion. In the following,
we give details of the algorithms based on the optimal second and third order SSP-RK schemes
respectively.

4.2.1. Second order LTS algorithm
As SSP-RK2 consists of two stages, we use Taylor series expansions to predict the values at

intermediate time levels on the interface-layer 1 for both stages. We also compute the solution at
stage 1 on the interface-layer 2 to advance in time in the internal ‘coarse’ region. The predictor-
corrector LTS algorithm based on SSP-RK2 is defined as follows: for n = 0, 1, . . . , N − 1,

1) Interface prediction:

12



1a) First compute the values of the stage 1 of SSP-RK2 (28) on the interface-layer 1 with
the coarse time step size: hn+1

i for i ∈ CIF-L1P and un+1
e for e ∈ CIF-L1E . Then use them

to predict the values on interface cells/edges at intermediate time levels based on the
first-order Taylor expansion as follows:[

hn,ki

un,ke

]
= (1− αk)

[
hni
une

]
+ αk

[
h
n+1
i

un+1
e

]
, (34)[

h
n,k+1
i

un,k+1
e

]
= (1− βk)

[
hni
une

]
+ βk

[
h
n+1
i

un+1
e

]
, (35)

for all i ∈ CIF-L1P and e ∈ CIF-L1E , where

αk =
k

M
, βk =

k + 1

M
, (36)

for k = 0, 1, . . . ,M − 1. Detailed derivation of these coefficients αk and βk is given in
Appendix A.1. Remark that for SSP-RK2 the predictor (34)-(35) by Taylor expansion
happens to be identical to a linear interpolant between the current and forward Euler
solutions. However, the need for Taylor expansions will be clearly seen when extending to
third order or even higher order SSP-RK algorithms. Note that the approximate values
by (34)-(35) will be used to advance in time on ‘fine’ cells (and their edges) neighboring
the interface cells (Step 2a).

1b) Compute the solution at stage 1 of SSP-RK2 on the interface-layer 2 with the coarse
time step size: hn+1

i for all i ∈ CIF-L2P and un+1
e for all e ∈ CIF-L2E . Note that these values

are needed to advance in time on ‘coarse’ internal cells (and their edges) neighboring the
interface-layer 2 (Step 2b).

2) Advancing from tn to tn+1 excluding the interface layers:

2a) For ‘fine’ cells/edges: at each intermediate time level k = 0, 1, . . . ,M − 1, compute the
solution by SSP-RK2 with the fine time step size. Note that the evaluation of the fluxes
only involves the solution on the interface-layer 1 computed at Step 1a) and in the fine
region:

h
n,k+1
i = hn,ki +

∆tn

M
Fi(hhh

n,k|CIF-L1P ∪FP
,UUUn,k|CIF-L1E ∪FE

), ∀ i ∈ FP ,

un,k+1
e = un,ke +

∆tn

M
Ge(hhhn,k|CIF-L1P ∪FP

,UUUn,k|CIF-L1E ∪FE
), ∀ e ∈ FE ,

(37)

and
hn,k+1
i =

1

2
hn,ki +

1

2

(
h
n,k+1
i +

∆tn

M
Fi(hhh

n,k+1|CIF-L1P ∪FP
,UUU

n,k+1|CIF-L1E ∪FE
)

)
, ∀ i ∈ FP ,

un,k+1
e =

1

2
un,ke +

1

2

(
un,k+1
e +

∆tn

M
Ge(hhh

n,k+1|CIF-L1P ∪FP
,UUU

n,k+1|CIF-L1E ∪FE
)

)
, ∀ e ∈ FE .

(38)
2b) For ‘coarse’ internal cells/edges: do similar calculations as SSP-RK2 with the coarse time

step size. Note that only the solution on the interface-layer 2 computed at Step 1b) and
in the internal coarse region is used to evaluate the fluxes.
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3) Interface correction:

i) Stage 1:
h̃n+1
i = hni +

∆tn

M

M−1∑
k=0

Fi(hhh
n,k,UUUn,k), ∀ i ∈ CIF-L1P ∪ CIF-L2P ,

ũn+1
e = une +

∆tn

M

M−1∑
k=0

Ge(hhhn,k,UUUn,k), ∀ e ∈ CIF-L1E ∪ CIF-L2E ,

(39)

in which{
hn,ki = hni , if i ∈ CIF-L2P ∪ CintP ,

un,ke = une , if e ∈ CIF-L2E ∪ CintE ,
for k = 0, 1, . . . ,M − 1. (40)

ii) Stage 2:
hn+1
i =

1

2
hni +

1

2

(
h̃n+1
i +

∆tn

M

M−1∑
k=0

Fi(hhh
n,k+1

,UUU
n,k+1

)

)
, ∀ i ∈ CIF-L1P ∪ CIF-L2P ,

un+1
e =

1

2
une +

1

2

(
ũn+1
e +

∆tn

M

M−1∑
k=0

Ge(hhh
n,k+1

,UUU
n,k+1

)

)
, ∀ e ∈ CIF-L1E ∪ CIF-L2E ,

(41)
in which{

h
n,k+1
i = h

n+1
i , if i ∈ CIF-L2P ∪ CintP ,

un,k+1
e = un+1

e , if e ∈ CIF-L2P ∪ CintE ,
for k = 0, 1, . . . ,M − 1. (42)

It is easy to see that Steps 2a) and 2b) are the most time-consuming part of the above LTS algorithm
and can be performed in parallel.

Remark 4.1. Differently from Trahan and Dawson’s LTS scheme [47] which is second order accu-
rate in time away from the LTS interface but reduces to first order at the interface (thus destroy
the overall second order temporal accuracy), the proposed second order LTS scheme here preserves
the second order accuracy on the whole domain, even at the region of the LTS interface. This is
obtained by the prediction of the interface solution at both stages of SSP-RK2 for each intermediate
time level. In addition, our scheme has been derived in such a way that the LTS scheme recovers
the corresponding global time-stepping scheme when M = 1, which is not the case for Trahan and
Dawson’s LTS scheme.

4.2.2. Third order LTS algorithm
The third order LTS algorithm based on SSP-RK3 is constructed in a similar way to the second

order one. In particular, for each n = 0, 1, . . . , N−1, we perform a three-step algorithm of predictor-
corrector type as follows:

1) Interface prediction:

1a) First compute the values at stage 1 and stage 2 of SSP-RK3 (30)-(31) with the coarse
time step size on the interface-layer 1: hn+1

i , h
n+1/2
i for i ∈ CIF-L1P and un+1

e , un+
1/2

e for

14



e ∈ CIF-L1E . Then use them to predict the values on interface cells/edges at intermediate
time levels based on the second-order Taylor expansion as follows:[

hn,ki

un,ke

]
= (1− αk − α̂k)

[
hni
une

]
+ (αk − α̂k)

[
h
n+1
i

un+1
e

]
+ 2α̂k

[
h
n+1/2
i

un+
1/2

e

]
, (43)[

h
n,k+1
i

un,k+1
e

]
= (1− βk − β̂k)

[
hni
une

]
+ (βk − β̂k)

[
h
n+1
i

un+1
e

]
+ 2β̂k

[
h
n+1/2
i

un+
1/2

e

]
, (44)[

h
n,k+1/2
i

un,k+
1/2

e

]
= (1− γk − γ̂k)

[
hni
une

]
+ (γk − γ̂k)

[
h
n+1
i

un+1
e

]
+ 2γ̂k

[
h
n+1/2
i

un+
1/2

e

]
, (45)

for all i ∈ CIF-L1P and e ∈ CIF-L1E , where αk and βk are the same as in (36) and

α̂k =
k2

M2
, β̂k =

k(k + 2)

M2
, γk =

2k + 1

2M
, γ̂k =

2k2 + 2k + 1

2M2
, (46)

for k = 0, 1, . . . ,M − 1. See Appendix A.2 for detailed derivations of these coefficients.
1b) Compute the solution at stage 1 and stage 2 of SSP-RK3 at the interface-layer 2 with the

coarse time step size: hn+1
i , h

n+1/2
i for all i ∈ CIF-L2P and un+1

e , un+
1/2

e for all e ∈ CIF-L2E .
2) Advancing from tn to tn+1 excluding the interface layers:

2a) For ‘fine’ cells/edges: at each intermediate time level k = 0, 1, . . . ,M − 1, compute the
solution by SSP-RK3 with the fine time step size. The evaluation of the fluxes again
only involves the solution on the interface-layer 1 computed at Step 1a) and in the fine
region.

2b) For ‘coarse’ internal cells/edges: do similar calculations as SSP-RK3 with the coarse time
step size. Again only the solution on the interface-layer 2 computed at Step 1b) and in
the internal coarse region is used to evaluate the fluxes.

3) Interface correction:
i) Stage 1:

h̃n+1
i = hni +

∆tn

M

M−1∑
k=0

Fi(hhh
n,k,UUUn,k), ∀ i ∈ CIF-L1P ∪ CIF-L2P ,

ũn+1
e = une +

∆tn

M

M−1∑
k=0

Ge(hhhn,k,UUUn,k), ∀ e ∈ CIF-L1E ∪ CIF-L2E ,

(47)

in which{
hn,ki = hni , if i ∈ CIF-L2P ∪ CintP ,

un,ke = une , if e ∈ CIF-L2E ∪ CintE ,
for k = 0, 1, . . . ,M − 1. (48)

ii) Stage 2:
h̃
n+1/2
i =

3

4
hni +

1

4

(
h̃n+1
i +

∆tn

M

M−1∑
k=0

Fi(hhh
n,k+1

,UUU
n,k+1

)

)
, ∀ i ∈ CIF-L1P ∪ CIF-L2P ,

h̃n+
1/2

e =
3

4
une +

1

4

(
ũn+1
e +

∆tn

M

M−1∑
k=0

Ge(hhh
n,k+1

,UUU
n,k+1

)

)
, ∀ e ∈ CIF-L1E ∪ CIF-L2E ,

(49)
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in which{
h
n,k+1
i = h

n+1
i , if i ∈ CIF-L2P ∪ CintP ,

un,k+1
e = un+1

e , if e ∈ CIF-L2E ∪ CintE ,
for k = 0, 1, . . . ,M − 1. (50)

iii) Stage 3:
hn+1
i =

1

3
hni +

2

3

(
h̃
n+1/2
i +

∆tn

M

M−1∑
k=0

Fi(hhh
n,k+1/2

,UUU
n,k+1/2

)

)
, ∀ i ∈ CIF-L1P ∪ CIF-L2P ,

un+1
e =

1

3
une +

2

3

(
h̃n+

1/2
e +

∆tn

M

M−1∑
k=0

Ge(hhh
n,k+1/2

,UUU
n,k+1/2

)

)
, ∀ e ∈ CIF-L1E ∪ CIF-L2E ,

(51)
in which{
h
n,k+1/2
i = h

n+1/2
i , if i ∈ CIF-L2P ∪ CintP ,

un,k+
1/2

e = un+
1/2

e , if e ∈ CIF-L2E ∪ CintE ,
for k = 0, 1, . . . ,M − 1. (52)

Remark 4.2. It is noteworthy that for the explicit first order time-stepping method (the forward
Euler method), the produced LTS algorithm by following our construction idea, would be identical to
Osher and Sanders’ LTS scheme [29] in which the predictor is obtained by freezing the solution at
tn (i.e., the zero-order Taylor series expansion):

hn,ki = hni , un,ke = hne , for all i ∈ CIF-L1
P , e ∈ CIF-L1

E , k = 0, 1, . . . ,M − 1. (53)

Thus we have proposed a unified approach to construct LTS algorithms based on the SSP-RK methods
up to third order accuracy. Extension to higher order LTS schemes can be done similarly within this
framework by performing higher order Taylor series approximations of the predictor [20]. It should
also be noted that the predictor for SSP-RK2 is monotonic, but the predictor for SSP-RK3 is not
and thus the TVD property of the third order LTS algorithm is not theoretically guaranteed. On the
other hand, numerical results presented in Section 5 show that the SSP-RK3 based LTS algorithm is
absolutely stable while the SSP-RK2 based LTS algorithm is not; in particular, the third-order LTS
method can ensure stable energy conservation for long time horizons with time step sizes independent
of the time horizons.

Remark 4.3. Extension of the proposed LTS schemes to the case of more than two zones is possible
under one condition: for any two neighboring subdomains, the time step size in one subdomain must
be an integer multiple of the time step size in the other subdomain.

4.3. Conservation of mass and energy
It has been shown in [35] that the semidiscrete solution (12) by the TRiSK scheme satisfies

conservation of total energy for two reasons: firstly the nonlinear Coriolis force does not create
or destroy kinetic energy and secondly the exchange between kinetic and potential energy is con-
servative. The proposed LTS algorithms for solving (12) inherit all the properties, including the
conservation of total energy, of the TRiSK scheme. That is to say they conserve the total energy
within time truncation errors. In addition, we have the following result on mass conservation.

Theorem 4.4. The proposed LTS schemes exhibit exact conservation of the mass.
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Proof. We present the proof of mass conservation for the second order LTS scheme; for the third
order scheme, the proof can be done similarly. The TRiSK spatial discretization is mass conserving,
thus we only need to show that mass is conserved in the region of the two interface layers. Toward
this end, let Pi1 and Pi2 be two neighboring primal cells such that i1 ∈ CIF-L1P and i2 ∈ FP . Denote
by e12 the common edge of Pi1 and Pi2 . Assume that no-flux is imposed on the boundary of Pi1

and Pi2 , except at e12. By the definition of the discrete divergence operator (13), we have that

Fi(hhh
n,k,UUUn,k) = −[∇ · Fn,k

e ]i = − 1

Ai
ne,iF

n,k
e le

and
Fi(hhh

n,k+1
,UUU

n,k+1
) = − 1

Ai
ne,iF

n,k+1
e le,

for i ∈ {i1, i2} and k = 0, 1, . . . ,M − 1. As i1 ∈ CIF-L1P , it follows from equations (39) and (41) that

hn+1
i1

=
1

2
hni1 +

1

2

(
h̃n+1
i1
− ∆tn

M

M−1∑
k=0

1

Ai1

ne,i1F
n,k+1
e le

)

=
1

2

(
hni1 + hni1 −

∆tn

M

M−1∑
k=0

1

Ai1

ne,i1F
n,k
e le −

∆tn

M

M−1∑
k=0

1

Ai1

ne,i1F
n,k+1
e le

)

= hni1 −
(

∆tn

M

)
1

Ai1

ne,i1 le

M−1∑
k=0

(
Fn,k
e + F

n,k+1
e

2

)
. (54)

On the other hand, as i2 ∈ FP , one can use (37) and (38) to obtain

hn+1
i2

= hn,Mi2
=

1

2
hn,M−1i2

+
1

2

(
h
n,M
i2 −

(
∆tn

M

)
1

Ai2

ne,i2F
n,M
e le

)
= hn,M−1i2

−
(

∆tn

M

)
1

Ai2

ne,i2 le

(
Fn,M−1
e + F

n,M
e

2

)
.

Solving the above recursion yields

hn+1
i2

= hni2 −
(

∆tn

M

)
1

Ai2

ne,i2 le

M−1∑
k=0

(
Fn,k
e + F

n,k+1
e

2

)
. (55)

From (54) and (55) and the fact that ne,i1 = −ne,i2 (cf. Equation (9)), we deduce that∫
Ai1
∪Ai2

hn+1 =

∫
Ai1
∪Ai2

hn. (56)

This also holds for any i1 ∈ CIF-L1P and i2 ∈ CIF-L2P such that Pi1 and Pi2 be two neighboring
primal cells. The associated fluid height hn+1

i1
and hn+1

i2
can be derived as (54). The proof is then

completed.

Remark 4.5. In the TRiSK scheme [35], the spatially discrete PV equation is obtained by applying
the discrete curl operator to the spatially discrete momentum equation (12) so that the resulting
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discrete PV is compatible with the discrete velocity field for all time. In addition, it has been shown
in [35] that the discrete PV equation is consistent with the underlying discrete thickness equation.
Using those two properties of the discrete PV and by following the same argument as in the proof of
Theorem 4.4 - but using the discrete momentum equation (instead of the discrete thickness equation),
one can show that the proposed LTS schemes also exhibits exact conservation of PV.

5. Numerical experiments

We carry out numerical experiments using the simplified SOMA Double-Gyre test cases [49]
in 1D and 2D and the shallow water test case 5 (SWTC5) [48] to evaluate the performance of
the proposed SSP-RK based LTS schemes. In Subsection 5.1, we first consider the 1D shallow
water equations and describe the 1D counterpart of the TRiSK scheme as the spatial discretization
of the problem. Then we present numerical results for the 1D SOMA test case which show the
accuracy, order of convergence and conservation properties of LTS solutions in comparison with
those of global time-stepping solutions. Results for 2D problems are given in Subsection 5.2 for
the simplified SOMA test case with a uniform mesh and in Subsection 5.3 for the SWTC5 with
a multi-resolution mesh of the sphere. Subsection 5.4 presents the testing results on the parallel
scalability of the proposed LTS algorithms.

5.1. 1D shallow water equations
The 1D shallow water equations are written as

∂th+ ∂x(hu) = 0, on (−L,L)× (0, T ), (57)

∂tu+ ∂x

(
u2

2
+ g(h+ b(x))

)
= 0, on (−L,L)× (0, T ), (58)

for some L > 0. The system is complemented by the zero-Dirichlet boundary conditions:

u(−L, t) = 0, u(L, t) = 0, ∀ t ∈ (0, T ). (59)

and the initial conditions h0 and u0. Consider a partition of Ω = (0, L) into N + 1 grid points:

0 = x1/2 < x3/2 < . . . < xN+1/2 = L,

and denote by xi the midpoint of [xi−1/2, xi+1/2], i = 1, . . . , N . In addition, we make use of the
following notation:

∆xi = xi+1/2 − xi−1/2, ∀ i = 1, . . . , N, ∆xi+1/2 = xi+1 − xi, ∀ i = 1, . . . , N − 1.

The TRiSK scheme in 1D space reduces to a staggered central difference scheme in which h is
approximated at the midpoints xi, and u at the nodal points xi+1/2:

hi(t) ≈ h(xi, t), ∀ i = 1, . . . N,

ui+1/2(t) ≈ u(xi+1/2, t), ∀ i = 0, . . . , N.

Define the following average values:

ĥi+1/2(t) :=
1

2
(hi+1(t) + hi(t)) , ∀ i = 1, . . . , N − 1, ∀ t ∈ (0, T ),

û2i (t) :=
1

2∆xi

(
∆xi+1/2 u

2
i+1/2(t) + ∆xi−1/2 u

2
i−1/2(t)

)
, ∀ i = 1, . . . , N, ∀ t ∈ (0, T ).

(60)
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Using central differences, the semi-discretized problem of (57)-(58) then can be written as

h′i(t) = − 1

∆xi

(
ui+1/2(t)ĥi+1/2(t)− ui−1/2(t)ĥi−1/2(t)

)
, ∀ i = 1, . . . , N, ∀ t ∈ (0, T ),

u′i+1/2(t) = − 1

∆xi+1/2

[
û2i+1(t)− û2i (t)

2
+ g ((hi+1(t) + b(xi+1))− (hi(t) + b(xi)))

]
,

∀ i = 1, . . . , N − 1, ∀ t ∈ (0, T ),

u1/2(t) = uN+1/2(t) = 0, ∀ t ∈ (0, T ),

ui+1/2(0) = u0(xi+1/2), ∀ i = 0, . . . , N,

hi(0) = h0(xi), ∀ i = 1, . . . , N.

(61)

Note that the above system (61) clearly can be recast as an autonomous system of the variable
vector

(
h1, . . . , hN , u1+1/2, . . . , uN−1/2

)> ∈ R2N−1.
For numerical experiments, we consider a 1D simplified version of the SOMA Double-Gyre test

case [49]. The domain Ω = [−L,L] with L = 1465.7km. Denote by R = 6371km, the radius of the
Earth and let xc = (0, R) be a reference point on a circle with center point (0, 0) and radius R. For
each point x = (x,

√
R2 − x2) on the circle with x ∈ Ω, define the function

s(x) = 1− d(x)

λ2
, d(x) = R arccos(x · xc), x ∈ Ω. (62)

The bathymetry (see Figure 4) describing the bottom topography is given by

b(x) = −Hshelf −
H0

2

[
1 + tanh

( s
ω

)]
, ∀κ > γ. (63)

Parameter choices of λ = 1250km, Hshelf = 0.1km, H0 = 2.4km, ω = 0.1 and γ = −0.4 describe an
ocean basin with a radius of L and a “continental shelf” that is approximately 150km wide along
all margins. We consider a Gaussian (wave-like) initial condition for h (see Figure 4) and the zero
initial condition for u.
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Figure 4: (1D SOMA) The bottom topography of the ocean between two continental shelf (left) and the initial fluid
height dh0 = h0 + b (right).

In space, we utilize a uniform partition of Ω = [−L,L] with N = 513 nodes and ∆x = 5.725km.
Explicit time schemes require the time step size to at least satisfy the CFL condition which is
governed by the maximal wave speed:

∆t ≤ ∆x

ν
= α, ν = max

i

(
|ûi ±

√
ghi|

)
. (64)

For the LTS schemes, we consider a decomposition into 3 subdomains, Ω1 = (−1465.7km,−600km),
Ω2 = (−600km, 600km) and Ω3 = (600km, 1465.7km). A coarse time step size is used in Ω1 and
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Ω3: ∆t1 = ∆t3 = ∆tcoarse, while a fine time step size is used in Ω2: ∆t2 = ∆tfine with

∆tfine =
∆tcoarse
M

, for some positive integer M. (65)

The snapshots of the solution at T = 1 hour and T = 1.5 hours are shown in Figure 5.
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Figure 5: (1D SOMA) Snapshots of the fluid height and velocity at T = 1 hour (left) and T = 1.5 hours (right).

We first investigate the convergence order in time of the proposed second and third order LTS
algorithms and their effectiveness in terms of accuracy with different M . Toward this end, we
fix the coarse time step size ∆tcoarse and vary the fine time step size, ∆tfine = ∆tcoarse/M , with
M ∈ {1, 2, 4, 8}. Note that M = 1 corresponds exactly the global uniform time-stepping with
∆tcoarse. We compute the L2 relative errors at T = 1 hour and T = 1.5 hours based on the classic
RK4 reference solution obtained with a very fine time step size ∆tref = 0.001α. The errors are
expected to decrease as M increases. This is confirmed by the results given in Tables 4 and 5 for
the second and third order LTS algorithms respectively. Note that at T = 1 hour, the wave fronts
reach the LTS fine-coarse interface regions while at T = 1.5 hours, they completely move out of the
interface regions (see Figure 5). Thus it is easy to see that at T = 1.5 hours, using largeM does not
improve very much the accuracy. On the other hand, for M fixed, it is observed that the proposed
LTS schemes achieve perfectly the same orders of temporal accuracy on the whole domain as their
corresponding global schemes.

Next we verify the evolution of the total energy and mass for a longer time, T = 10 days. We
fixM = 4 and run the simulation using the first, second and third order LTS schemes with different
time step sizes: for SSP-RK1, ∆tcoarse = 0.0025α; for SSP-RK2, ∆tcoarse ∈ {0.125α, 0.0625α}
and for SSP-RK3, ∆tcoarse = 0.5α. In Figure 6, we plot the relative change of total energy as
a function of time and it is observed that the first and second order LTS schemes fail (the total
energy blows up due to oscillatory solutions) if the time step sizes are not sufficiently small while
for the third order scheme it is stable even with a much larger time step size. This confirms the
need of using higher order time-stepping methods to obtain better stability, especially for long
time simulations. In Figure 7, we plot the evolution of the relative changes of total energy and
mass of the second order LTS scheme with ∆tcoarse = 0.0625α and of the third order scheme with
∆tcoarse ∈ {0.125α, 0.0625α}. It is easy to find that the LTS schemes conserve the energy to within
time truncation errors; in particular, for fixed ∆tcoarse = 0.0625α, the total energy computed by
the third order LTS scheme is much closer to the initial total energy compared to the energy by the
second order LTS scheme. In addition, it is also easy to verify both LTS schemes conserve mass
numerically close to machine precision along the time (mostly caused by accumulated round-off
errors).
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SSP-RK2 based LTS algorithm for 1D SOMA test case
∆tcoarse M T=1 hour T=1.5 hours

h [CR] uuu [CR] h [CR] uuu [CR]

0.5α

1 2.97e-03 – 2.97e-03 – 6.72e-03 – 1.23e-02 –
2 7.91e-04 – 7.91e-04 – 2.09e-03 – 2.09e-03 –
4 2.77e-04 – 2.75e-04 – 1.51e-03 – 1.51e-03 –
8 1.82e-04 – 1.80e-04 – 1.37e-03 – 1.37e-03 –

0.25α

1 7.43e-04 [2.00] 7.43e-04 [2.00] 1.11e-03 [2.60] 1.11e-03 [3.47]
2 1.98e-04 [2.00] 1.98e-04 [2.00] 5.23e-04 [2.00] 5.23e-04 [2.00]
4 6.92e-05 [2.00] 6.90e-05 [2.00] 3.80e-04 [1.99] 3.80e-04 [1.99]
8 4.57e-05 [1.99] 4.52e-05 [1.99] 3.45e-04 [1.99] 3.45e-04 [1.99]

0.125α

1 1.86e-04 [2.00] 1.86e-04 [2.00] 2.79e-04 [1.99] 2.79e-04 [1.99]
2 4.94e-05 [2.00] 4.94e-05 [2.00] 1.31e-04 [2.00] 1.31e-04 [2.00]
4 1.73e-05 [2.00] 1.73e-05 [2.00] 9.51e-05 [2.00] 9.51e-05 [2.00]
8 1.14e-05 [2.00] 1.13e-05 [2.00] 8.64e-05 [2.00] 8.64e-05 [2.00]

0.0625α

1 4.65e-05 [2.00] 4.65e-05 [2.00] 6.97e-05 [2.00] 6.97e-05 [2.00]
2 1.23e-05 [2.00] 1.24e-05 [2.00] 3.27e-05 [2.00] 3.27e-05 [2.00]
4 4.32e-06 [2.00] 4.31e-06 [1.99] 2.38e-05 [2.00] 2.38e-05 [2.00]
8 2.86e-06 [2.00] 2.84e-06 [2.00] 2.16e-05 [2.00] 2.16e-05 [2.00]

Table 4: (1D SOMA) L2 relative errors in h and uuu at different final times T between the RK4 reference solution
with the very fine time step size ∆tref = 0.001α and the approximate solutions obtained by the second order LTS
algorithm. The rates of convergence “CR” for fixed M are shown in square brackets.
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Figure 6: (1D SOMA) The relative change of total energy as a function of time computed respectively by the first
order LTS scheme with ∆tcoarse = 0.0025α, by the second order LTS scheme with ∆tcoarse ∈ {0.125α, 0.0625α} and
by the third order LTS scheme with ∆tcoarse = 0.5α. M = 4 for all cases.

5.2. Shallow water equations in planar region: the 2D SOMA test case
The LTS schemes are again tested numerically with a simplified version of the 2D SOMA Double-

Gyre test case [49], where the geophysical domain and bathymetry are used, but only the shallow
water equation (1)-(2) is considered, and neither wind nor bottom stress is applied. The spatial
domain Ω is a circle of radius L with L = 1465.7km. The ocean basin is defined on the surface
of the sphere, in particular, the reference point xc = (xc, yc, zc) is located at (35oN, 0oN) and the
bathymetry b(x, y) is given similarly to (62)-(63). Again, we consider a Gaussian (wave-like) initial
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SSP-RK3 based LTS algorithm for 1D SOMA test case
∆tcoarse M T=1 hour T=1.5 hours

h [CR] uuu [CR] h [CR] uuu [CR]

0.5α

1 5.62e-05 – 5.62e-05 – 8.41e-05 – 8.41e-05 –
2 8.29e-06 – 8.31e-06 – 3.22e-05 – 3.22e-05 –
4 3.60e-06 – 3.53e-06 – 2.59e-05 – 2.59e-05 –
8 3.34e-06 – 3.24e-06 – 2.52e-05 – 2.52e-05 –

0.25α

1 7.02e-06 [3.00] 7.02e-06 [3.00] 1.05e-05 [3.00] 1.05e-05 [3.00]
2 1.04e-06 [3.00] 1.04e-06 [3.00] 4.04e-06 [3.00] 4.04e-06 [3.00]
4 4.50e-07 [3.00] 4.45e-07 [2.99] 3.26e-06 [2.99] 3.26e-06 [2.99]
8 4.17e-07 [3.00] 4.10e-07 [2.98] 3.17e-06 [2.99] 3.17e-06 [2.99]

0.125α

1 8.78e-07 [3.00] 8.78e-07 [3.00] 1.32e-06 [2.99] 1.32e-06 [2.99]
2 1.30e-07 [3.00] 1.30e-07 [3.00] 5.05e-07 [3.00] 5.05e-07 [3.00]
4 5.63e-08 [3.00] 5.58e-08 [3.00] 4.08e-07 [3.00] 4.08e-07 [3.00]
8 5.22e-08 [3.00] 5.14e-08 [3.00] 3.96e-07 [3.00] 3.96e-07 [3.00]

0.0625α

1 1.10e-07 [3.00] 1.10e-07 [3.00] 1.65e-07 [3.00] 1.65e-07 [3.00]
2 1.62e-08 [3.00] 1.62e-08 [3.00] 6.31e-08 [3.00] 6.31e-08 [3.00]
4 7.04e-09 [3.00] 6.98e-09 [3.00] 5.10e-08 [3.00] 5.10e-08 [3.00]
8 6.53e-09 [3.00] 6.44e-09 [3.00] 4.96e-08 [3.00] 4.96e-08 [3.00]

Table 5: (1D SOMA) L2 relative errors in h and uuu at different final times T between the RK4 reference solution with
the very fine time step size ∆tref = 0.001α and the approximate solutions obtained by the third order LTS algorithm.
The rates of convergence “CR” for fixed M are shown in square brackets.
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Figure 7: (1D SOMA) Evolution of the relative changes of total energy (left) and mass (right) for T = 10 days,
computed respectively by the second order LTS scheme with ∆tcoarse = 0.0625α and by the third order scheme with
∆tcoarse ∈ {0.125α, 0.0625α}. M = 4 for all cases.

condition for h, depicted in Figure 8 (left), and the zero initial condition for u. A quasi-uniform
mesh is used in this example and has 8, 521 cells. For the LTS schemes, the cells that are in the
radius of 600km of the domain center are marked as fine cells, as is shown in blue in Figure 8 (right);
the other cells are coarse cells. Smaller time step sizes ∆tfine are used in the fine cells, and larger
time step sizes ∆tcoarse in the coarse cells with ∆tcoarse = M∆tfine. The fluid height at different
times is displayed in Figure 9.

To investigate the accuracy of LTS schemes, as in the 1D case we fix the coarse time step size
∆tcoarse and vary M ∈ {1, 2, 4, 8}. Tables 6 and 7 show the relative errors in L2-norm by the second
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Figure 8: (2D SOMA) The initial fluid height dh = h+ b (left) and the LTS interface setting (right).

Figure 9: (2D SOMA) Snapshots of the fluid height at T = 1 hour (left) and T = 1.5 hours (right).

and third order LTS algorithms respectively. The reference solution is again given by the RK4 with
the very fine time step size ∆tref = 0.001α. From these tables, we draw the same conclusions as
in the 1D case, i.e., both algorithms reach their respective optimal temporal convergence perfectly,
and the errors decrease as M increases. Finally, as shown in Figure 10 which presents the evolution
of the relative changes of total energy, mass and potential vorticity for T = 10 days, it is observed
that the third order scheme gives better energy conservation along the time than the second order
scheme given the same time step size, and they conserve the mass and potential vorticity almost
exactly along the time.

5.3. Shallow water equations on sphere: the SWTC5 test case
We further test our LTS schemes on the standard shallow water test case 5 (SWTC5) [48] on the

whole sphere. On the sphere with a radius of a = 6371.22km, an isolated mountain is placed around
the point with longitude and latitude (λc, θc) = (3π/2, π/6), with height as hs = hs0(1−r/R), where
hs0 = 2km, R = π/9, r2 = min{R2, (λ− λc)2 + (θ − θc)2}, and (λ, θ) is the latitude and longitude.
The initial longitudinal and latitudinal components of velocity are (u, v) = (u0 cos(θ), 0), where
u0 = 20ms−1, and the initial thickness is given by

h = h0 −
1

g
(aΩu0 +

u20
2

)(sin(θ))2, (66)

where h0 = 5.96km, Ω = 7.292× 10−5s−1, and g = 9.80616ms−2.
The SWTC5 is of great interest since it has been shown in [33] that with grid refinement in certain

area the solution has better convergence and details. However, the refined cells would restrict the
time step size with uniform time-stepping while the proposed LTS algorithms would release such
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SSP-RK2 based LTS algorithm for 2D SOMA test case
∆tcoarse M T=1 hour T=1.5 hours

h [CR] uuu [CR] h [CR] uuu [CR]

0.5α

1 3.79e-02 – 3.54e-02 – 5.70e-02 – 5.33e-02 –
2 9.96e-03 – 9.34e-03 – 2.55e-02 – 2.39e-02 –
4 3.27e-03 – 3.12e-03 – 1.76e-02 – 1.65e-02 –
8 1.96e-03 – 1.87e-03 – 1.56e-02 – 1.46e-02 –

0.25α

1 9.42e-03 [2.01] 8.80e-03 [2.01] 1.41e-02 [2.02] 1.32e-02 [2.01]
2 2.48e-03 [2.01] 2.33e-03 [2.00] 6.35e-03 [2.01] 5.96e-03 [2.00]
4 8.13e-04 [2.01] 7.77e-04 [2.01] 4.41e-03 [2.00] 4.14e-03 [1.99]
8 4.92e-04 [1.99] 4.68e-04 [2.00] 3.91e-03 [2.00] 3.67e-03 [1.99]

0.125α

1 2.35e-03 [2.00] 2.20e-03 [2.00] 3.52e-03 [2.00] 3.30e-03 [2.00]
2 6.19e-04 [2.00] 5.82e-04 [2.00] 1.59e-03 [2.00] 1.49e-03 [2.00]
4 2.03e-04 [2.00] 1.94e-04 [2.00] 1.11e-03 [1.99] 1.04e-03 [1.99]
8 1.23e-04 [2.00] 1.17e-04 [2.00] 9.81e-04 [1.99] 9.21e-04 [1.99]

0.0625α

1 5.88e-04 [2.00] 5.50e-04 [2.00] 8.81e-04 [2.00] 8.25e-04 [2.00]
2 1.55e-04 [2.00] 1.45e-04 [2.00] 3.97e-04 [2.00] 3.72e-04 [2.00]
4 5.06e-05 [2.00] 4.85e-05 [2.00] 2.76e-04 [2.01] 2.59e-04 [2.01]
8 3.08e-05 [2.00] 2.92e-05 [2.00] 2.45e-04 [2.00] 2.30e-04 [2.00]

Table 6: (2D SOMA) L2 relative errors in h and uuu at different final times T between the RK4 reference solution
with the very fine time step size ∆tref = 0.001α and the approximate solutions obtained by the second order LTS
algorithm. The rates of convergence “CR” for fixed M are shown in square brackets.
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Figure 10: (2D SOMA) Evolution of the relative changes of total energy (top), mass (bottom-left) and potential
vorticity (bottom-right) for T = 10 days, computed respectively by the second and third order schemes with ∆tcoarse ∈
{0.125α, 0.0625α}. M = 4 for all cases.
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SSP-RK3 based LTS algorithm for 2D SOMA test case
∆tcoarse M T=1 hour T=1.5 hours

h [CR] uuu [CR] h [CR] uuu [CR]

0.5α

1 1.95e-03 – 1.78e-03 – 2.75e-03 – 2.54e-03 –
2 2.60e-04 – 2.32e-04 – 9.10e-04 – 8.42e-04 –
4 8.84e-05 – 6.42e-05 – 6.96e-04 – 6.44e-04 –
8 8.21e-05 – 5.69e-05 – 6.71e-04 – 6.20e-04 –

0.25α

1 2.45e-04 [2.99] 2.23e-04 [3.00] 3.46e-04 [2.99] 3.19e-04 [2.99]
2 3.24e-05 [3.00] 2.90e-05 [3.00] 1.14e-04 [3.00] 1.05e-04 [3.00]
4 1.07e-05 [3.05] 8.07e-06 [2.99] 8.74e-05 [2.99] 8.08e-05 [2.99]
8 9.83e-06 [3.06] 7.21e-06 [2.98] 8.42e-05 [2.99] 7.78e-05 [2.99]

0.125α

1 3.06e-05 [3.00] 2.79e-05 [3.00] 4.33e-05 [3.00] 3.99e-05 [3.00]
2 4.05e-06 [3.00] 3.62e-06 [3.00] 1.42e-05 [3.01] 1.32e-05 [2.99]
4 1.31e-06 [3.03] 1.01e-06 [3.00] 1.09e-05 [3.00] 1.01e-05 [3.00]
8 1.20e-06 [3.03] 9.06e-07 [2.99] 1.05e-05 [3.00] 9.75e-06 [3.00]

0.0625α

1 3.83e-06 [3.00] 3.49e-06 [3.00] 5.41e-06 [3.00] 4.99e-06 [3.00]
2 5.06e-07 [3.00] 4.52e-07 [3.00] 1.78e-06 [3.00] 1.65e-06 [3.00]
4 1.64e-07 [3.00] 1.28e-07 [2.98] 1.37e-06 [2.99] 1.27e-06 [2.99]
8 1.55e-07 [2.95] 1.19e-07 [2.93] 1.32e-06 [2.99] 1.22e-06 [3.00]

Table 7: (2D SOMA) L2 relative errors in h and uuu at different final times T between the RK4 reference solution with
very fine time step size ∆tref = 0.001α and the approximate solutions obtained by the third order LTS algorithm.
The rates of convergence “CR” for fixed M are shown in square brackets.

issue. The orographic feature, depicted in Figure 11 (left), extends π/9 radians in latitude and
longitude, thus a fine-cell region with π/6 radians is used to cover the orographic feature as in [33],
and a variable-resolution SCVT mesh with 40,962 cells is generated, where the coarse cell size is
approximately two times of the fine cell size (four times in term of cell area), as is shown in Figure 11
(middle). For time discretization, we apply the local time-stepping, in which a fine time-step region
with 3π/10 radians is used to cover the fine-cell region, as is shown in Figure 11 (right). The initial
fluid height is depicted in Figure 12 (left).

We here focus the third order LTS scheme due to its nice stability for long time simulations. We
compute the L2 relative errors at the time T = 1 day between the approximate solution obtained by
the third order LTS algorithm and the reference solution given by RK4 with the very fine time step
size ∆tref = 0.001α. The results with fixed M = 4 reported in Table 8 confirm that the SSP-RK3
based LTS algorithm does obtain a temporal convergence of O(∆t3coarse). Moreover, in this test
example, the physical phenomena in fine-cell region is of interest, thus we use smaller time step
sizes there by the way of increasing M (with fixed ∆tcoarse = 0.25α), to achieve better approximate
solutions, as is shown in Table 8. It seems that M = 4 is a good choice since M = 8 just gives very
slight improvement over M = 4. A simulation with the final time T = 15 days is also carried out
by using the third order LTS scheme with ∆tcoarse = 0.5α and M = 4. The final fluid height is
shown in Figure 12 (right). Figure 13 presents the evolution of the relative changes of total energy,
mass and potential vorticity. It is observed that the third order LTS scheme conserves the energy
very well with tiny monotonic dissipations (up to about 2.93e-09 in the relative change in 15 days).
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Figure 11: (SWTC5) Left: The bottom topography b in which the orographic feature (depicted by the white oval
curve in the figure) extends π/9 radians in latitude and longitude; middle: the cell area of a variable-resolution SCVT
mesh with 40,962 cells where the coarse cell size is approximately two times of the fine cell size; right: the LTS
interface where a fine time-stepping region with 3π/10 radians is used to cover the fine-cell region, the rest is coarse
time-stepping region.

Figure 12: (SWTC5) The fluid height dh = h+ b at T = 0 (left) and at T = 15 days (right) measured in meters.

SSP-RK3 based LTS, M=4
∆tcoarse h [CR] uuu [CR]

0.5α 3.38e-06 – 2.20e-05 –
0.25α 5.88e-07 [2.52] 3.27e-06 [2.75]
0.125α 7.80e-08 [2.91] 4.20e-07 [2.96]
0.0625α 1.24e-08 [2.85] 6.25e-08 [2.93]

SSP-RK3 based LTS, ∆tcoarse = 0.25α

M h uuu

1 1.69e-06 9.38e-06
2 6.76e-07 3.68e-06
4 5.95e-07 3.27e-06
8 5.88e-07 3.25e-06

Table 8: (SWTC5) L2 relative errors in h and uuu between the RK4 reference solution with the very fine time step size
∆tref = 0.001α and the approximate solutions obtained by the third order LTS algorithm at T = 1 day. The results
are for fixed M (left) to verify the convergence order and for fixed ∆tcoarse (right) to verify the efficiency of LTS.

5.4. Parallel scalability
The parallel scalability tests of the proposed SSP-RK based LTS algorithms are performed on

the “LSSC-IV” cluster system located in the State Key Laboratory of Scientific and Engineering
Computing, Chinese Academy of Sciences, in which each node has 2 Intel Xeon Gold 6140 CPUs
(2.3GHz, 18 cores) and 192GB memory and a 100GB EDR Infiniband network is used for data
communication between nodes. Since different cells may have different time step sizes, the LTS
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Figure 13: (SWTC5) Evolution of the relative changes of total energy (top), mass (bottom-left) and potential vorticity
(bottom-right) for T = 15 days computed by the third order LTS with ∆tcoarse = 0.5α and M = 4.

schemes usually bring serious computation/load imbalance problem across processors in parallel
computing if quasi-uniform mesh partitions are used. To solve this problem, weighted partition
tools and algorithms [23, 30, 31] have been widely used to distribute and balance the computations
as much as possible among all processors/cores. The single-constraint weighted partitioning scheme
based on the local time step sizes and “Metis” [23] are used for domain decomposition in our parallel
implementation within the Message Passing Interface (MPI) environment. We test the scalability of
the proposed SSP-RK based LTS algorithms with ∆tcoarse = 0.5α and M = 4 for the SWTC5 test
case with T = 3 hours. A sequence of three spatial meshes are used: the first one is the variable-
resolution mesh with 40,962 cells in Subsection 5.3 and the other two are its consecutive uniform
refinements which give us two meshes with 163,842 cells and 655,362 cells respectively. Results of
the parallel scalability with different number of cores (up to 128 cores) are reported in Tables 9. It is
observed that the two LTS algorithms have very similar performance in term of parallel scalability.
As the subproblem size per core increases, the parallel speedup gets better as expected, and the
improvements become more significant when the number of cores is large. Super-linear speedups
are observed in the case of large size problems with small numbers of cores (probably due to the
cache effect). With 128 cores, the SSP-RK2 based LTS algorithm achieves a parallel efficiency of
35.0% and the SSP-RK3 based LTS algorithm 44.9% for the problem of 40,962 cells, and these two
numbers increase to 67.1% and 77.5% respectively for the problem of 163,842 cells, and finally reach
86.2% and 93.3% for the problem of 655,362 cells. These results demonstrate excellent scalability
of the proposed LTS algorithms.

We also compare the performance in terms of running time of the proposed LTS algorithms
and the original global SSP-RK algorithms for the SWTC5 test case. We consider the mesh of
655,362 cells, in which the region with a fine time step contains 216,701 cells and the one with a
coarse time step contains 438,661 cells. The global SSP-RK algorithms use a uniform time step
size ∆t = 0.125α while the proposed LTS algorithms use different time step sizes, ∆tcoarse = 0.5α
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No. of 40,962 Cells 163,842 Cells 655,362 Cells
Cores Time Speedup Efficiency Time Speedup Efficiency Time Speedup Efficency

The SSP-RK2 based LTS algorithm
1 286.90 - - 1208.94 - - 5122.30 - -
2 152.31 1.88 94.2% 605.24 2.00 99.9% 2531.42 2.02 101.1%
4 81.92 3.50 87.6% 305.91 3.95 98.8% 1290.65 3.97 99.2%
8 44.21 6.49 81.1% 158.15 7.64 95.6% 677.51 7.56 94.6%
16 24.95 11.50 71.9% 82.70 14.62 91.3% 339.14 15.10 94.4%
32 15.00 19.13 59.8% 44.74 27.02 84.4% 177.56 28.85 90.2%
64 9.37 30.63 47.9% 24.37 49.61 77.5% 87.99 58.22 91.0%
128 6.40 44.84 35.0% 14.09 85.82 67.1% 46.41 110.37 86.2%

The SSP-RK3 based LTS algorithm
1 398.50 - - 1704.73 - - 7220.48 - -
2 207.41 1.92 96.1% 838.29 2.03 101.7% 3543.05 2.04 101.9%
4 109.93 3.62 90.6% 420.18 4.06 101.4% 1745.22 4.14 103.4%
8 58.23 6.84 85.6% 213.74 7.98 99.7% 889.65 8.12 101.5%
16 31.82 12.52 78.3% 110.45 15.43 96.5% 461.69 15.64 97.7%
32 18.97 21.00 65.6% 57.51 29.64 92.6% 236.77 30.50 95.3%
64 10.86 36.70 57.4% 30.94 55.10 86.1% 115.57 62.47 97.6%
128 6.93 57.51 44.9% 17.18 99.20 77.5% 60.43 119.48 93.3%

Table 9: Results of the parallel scalability of the proposed LTS algorithms with ∆tcoarse = 0.5α and M = 4 for the
SWTC5 test case with T = 3 hours. The computer running times are measured in seconds.

and ∆tfine = 0.125α (i.e., M = 4). The running times of all algorithms with different number
of cores are reported in Table 10, together with the corresponding ratios of the running times
of the algorithms without LTS versus with LTS. The theoretically optimal value for the ratio is
approximately (4×655362)/(1×438661+4×216701) ≈ 2.01 when the cost for interface predictions
and corrections is considered to be negligible. It is observed that both the proposed second and
third order LTS algorithms under our parallel implementation perform very well, and the achieved
practical values for the ratio are very close to the optimal one for all tested numbers of cores. This
confirms the efficiency of the proposed LTS algorithms versus the global SSP-RK time-stepping.

6. Conclusions

In this paper, we have designed conservative explicit local time-stepping algorithms for shallow
water equations discretized in space by the TRiSK scheme on multi-resolution meshes. Different
time-step sizes are used in different regions of the domain and the restrictive global CFL condition
is replaced by a local CFL condition. Second and third order LTS algorithms based on the explicit
SSP-RK methods are developed and tested on different test-cases. Specially, numerical results show
that the proposed LTS algorithms are respectively second and third order accurate in time on the
whole domain, even at the local time-stepping interface. The LTS algorithms also couple very
well with multi-resolution meshes while preserving all the properties of the TRiSK scheme such as
the conservation of some important nonlinear quantities. In addition, these algorithms inherit the
natural parallelism of the original explicit global time-stepping schemes as verified by the scalability
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No. of The SSP-RK2 algorithm The SSP-RK3 algorithm
Cores Without LTS With LTS Ratio Without LTS With LTS Ratio
1 10213.82 5122.30 1.99 14476.94 7220.48 2.00
2 5036.51 2531.42 1.99 7021.38 3543.05 1.98
4 2503.81 1290.65 1.94 3348.39 1745.22 1.92
8 1287.30 677.51 1.90 1722.99 889.65 1.94
16 674.88 339.14 1.99 883.58 461.69 1.91
32 331.31 177.56 1.87 463.39 236.77 1.96
64 168.53 87.99 1.92 229.58 115.37 1.99
128 92.35 46.41 1.99 119.57 60.43 1.98

Table 10: Running times of the global SSP-RK algorithms with uniform time step size ∆t = 0.125α and the proposed
LTS algorithms with ∆tcoarse = 0.5α and ∆tfine = 0.125α (i.e., M = 4) for the SWTC5 test case with T = 3 hours
on the mesh of 655,362 cells. The computer running times are measured in seconds.

tests. Thus, the proposed algorithms have opened up the possibility for global ocean to coastal
scale simulations at high computational efficiency. With the use of spatially variable time step
sizes, coastal cells of much smaller scale (compared to those in the global ocean) no longer constrain
the time steps of the overall simulation. Our next steps include further analysis of the accuracy and
performance of the LTS schemes on more realistic test cases and extending the algorithms to more
complex models, such as the case of multi-layers and the full ocean model [34] with tracer transport
existing in MPAS-Ocean.
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Appendix A Derivation of the predictors

Consider an autonomous system of ordinary differential equations of the form:

wt = F (w), t ∈ (0, T ), (A.1)

with an initial condition w(0) = w0. Let us partition the time interval (0, T ) into N uniform
intervals:

0 = t0 < t1 < . . . < tn < tn+1 < . . . < tN = T, ∆t = tn+1 − tn =
T

N
,

and each interval is then further divided into M subintervals:

[tn, tn+1) = ∪M−1k=0 [tn,k, tn,k+1), with tn,0 = tn and tn,k+1 = tn,k +
∆t

M
, k = 0, . . . ,M − 1.

Given the solution wn at tn, we construct the approximation of w at the intermediate time levels tn,k

for the second and third order SSP-RK schemes respectively. The idea is mostly based on Taylor
series expansion.

A.1 The predictor for the second order LTS algorithm
The approximate solution to (A.1) by SSP-RK2 with a coarse time step size ∆t is given by

wn+1 = wn + ∆tF (wn), (A.2)

wn+1 =
1

2
wn +

1

2

(
wn+1 + ∆tF (wn+1)

)
.

Given the solution wn at tn, our aim is to find the second order approximation of w(tn,k) and
w(tn,k+1) at the intermediate time level tn,k (and tn,k+1 respectively), for k = 0, . . . ,M − 1. Per-
forming Taylor series expansion of w at tn yields

w(t) = w(tn) + (t− tn)wt(t
n) +

1

2!
(t− tn)2wtt(t

n) + ..., (A.3)

thus we can approximate w(tn,k) by truncating (A.3) to the second term (the first-order Taylor
expansion):

wn,k = wn +
k∆t

M
wn
t , (A.4)

which gives a truncation error of second order in time. From (A.1) and (A.2) we deduce

wn
t = F (wn) =

wn+1 − wn

∆t
. (A.5)
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Substituting this into (A.4) we obtain a second order approximation of w(tn,k)

wn,k = wn +
k

M

(
wn+1 − wn

)
= (1− αk)wn + αk w

n+1, (A.6)

where αk =
k

M
for k = 0, . . . ,M − 1. Next, applying SSP-RK2 with a fine time step size

∆t

M
at

tn,k, we get

wn,k+1 = wn,k +
∆t

M
F (wn,k),

where we can approximate F (wn,k) by F (wn) so that a second order approximation of wn,k+1 is
obtained as

wn,k+1 = wn,k +
∆t

M
F (wn) = wn +

k + 1

M

(
wn+1 − wn

)
= (1− βk)wn + βk w

n+1, (A.7)

where βk =
k + 1

M
, k = 0, . . . ,M − 1.

A.2 The predictor for the third order LTS algorithm
The approximate solution to (A.1) by SSP-RK3 with a coarse time step size ∆t is given by

wn+1 = wn + ∆t F (wn), (A.8)

wn+1/2 =
3

4
wn +

1

4

(
wn+1 + ∆t F (wn+1)

)
, (A.9)

wn+1 =
1

3
wn +

2

3

(
wn+1/2 + ∆t F (wn+1/2)

)
.

As in the second order case, we use Taylor expansion to approximate the solution w(tn,k); however,
we need truncate (A.3) to the third term (the second-order Taylor expansion):

wn,k = wn +
k∆t

M
wn
t +

1

2

(
k∆t

M

)2

wn
tt, (A.10)

which gives a truncation error of third order in time. To find the approximation of wn
tt, we rewrite

(A.9) as follows:

wn+1/2 =
3

4
wn +

1

4

(
wn+1 + ∆t F (wn+1)

)
= wn +

1

4
∆t
(
F (wn) + F (wn+1)

)
. (A.11)

Using Taylor expansion, we get

F (wn+1) = F (wn) + (wn+1 − wn)F ′(wn) + . . . = F (wn) + ∆t wn
t F
′(wn) +O((∆t)2). (A.12)

Substituting it into (A.11) results in

wn+1/2 = wn +
1

2
∆tF (wn) +

1

4
(∆t)2wn

t F
′(wn) +O(∆t3). (A.13)

Differentiate (A.1) with respect to t and by the chain rule, we have

wtt(t
n) = F ′(w(tn))wt(t

n).
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Thus we can approximate wtt(t
n) from (A.13) as follows:

wn
tt =

4

(∆t)2

(
wn+1/2 − wn − 1

2
(wn+1 − wn)

)
=

4

(∆t)2

(
wn+1/2 − 1

2
wn+1 − 1

2
wn

)
.

Substituting this into (A.10) yields a third order approximation of wn,k

wn,k = wn +
k

M
(wn+1 − wn) + 2

k2

M2

(
wn+1/2 − 1

2
wn+1 − 1

2
wn

)
= (1− αk − α̂k)wn + (αk − α̂k)wn+1 + 2α̂k w

n+1/2, (A.14)

where α̂k =
k2

M2
, k = 0, . . . ,M − 1. Now for wn,k+1 and wn,k+1/2, we follow the SSP-RK3 with a

fine time step size:

wn,k+1 = wn,k +
1

M
∆tF (wn,k),

wn,k+1/2 =
3

4
wn,k +

1

4

(
wn,k+1 +

1

M
∆tF (wn,k+1)

)
= wn,k +

1

4M
∆t
(
F (wn,k) + F (wn,k+1)

)
.

We use Taylor expansion (A.12) to obtain a second order approximation of F (wn,k) and F (wn,k+1):

F (wn,k) = F (wn) +
k∆t

M
wn
t F
′(wn),

F (wn,k+1) = F (wn) +
(k + 1)∆t

M
wn
t F
′(wn),

Then we get a third order approximation of wn,k+1 as

wn,k+1 = wn,k +
∆t

M
F (wn) +

k(∆t)2

M2
wn
t

∂F

∂w
(wn)

= wn,k +
1

M
(wn+1 − wn) + 4

k

M2

(
wn+1/2 − 1

2
wn+1 − 1

2
wn

)
= wn +

k + 1

M
(wn+1 − wn) + 2

k2 + 2k

M2

(
wn+1/2 − 1

2
wn+1 − 1

2
wn

)
= (1− βk − β̂k)wn + (βk − β̂k)wn+1 + 2β̂k w

n+1/2, (A.15)

where β̂k =
k(k + 2)

M2
, k = 0, . . . ,M−1. Similarly, we obtain a third order approximation of wn,k+1/2

as

wn,k+1/2 = wn,k +
(∆t)2

4M

(
F (wn,k) + F (wn,k+1)

)
= wn +

2k + 1

2M
(wn+1 − wn) +

2k2 + 2k + 1

M2

(
wn+1/2 − 1

2
wn+1 − 1

2
wn

)
= (1− γk − γ̂k)wn + (γk − γ̂k)wn+1 + 2γ̂k w

n+1/2, (A.16)

where

γk =
2k + 1

2M
, γ̂k =

2k2 + 2k + 1

2M2
, k = 0, . . . ,M − 1.
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