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Abstract. A dimension reduction method based on the “Nonlinear Level set Learn-

ing” (NLL) approach is presented for the pointwise prediction of functions which

have been sparsely sampled. Leveraging geometric information provided by the
Implicit Function Theorem, the proposed algorithm effectively reduces the input di-

mension to the theoretical lower bound with minor accuracy loss, providing a one-

dimensional representation of the function which can be used for regression and
sensitivity analysis. Experiments and applications are presented which compare this

modified NLL with the original NLL and the Active Subspaces (AS) method. While
accommodating sparse input data, the proposed algorithm is shown to train quickly

and provide a much more accurate and informative reduction than either AS or the

original NLL on two example functions with high-dimensional domains, as well as
two state-dependent quantities depending on the solutions to parametric differential

equations.
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1. Introduction

It is frequently the case that scientists or engineers need to draw conclusions about

the output of a function based on limited or incomplete data. Such situations arise, for

example, when the output depends on the solution of expensive differential equations,
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or when lack of time and resources precludes the collection of sufficient high-quality

samples. When this occurs, it becomes critical to maximize the value of the limited

resources at hand, which requires informed algorithms for dimension reduction.

More specifically, let U ⊂ R
n be a bounded domain and consider the problem of

approximating a continuously differentiable scalar function f : U → R based on some

predefined samples {xs, f(xs),∇f(xs)}s∈S of the function and its gradient vector field.

Note that f may represent either a scalar quantity or some component of a vector

quantity, so that no generality is lost with this consideration. Additionally, let ρ : Rn →
R
+ be a probability density function supported on U such that f is square-integrable

with respect to ρ, i.e.

‖f‖22 :=

∫

U

f(x)2ρ(x) dx <∞.

To generate a pointwise approximation to f , it is reasonable to seek a function f̃ : U →
R which satisfies the minimization condition

f̃(x) ∈ argmin
g∈C1(U)

∥

∥f(x)− g(x)
∥

∥

2

2
. (1.1)

However, if the dimension n is large relative to the number |S| of available samples (i.e.

sparse data), training a regression model to approximate f directly becomes infeasible.

Indeed, unless the training data itself has a hidden low-dimensional structure, unsuper-

vised learning methods such as feed-forward neural networks are prone to overfitting,

leading to poor accuracy on new data as a result of inadequate generalizability. There-

fore, it is necessary to employ some kind of dimension reduction to increase the density

of the sampling data to the point where it is useful for approximating solutions to (1.1).

A prototypical example of this issue arises when studying the numerical solutions

of differential equations with limited computational budget. Let I be a multi-index,

β ∈ R
m, and consider a k-th order parameterized system of R ∈ N partial differential

equations (PDE) for the function u : Rm ×R
n → R

l,

F r

(

β,x,u,
∂|I|u

∂xI

)

= 0, 1 ≤ r ≤ R, 1 ≤ |I| ≤ k, (1.2)

which may depend on some number of initial or boundary conditions. Suppose addi-

tionally that the assignment β 7→ u(β,x) is unique, so that solutions to (1.2) are param-

eterized by the variables β. For prediction and sensitivity analysis it is often necessary

to compute the value of some functional K(u) on PDE solutions u ∈ Ck(Rm × R
n;Rl)

(e.g. temperature or total kinetic energy) which is implicitly a function of the parame-

ters β, i.e. K(β) = K(u(β,x)). On the other hand, it is usually not feasible to simulate

the (potentially expensive) system (1.2) for every parameter configuration desired, so

it is necessary to have a reasonable yet inexpensive approximation to K which can be

computed for any β in place of numerically solving (1.2). In the language of before,

this means finding K̃ satisfying

K̃(β) ∈ argmin
G:Rm→R

∥

∥K(β) − G(β)
∥

∥

2

2
.
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This poses difficulty when the set of configurations β for which solutions are available

is sparse in R
m, as occurs when solutions to (1.2) require hours (or even days) on a su-

percomputer to obtain. On the other hand, Section 5.3 shows that dimension reduction

can be used to produce certain low-dimensional approximations to functionals like K
which reliably approximate the true values.

The state-of-the-art strategies for dimension reduction can be loosely categorized

as either intrinsic or extrinsic based on how they organize the available data. Intrinsic

methods look for patterns directly within the input samples, which can be exploited

for lower-dimensional classification and clustering once revealed. At the present time,

there are several effective dimension-reduction methods which operate intrinsically,

including Isomap, Locally Linear Embedding, and others (see e.g. [3, 4, 7, 35] and ref-

erences therein). Moreover, these methods have demonstrated good performance on

low-dimensional encoding problems as well as the recovery of geodesic distances along

the data manifold (see e.g. [9, 28, 42]). On the other hand, intrinsic methods are of

no use when the data is unstructured, since there is no low-dimensional structure to

be found. This motivates the search for extrinsic dimension-reduction methods, which

do not assume the given data possesses any structure at all. Instead, these methods

take advantage of the structure which is inherited from an external object acting on the

input space. For example, consider a surjective C1 mapping onto a low-dimensional

target, which stratifies the source according to its level sets. If this induced level set

structure can be learned, then this notion can be used to produce a low-dimensional

approximation to the original function. The advantage of such extrinsic methods is

that they are applicable to any kind of sampling, including sparsity patterns which are

indistinguishable from random noise. Conversely, these techniques are necessarily de-

pendent on the object the source data inherits from, meaning there can be no singular

solution which applies to every notion of inherited structure.

Remark 1.1. We use the notation f ′(x) to denote the derivative of f , i.e. the linear map

induced by f satisfying f ′(x)v = 〈∇f(x),v〉 for all vectors v. Similarly, if {e1, . . . , en}
denote the standard basis for R

n then we let fi := f ′(x)ei = ∂f(x)/∂xi denote the

derivative of f with respect to ei. The extension of this notation to vector-valued

functions is straightforward.

Thankfully, in the case of C1 functions there is a good deal of information provided

by classical theory which can be exploited for algorithm design. Given a regular value

y0 ∈ R, the Implicit Function Theorem (IFT) guarantees that the level set f−1(y0) ⊂ R
n

is a differentiable submanifold of Rn, and around any preimage x0 ∈ f−1(y0) there is

the representation

Tx0
f−1(y0) = ker f ′(x0),

which characterizes the local change in the function f in terms of tangent vectors to

the level set f−1(y0) at the point x0. In particular, since Tx0
f−1(y0) ⊂ R

n is a linear

subspace of (the tangent space to) R
n and ker f ′(x0) has dimension n − 1, it follows

that the local dimension of f is just one at almost every point in its domain. Moreover,
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there is only one direction in U , the direction of the gradient ∇f(x0), in which x0 can

move to produce any change in f whatsoever. This fact shows that the local structure of

surjective C1 functions is actually quite rigid, and there is the potential for constructing

a (locally) one-dimensional representation of any such mapping despite the size of its

domain.

The present work makes steps toward this idea by building on the “Nonlinear Level

set Learning” (NLL) algorithm from [41], which is a neural network procedure for ex-

trinsic dimension reduction in regression applications. In particular, it is shown that the

performance of this algorithm can be improved dramatically by incorporating the infor-

mation provided by the IFT, which leads to less computational expense, faster training,

and more accurate regression results. To accomplish this, the NLL algorithm is recast as

the minimization of a Dirichlet-type energy functional whose minimizers include map-

pings g : Rn → R
n, g(x) =

(

g1(x) ... gn(x)
)

which send the high-dimensional inputs

to simple slices {g(x) | g1 = c ∈ R} where the function f is constant, and which can

be reliably approximated with neural network algorithms. Moreover, once a minimizer

g has been computed, dimension reduction becomes a matter of simple truncation,

and a one-dimensional regression can be performed to recover a model f̂ : R → R

which predicts f at any point in the original data space, i.e. f̂ ◦ g1 ≈ f . Experiments

are provided which demonstrate the improved performance of this version of NLL over

the original algorithm and over the state-of-the-art linear dimension reduction method

Active Subspaces.

The remainder of the work is structured as follows: Section 2 discusses related ex-

trinsic dimension reduction methods and regression techniques, Section 3 details the

NLL algorithm and its original formulation, Section 4 discusses the mentioned improve-

ments to NLL and its connection to Dirichlet energy, and Section 5 exhibits numerical

experiments which compare the present version of NLL to the original algorithm and

Active Subspaces on a variety of test cases. Some concluding remarks are finally drawn

in Section 6.

2. Related work

It is well known that the regression problem (1.1) is difficult in the presence of

sparse data, see e.g. [20,22] and references. As such, there are a plethora of techniques

which have been developed to mitigate the high response variability that is inevitable

in this situation. Ranging from optimal sampling (e.g. [16, 36]) to central subspace

methods (e.g. [2, 29]), all such works share the common themes of trying to increase

predictive power and decrease model overfitting. Extrinsic methods for dimension re-

duction in pointwise regression applications (e.g. [5,12,41]) operate in the same way,

although more regularity is usually assumed since a stronger type of convergence is

discussed.

The dimension reduction approach most similar to ours is known as approximation

by ridge functions [10, 14, 34]. In particular, consider a linear projection P : Rn → R
k

where k ≪ n and a (not necessarily differentiable) function f̂ : R
k → R. If the
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functions f̂ , P satisfy

f(x) = f̂(Px)

for all x ∈ U , then f is called a (generalized) ridge function (c.f. [14]). Clearly, this

definition implies that f is constant on the kernel of P .

Using ridge functions for dimension reduction typically involves optimizing over the

functions f̂ , P . In particular, suppose the projection P is given and consider computing

a f̂ which satisfies

f̂(x) ∈ argmin
g:Rk→R

∥

∥f(x)− g(Px)
∥

∥

2

2
. (2.1)

If f is nearly constant on the kernel of P , then f̂ will be a reasonable pointwise approx-

imation to the original function. Moreover, the minimization in (2.1) is usually much

more feasible than the one in (1.1) when the input data is sparse, as the projection

xs 7→ Pxs naturally increases its density.

Of course, to compute a useful solution to (2.1) it is necessary to have a projection

mapping which adequately captures the change in f . This usually involves constructing

a low-dimensional “response surface” containing information about the dependence of

f on its independent variables (see e.g. [2, 14, 25, 29] and their references), and fre-

quently employs techniques including principal component analysis, projection pursuit

regression, kriging, and others [1, 13, 15, 18, 31–33, 39, 40]. One popular algorithm

for response surface construction among C1 functions is known as Active Subspaces

(AS) [12]: a procedure for determining the affine subspace of U ⊂ R
n where f

changes the most on average. In particular, AS computes a Monte Carlo approxima-

tion to the covariance matrix C := E[∇f(∇f)T ], so that the eigenvalue decomposition

C =: WΛWT gives a global linear transformation of the input coordinates in terms of

how much they affect the value of f . In the case that only the first k eigenvalues are

significant, this yields a suitable low-dimensional projection P : Rn → R
k in terms of

the first k columns WA of W. More precisely, decomposing W = [WA WI ] in terms

of its “active” and “inactive” components, it can be shown that

∥

∥f(x)− f̂
(

WT
Ax
)
∥

∥

2

2
≤ C ‖WI‖

2
2 ,

where f̂ is a suitably chosen function (see e.g. [14, Theorem 2]) and C = C(ρ) is

a Poincaré constant depending on the density ρ. Due to this fact and others, AS projec-

tions are known to be quite useful for dimension reduction, regression, and sensitivity

analysis (see e.g. [12,17,27,30]).

On the other hand, it is frequently the case that the eigenvalues of the covari-

ance matrix C decay quite slowly, making a linear AS reduction ineffective for low-

dimensional regression (c.f. Section 5.2). This has motivated another line of work into

nonlinear methods for extrinsic dimension reduction. One such idea was introduced as

the Active Manifolds (AM) algorithm [5], which takes advantage of the local decom-

position of f afforded by the IFT. In particular, AM aims to construct an integral curve
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t 7→ x(t) ⊂ R
n of the (normalized) gradient field, i.e. a solution to

ẋ =
∇f(x)

‖∇f(x)‖
, x(0) = x0.

Once this “active manifold” has been constructed, it is necessarily the case that the

entire range of f on the set of level sets intersecting x(t) is represented simply by the

values f(x(t)), i.e. for every y ∈ U such that f(y) = c and f−1(c) ∩ x(t) 6= ∅ there is

a value t0 such that c = f(y) = f(x(t0)). Therefore, to determine the value of f at any

suitable point in the input space it is sufficient to know the values of f along the 1-D

curve x(t) as well as a projection map π : Rn → R, π(y) = {t | f(y) = f(x(t))}. This

algorithm has the benefit of zero intrinsic error (since there is no averaging involved),

but comes with the significant challenge of computing the necessary projection map.

However, recent work has also shown that sufficiently deep neural networks have

the ability to reproduce arbitrary measurable functions (see e.g. [24]), motivating an-

other line of research into dimension reduction. Most network-based intrinsic methods

to date are based on constructing an autoencoder-decoder network (see e.g. [23, 38])

which learns projection and expansion functions that compose to yield an approxima-

tion to the identity mapping on the input space. The extrinsic methods which employ

neural networks are more various, including the DrLIM method in [21] which computes

an invariant nonlinear function mapping the input data evenly to a low-dimensional

space, or the method of DIPnets (see [33]) which uses AS in conjunction with pro-

jected neural networks for increased generalizability.

3. The NLL algorithm

In contrast to the work previously mentioned, the present approach is based on

a neural network algorithm introduced in [41] called “Nonlinear Level set Learning”

(NLL). At its core, NLL uses neural network techniques to extend the idea of AS to more

general transformations of the input data. In particular, consider computing a diffeo-

morphism (differentiable bijection with differentiable inverse) g : Rn → R
n, z = g(x)

and h ◦ g = IRn , which separates the domain of the push-forward function f ◦ h into

global pairs z = (zA, zI) of “active” and “inactive” coordinates. If g,h can be con-

structed such that the sensitivity of f ◦h to the coordinates zI is sufficiently low, then it

is reasonable to conclude that for any inactive coordinate zi ∈ zI the domain of f◦h can

be restricted to Span{zi}⊥ with negligible impact on the function value. Provided this

condition is satisfied, regression can be applied to obtain a lower-dimensional mapping

f̂ : R|A| → R such that f(x) ≈ f̂(zA). More precisely, given the function g and writing

zA =: gA(x) to denote its first |A| components, this means computing a generalized

ridge function

f̂
(

gA(x)
)

∈ argmin
ϕ:R|A|→R

∥

∥f(x)− ϕ(gA(x))
∥

∥

2

2
, (3.1)

where g acts as the (nonlinear) projection operator. Note that once g has been ob-

tained, computing the required f̂ in (3.1) is automatically a more feasible regression
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problem than (1.1), since almost all of the variation in f is concentrated in the lower

dimensional image zA. Most importantly, the necessary projection from z to zA is sim-

ple and canonical: after truncating the domain of h by the span of the inactive variables

zI , the active variables {zA} parameterize the low-dimensional inputs by definition.

Remark 3.1. In the original NLL formulation [41], regression on f ◦h is still performed

on the full set of inputs g(x) without dimension reduction. On the other hand, we find

that this is not necessary when the mappings g,h are well-trained. Therefore, the

algorithm in Section 3 does not require the use of additional inputs beyond zA := z1.

Of course, to make use of this idea it is necessary to have an efficient way to com-

pute the diffeomorphism g. The authors of [41] have demonstrated that carefully

designed neural networks are well suited to this task, and a minimization procedure

can be employed to obtain a mapping which attempts to concentrate the sensitivity of

f in some predefined number of active directions. The particular network architecture

and appropriate notion of loss which support this approach will now be discussed, as

well as the present modifications which improve the overall efficacy of the method.

3.1. Network architecture

In [41] as well as presently, the constrained minimization for g and its inverse h is

accomplished using a specialized RevNet architecture [8, 19] based on the Verlet dis-

cretization of Hamiltonian systems. RevNets are neural networks which are reversible

by construction, yielding improved memory efficiency as intermediate layer activations

do not have to be stored. The primary benefit of using RevNets inside the NLL algo-

rithm is their connection to Hamiltonian systems, whose solution curves are generated

by local diffeomorphisms of the source domain. Because of this, propagating the input

data through a RevNet structure (with a sufficiently small step-size) will necessarily

give a configuration which is diffeomorphic to the original, removing the need for an

explicit constraint during the minimization of the loss functional.

More precisely, let (u,v) be a channel-wise partition of the inputs, σ be an acti-

vation function, and let Ki respectively bi denote operator respectively vector valued

functions for i = 1, 2. It is shown in [8] that the dynamical system

u̇(t) = KT
1 (t)σ

(

K1(t)v(t) + b1(t)
)

,

v̇(t) = −KT
2 (t)σ

(

K2(t)u(t) + b2(t)
)

(3.2)

is stable and well-posed, hence usable for forward propagation along a neural network.

Defining x =: (u0,v0) and discretizing (3.2) with layers 1 ≤ l ≤ L then yields the

system

ul+1 = ul + τ KT
l,1 σ

(

Kl,1vl + bl,1

)

,

vl+1 = vl − τ KT
l,2 σ

(

Kl,2ul+1 + bl,2

)

,
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where τ ∈ R is the discrete time step, and Kl,i respectively bl,i are the weight matri-

ces respectively biases at layer l. It is easily checked that this mapping is invertible at

each layer, therefore it is reasonable to define z := (uL,vL). In practice, the partition

(u0,v0) for x is chosen so that u0 contains the first ⌈n/2⌉ variables xi and v0 contains

the remainder. Propagation forward and backward through this scheme then yields

mappings g,h which satisfy the desired diffeomorphism condition by construction, al-

lowing for an unconstrained minimization of the loss functional. The next goal is to

discuss the particular loss criterion which is used to update the Kl,i,bl,i parameters.

3.2. The loss functional from [41]

It remains to discuss the criterion by which the mappings g,h are trained. The key

observation to the approach in [41] is that if zi ∈ zI is an inactive coordinate, then the

gradient vector field ∇f(x) is orthogonal to the derivative of h(z) with respect to zi at

any point x = h(z) in the input space. Said differently, this means that the derivative

vector hi(z) := h′(z)ei is tangent to the level set of f at x, hence lies in the kernel

of f ′(x). Enforcing this condition during neural network training leads the authors

of [41] to the minimization problem

argmin
h∈Diff(Rn)

L̂(h),

which involves the (regularized) loss functional

L̂(h) = L̂1 + λ L̂2 =
∑

s∈S

n
∑

i=1

ωi

〈

Ji(z
s),∇f(xs)

〉2
+ λ

∑

s∈S

(

detJ(zs)− 1
)2
. (3.3)

Here J =
(

J1 ... Jn

)

=
(

h1/ ‖h1‖ ... hn/ ‖hn‖
)

is the column-normalized Jacobian

matrix of the transformation, the ωi ∈ [0, 1] are user-defined weights influencing the

strength of the constraint in each dimension, and λ ∈ [0,∞) is a user-defined weight

influencing the strength of the regularization term. Note that the choice of column-

normalization in J is introduced in order to simplify the calculation of derivatives in

the original implementation, which uses a finite difference scheme. Moreover, the reg-

ularization arises for similarly practical considerations, providing extra rigidity which

helps direct the minimization toward a reasonable solution. On the other hand, these

additional inclusions come at the cost of diminishing the geometric meaning of the

procedure, which has a substantial effect on both the rate of training and the overall

effectiveness of the algorithm (c.f. Section 5).

Remark 3.2. The informed reader will notice that the publicly available implementa-

tion of the NLL algorithm in [41] uses a slightly different loss functional than L̂ defined

in (3.3). In particular, the loss functional minimized there is

L̃(h) :=

√

L̂1

|S|
+ λ

∏

s∈S

(

detJ(zs)− 1
)

. (3.4)
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Because the practical behavior of the original algorithm seems to be strongly dependent

on this choice, each of the comparisons to “Old NLL” in Section 5 uses whichever loss

functional, (3.3) or (3.4), yields the best performance.

While NLL in its original form has shown promising performance in several cases

(c.f. [41, Fig. 2]), it requires the specification many parameters ω1, . . . , ωn, λ whose

significance is not clear and whose influence is not easily estimated a priori. Addition-

ally, it is relatively slow-to-train and requires the use of an expensive regularization

term in order to guarantee reasonable performance and stability on high-dimensional

data. The goal of what follows is to describe theoretically-justified modifications to this

algorithm which successfully eliminate these issues while also improving the overall

efficacy of the dimension reduction. By reformulating the NLL procedure as the mini-

mization of an appropriate energy functional, a discretization is found which achieves

both faster training and more accurate results.

4. A modified NLL algorithm

The present algorithm augments NLL with the geometric knowledge afforded by

the IFT. Consider using the same RevNet architecture to construct a bijective mapping

h : R
n → R

n such that the level sets of f are parameterized by the images of the

inactive variables zI = {z2, . . . , zn}, i.e. for each regular value y ∈ R there is a c ∈ R

such that f−1(y) = {h(z) | z1 = c}. Since f is differentiable and scalar-valued, the IFT

asserts that this can be done locally away from points where ∇f = 0, but there is no

guarantee that a global mapping exists unless ∇f 6= 0 everywhere and each level set

in the domain is diffeomorphic to an (n − 1)-dimensional hyperplane. On the other

hand, as with AS it is always reasonable to ask for a function h which parameterizes

these sets “the most on average”. Supposing h does this sufficiently well, the problem

of approximating f on the full input space can be reduced to that of approximating

f ◦ h on the one-dimensional space spanned by the active variable z1. In particular, an

inexpensive regression approximation f̂ : R → R can be trained (e.g. simple neural

network or local/global least-squares) using the information that f(x) ≈ f̂(g1(x)).

Remark 4.1. If v1, . . . ,vn form a frame of vector fields on an open set U ∈ R
n, local

coordinates x1, . . . , xn such that vi = ∂/∂xi are called simultaneous flow-box coordi-

nates on U [6]. Such coordinates exist around any point x ∈ U provided the vectors

vi(x) are linearly independent and the Lie bracket identities [vi,vj ] = 0 hold on U for

all 1 ≤ i, j ≤ n. In accordance with this notion, the NLL mapping h can be understood

as providing approximate, best-on-average flow-box coordinates for the level sets of f .

Of course, it is easy to check that [hi(z),hj(z)] = h′(z)[ei, ej ] = 0 for all z ∈ R
n.

4.1. A new loss functional

Computing the mapping h in this way requires a loss functional which reflects the

meaning of the procedure. In practice, it suffices to note that if f ◦ h is insensitive
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to perturbations in z2, . . . , zn at a point z = g(x), then its derivative (f ◦ h)′(z) is

identically zero on the span of the inactive basis vectors {e2, . . . , en}. Note that this

condition is readily expressed coordinate-wise as

(f ◦ h)′(z)ei =
〈

∇f(x),hi(z)
〉

= 0 for all i 6= 1,

yielding precisely the motivating statement for the original NLL algorithm: that the

vectors h2(z), . . . ,hn(z) are orthogonal to ∇f(x). Conversely, note that the mathe-

matical meaning of (f ◦ h)′(z)ei as a rate of change is preserved only if there is no

normalization of hi(z). Therefore, given a set of training samples {xs,∇f(xs)}s∈S in

the original input space and a RevNet architecture as before, the goal of our modified

NLL algorithm is to compute h : Rn → R
n which minimizes the loss functional

L(h) =
1

|S|

∑

s∈S

∥

∥(f ◦ h)′(zs)
∥

∥

2

⊥
, (4.1)

where ‖·‖2⊥ denotes the (squared) norm on the subspace orthogonal to the active di-

rection e1 at each point, i.e. the trace of the Euclidean inner product 〈·, ·〉 with respect

to the basis {e2, . . . , en}. This encourages the algorithm to find a mapping h which

reduces the composite function f ◦ h to a function of one variable z1 = g1(z). More-

over, since h is naturally constrained to be a diffeomorphism and hence a proper map,

it follows that the summand is quadratic and strongly coercive (on Span{e1}
⊥) when-

ever f is, making gradient descent based on L a feasible strategy. Note the similarity

to the method of AS: while AS seeks a linear subspace of the input data {xs} where

the average change in f is maximized, the proposed algorithm seeks a linear subspace

span{e2, . . . , en} of the transformed data {zs} where the average change in the push-

forward f ◦ h is minimized. It follows that the complementary subspace span{e1}
maximizes this change, and the original nonlinear submanifold which maximizes the

average change in f can be recovered through x = h(z).

Remark 4.2. Observe the lack of regularization in (4.1). Experiments show (c.f. Sec-

tion 5) that this criterion is sufficient to drive the descent to a minimum without ad-

ditional penalty, suggesting the benefits of using un-normalized derivatives of the net-

work mapping.

4.2. Connection to energy minimization

From a continuous perspective, it is meaningful to note that the L defined in (4.1)

is (up to scale) a discretization of the Dirichlet-type energy functional

L(h) =

∫

V

∥

∥(f ◦ h)′(z)
∥

∥

2

⊥
dµn =

∫

I

∫

Zt

∥

∥(f ◦ h)′(z)
∥

∥

2

⊥
dµn−1 dt, (4.2)

where h(V ) = U , I = π1(V ) is a bounded interval containing the range of z1 and

Zt = {z ∈ V | z1 = t}. To examine the structure of potential minimizers, it is useful to
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compute the variational derivative of L. Recall that a variation of h : V → U is a one-

parameter family of mappings (also denoted h) satisfying h(t) = h + tϕ for all t in a

compactly supported interval t ∈ (−ε, ε) and some compactly supported ϕ ∈ C1(V ;U).
The variational derivative of a functional F depending on h is then the first-order term

in its Taylor expansion around t = 0. In particular, there is the notation

δF(h)ϕ :=
d

dt
F(h+ tϕ)

∣

∣

t=0
,

which denotes the variational derivative (or simply the variation) of F at the point h

in the direction of ϕ. It is a fundamental fact in the calculus of variations that F is

stationary if and only if δF(h)ϕ = 0 for all ϕ.

Specifically to the present case, note that the variation in h induces a variation in

f ◦ h,

(f ◦ h)(t) = (f ◦ h) + t(f ◦ϕ),

so that the integrand of L varies as

δ
∥

∥(f ◦ h)′(z)
∥

∥

2

⊥
= 2
〈

(f ◦ h)′(z), (f ◦ϕ)′(z)
〉

⊥
.

Moreover, since 〈·, ·〉⊥ is just the inner product induced from R
n on the slices Zt and

the variation ϕ vanishes on the boundary of each slice, integration by parts implies the

equality
∫

Zt

〈

(f ◦ h)′(z), (f ◦ϕ)′(z)
〉

⊥
dµn−1 = −

∫

Zt

(f ◦ϕ)(z)∆⊥(f ◦ h)(z) dµn−1.

Putting this together with the fact that spatial and variational derivatives commute in

this setting, the variation of L is expressed as

δL(h)ϕ =

∫

I

∫

Zt

δ
∥

∥(f ◦ h)′(z)
∥

∥

2

⊥
dµn−1 dt

= −2

∫

I

∫

Zt

(f ◦ ϕ)(z)∆⊥(f ◦ h)(z) dµn−1 dt. (4.3)

Since f ◦ ϕ is an arbitrary C1 variation, this quantity (4.3) vanishes identically if and

only if ∆⊥(f ◦h) = 0 on V , i.e. if and only if f ◦h is harmonic on the slices Zt. It is clear

that this condition is satisfied when h parameterizes the level sets of f on U , since f ◦h
is constant on each slice. Moreover, as minimization of Dirichlet-type energies such as

L is known to exhibit good stability and convergence properties (see e.g. [37]), it is

reasonable to expect that the minimization of (4.1) will be similarly well-behaved. The

next section provides experimental justification for this idea.

5. Numerical examples

This section details examples of the present NLL algorithm “New NLL” and its im-

provements over both AS and the original NLL algorithm “Old NLL” on sparse data sets.
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In particular, the effectiveness of each algorithm is measured using two metrics: the rel-

ative sensitivity of the function to the active variable(s), and the predictive ability of the

low-dimensional approximation. After some discussion of implementation, two high-

dimensional functions from [41] are used for validation of New NLL. Following this,

New NLL is applied to the problem of predicting quantities of interest which depend

on the solutions to systems of differential equations. In all cases, New NLL is shown

to effectively reduce the dimension to one, providing a low-dimensional submanifold

which affords accurate approximation of the desired function.

5.1. Implementation details

The relevant algorithms are implemented in Python on an early 2015 MacBook

Pro with 2.7GHz Intel i5 processor and 8GB of RAM. The implementation of AS is

done in Python 2.7 following P. Constantine’s code library [11], while the implemen-

tation of the NLL algorithms is done in Python 3.9 using the PyTorch library 1.7. Note

that the necessary derivatives of the network mapping h are computed using the Py-

Torch version of automatic differentiation, and not through finite differences as in [41].

Moreover, New NLL employs the Adaptive Moment Estimator (ADAM) optimizer dur-

ing training [26] while Old NLL uses stochastic gradient descent (SGD). In both cases,

the RevNet layer step size is fixed at τ = 0.25, the activation function is σ = tanh, and

500 samples {x, f(x),∇f(x)} are used for validation as the models train. The amount

of training samples is variable and reported in Tables 1 and 2. The weights for Old NLL

are chosen as in [41], namely λ = 1, ωi = 1 for zi an inactive variable and ωi = 0
otherwise. For visualization, the sensitivities of f ◦ h (computed using gradient infor-

mation) are reported as percentages relative to the sum over all coordinates, and the

NLL training and validation losses are reported as percentages relative to their initial

values.

After dimension reduction, low-dimensional regression approximations are gener-

ated using the original training data projected onto the computed low-dimensional

space. To demonstrate that both traditional and modern regression methods can be

used effectively after this dimension reduction, experiments on the functions f5, R0

below use local or global polynomial least-squares to approximate the function value

while the experiments on f4,K use a simple feed-forward neural network. An ad-

ditional 10000 uniformly distributed data samples are used for testing the regression

in all cases except for K, where 500 additional samples are used. Results of the

low-dimensional regressions are visualized through plots of the projected testing data

against both the true and approximate function values. The error metrics reported are

relative root-mean-square error (RRMSE), relative ℓ1 error (Rℓ1), and relative ℓ2 error

(Rℓ2), computed as

RRMSE(f̂) =
1

√

|S|

(

‖f − f̂‖2
max f −min f

)

, Rℓi(f̂) =
‖f − f̂‖i
‖f‖i

.

Note finally that in the case of AS the mapping h should be interpreted as the matrix
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WT from Section 2. The results for all simulations in this section are summarized in

Tables 1 and 2.

5.2. Two high-dimensional examples

Consider the following functions from [41], numbered consistently with the source:

f4(x) = sin
(

‖x‖2
)

, f5(x) =
20
∏

i=1

1

1 + x2i
.

Remark 5.1. Note that the f5 in [41] is actually 1.240f5(1.2x) in terms of the present

f5, therefore identical up to a scale factor of 1.240 and a dilation x 7→ 1.2x.

First, the experiment from [41] on f5 : [0, 1]20 → R is repeated, which uses a 30-

layer RevNet. Here both Old NLL and New NLL are trained for 5000 epochs (passes

forward and backward through the training data) with learning rates of 0.5 respectively

0.003, and regression is performed through local quadratic least-squares using the 10
nearest training neighbors of each test point. The results of New NLL are compared

alongside simulations of Old NLL using one respectively two active variables, where

Old NLL has been trained using the loss functional L̃ (c.f. Remark 3.2).

Fig. 1 shows that New NLL outperforms Old NLL in training speed (b) and sensitivity

concentration (a). In particular, with 500 training data New NLL concentrates 94% of

the total sensitivity in f5 ◦ h in the z1 direction, while Old NLL can only achieve 56%,

(a)

(b)

Figure 1: (a) Relative sensitivity of f5 ◦ h to each z-coordinate; (b) Relative value of loss during the first
2500 epochs of NLL training.
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(a) (b)

(c) (d)

Figure 2: Regression and errors on f5 ◦ h: (a) New NLL; (b) Old NLL 1; (c) Old NLL 2; (d) Errors of the
three approaches.

or 67% of the total if two active variables are used. On the other hand, the regression

results in Fig. 2 illustrate that low-dimensional approximations built using New NLL are

also more accurate, as can be seen in both the regression errors as well as the tightness

of the projected testing data around the fit curve. Indeed, when using New NLL 500
training samples is sufficient for relative errors around 3%. Interestingly, the inclusion

of two active variables in Old NLL does not appear to improve the training rate nor the

regression accuracy, despite concentrating more sensitivity in the active directions.

Next, performance is measured on the higher-dimensional function f4 : [0, 1]40 →
R. Again, a 30-layer RevNet is used, but now the regression is performed using a small

Table 1: Results from the experiments in Section 5.2, including sensitivity measures and low-dimensional
regression errors.

100 Training Samples 500 Training Samples 2500 Training Samples

Function Method zA Sens % RRMSE % Rℓ1 % Rℓ2 % zA Sens % RRMSE % Rℓ1 % Rℓ2 % zA Sens % RRMSE % Rℓ1 % Rℓ2 %

New NLL 78.7 3.86 8.27 10.9 89.8 1.82 3.52 5.16 94.5 0.827 1.72 2.35

Old NLL 60.4 6.63 14.5 18.8 65.9 4.58 10.5 13.0 69.2 4.02 9.11 11.4f4

AS 1-D 25.8 30.3 75.9 85.9 25.9 21.7 39.5 61.4 25.9 15.9 37.6 44.8

New NLL 75.1 0.920 5.79 7.92 88.6 0.370 2.78 3.97 93.8 0.154 1.63 1.98

Old NLL 1 54.6 0.699 7.48 9.40 55.4 0.942 7.26 9.52 56.1 0.784 6.91 8.05f5

Old NLL 2 61.8 1.80 12.9 21.1 68.7 1.03 9.22 11.1 67.5 0.894 8.16 9.69
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(a)

(b)

Figure 3: (a) Relative sensitivity of f4 ◦ h to each z-coordinate; (b) Relative value of loss during the first
2500 epochs of NLL training.

feed-forward neural network of two fully-connected layers with 20 neurons each. In

each case, the regression is trained for 5000 epochs with a learning rate of 0.05, while

the NLL networks Old NLL respectively New NLL are trained for 5000 epochs with

learning rates of 0.02 respectively 0.003. Again, the loss functional L̃ is used to train

Old NLL.

The results of this experiment are illustrated in Figs. 3 and 4. Again, Fig. 3(b) shows

that New NLL reaches roughly 1% of its initial training loss after just 100 epochs, while

Old NLL plateaus around 15% regardless of the training length. The sensitivities of

f4 ◦ h also behave as expected, even in the presence of few training samples. Indeed,

for 500 samples New NLL concentrates 90% of the total sensitivity in z1, Old NLL con-

centrates 66%, and AS concentrates 26%. Note that the number of samples does not

affect the quality of the AS reduction, which is both a strength and a weakness of this

method. Conversely, all algorithms benefit from increased training samples during the

regression, although the approximation built using New NLL remains the most accu-

rate. Observe that 2500 samples is enough for around 2% error with New NLL, while

Old NLL still produces errors around 10%. Fig. 4 shows that Active Subspaces is also

able to find the general shape of the function, but the one-dimensional approximation

using this linear technique still produces around 40% error.

5.3. Application to parametric differential equations

As mentioned in Section 1, one of the primary applications of dimension reduction

methods such as NLL and AS lies in predicting quantities of interest which arise from
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(a) (b)

(c) (d)

Figure 4: Regression and errors on f4 ◦ h: (a) New NLL; (b) Old NLL; (c) Active Subspaces; (d) Errors of
the three approaches.

systems of differential equations. To that end, we now consider two parameterized

models for physical phenomena: a modified SIER model for disease spread, and an

idealized model for fluid dynamics.

Predicting the basic reproduction number of a disease. Let ḟ denote the (total)

time derivative of f and consider the following modified SEIR model considered in [17]

Table 2: Results from the experiments in Section 5.3, including sensitivity measures and low-dimensional
regression errors.

20 Training Samples 100 Training Samples 500 Training Samples

Function Method zA Sens % RRMSE % Rℓ1 % Rℓ2 % zA Sens % RRMSE % Rℓ1 % Rℓ2 % zA Sens % RRMSE % Rℓ1 % Rℓ2 %

New NLL 75.1 0.435 0.731 1.15 96.4 0.249 0.433 0.605 97.9 0.254 0.469 0.612

Old NLL 62.0 1.64 2.89 4.59 73.2 1.42 3.09 3.89 72.2 1.24 2.39 3.12

AS 1-D 55.0 9.18 18.5 22.1 54.4 18.2 22.0 9.14 53.6 18.8 22.7 9.43
R0

AS 2-D 79.3 4.34 7.87 10.4 79.7 8.01 10.8 4.49 79.6 8.26 10.8 4.50

New NLL 97.6 0.425 1.12 1.27 98.3 0.186 0.496 0.555 98.3 0.101 0.502 0.540

Old NLL 80.1 3.52 9.82 10.5 80.5 3.19 8.99 9.53 80.3 3.25 9.15 9.70

AS 1-D 64.4 6.64 18.8 19.8 65.1 6.81 19.6 20.3 65.0 6.78 19.4 20.2
K

AS 2-D 87.5 3.32 9.54 9.90 88.7 2.64 6.96 7.88 88.7 2.65 7.06 7.91
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for the spread of Ebola in West Africa:

Ṡ = −β1SI − β2SRI − β3SH, ṘI = ρ1γ1I − ωRI ,

Ė = β1SI + β2SRI + β3SH − δE, ṘB = ωRI + ρ2γ2H,

İ = δE − γ1I − ψI, ṘR = (1− ρ1)γ1I + (1− ρ2)γ2H,

Ḣ = ψI − γ2H.

Here S represents the fraction of the population that is susceptible to infection, E rep-

resents the (infected but asymptomatic) exposed population, I is the infected fraction,

H is the hospitalized fraction, RI represents the infectious dead (not properly buried),

RB represents the non-infectious dead (properly buried), RR represents the recovered

population, and δ = 1
9 is a constant. When studying the spread of disease, it is impor-

tant to compute the basic reproduction number

R0 =
1

γ1 + ψ

(

β1 +
β2ρ1γ1
ω

+
β3
γ2
ψ

)

,

which depends on the eight parameters β1, β2, β3, ρ1, γ1, γ2, ω, ψ and measures the po-

tential of the disease to transmit throughout the population. In [17], parameter ranges

for this model are given around a baseline computed using data provided by the World

Health Organization which was collected in the country of Liberia, and AS is used for

the prediction of R0. It is interesting to apply NLL to this problem for comparison

with the existing results. In this case, the training of the NLL models is done with

a 15-layer RevNet and uniformly distributed samples drawn from the ranges in [17, Ta-

ble 7]. In particular, Old NLL respectively New NLL are trained for 5000 epochs with

learning rates of 0.1 respectively 0.005, and regression is performed using 10-neighbor

local quadratic least-squares. Conversely, here global quartic least-squares are used for

the AS regression, since global methods outperform local fitting when the spread of

function values is wide (c.f. Fig. 6(c)). Note that Old NLL is trained using the loss

functional L̂, as this leads to better performance.

The results of this comparison show that the benefits of New NLL persist in this

situation also. In particular, 90% of the total sensitivity in R0 ◦ h is concentrated by

New NLL in the active direction (for 100+ training samples), and even a 20 sample

training set is sufficient for 1% regression error. Contrast this with Old NLL and either

a one-dimensional or two-dimensional AS, which yield significantly more erroneous

approximations. Fig. 6 illustrates the low-dimensional regressions, and Fig. 5(a) shows

the errors. As expected, Fig. 6(a) shows that the approximation trained on the New

NLL reduction produces a much tighter fit than existing methods. Interestingly, note

that here both NLL algorithms train relatively well (c.f. Fig. 5(c)), and the Old NLL

regression outperforms the 2-D AS regression despite concentrating less sensitivity in

the active directions.

Predicting the total kinetic energy. The last experiment in this section considers the

parameterized one-dimensional inviscid Burgers’ equation, which is a common model
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(a) (b)

(c)

Figure 5: (a) Relative regression errors on R0 ◦ h; (b) Relative sensitivity of R0 ◦ h to zA as a percentage
of total; (c) Relative value of loss during the first 2500 epochs of NLL training (log scale).

for fluids whose motion can develop discontinuities. In particular, let µ = (µ1 µ2 µ3)
⊺

and consider the initial value problem,

wt +
1

2

(

w2
)

x
= µ3e

µ2x,

w(a, t,µ) = µ1,

w(x, 0,µ) = 1,

(5.1)

where w = w(x, t,µ) represents the position of the fluid and x ∈ [a, b]. It is interesting

to examine the performance of NLL and AS in predicting the total kinetic energy at

time t, given by

K(t,µ) =
1

2

∫ t

0

∫ b

a

w(x, τ,µ)2 dx dτ.

As K is a function of the PDE solution, this represents a case where prediction is most

valuable. Indeed, for more expensive PDE simulations it may not be possible to gener-

ate as much data as desired. Therefore, the goal is to use sparsely sampled values of

K obtained from simulations of (5.1) to train an approximation to this function at any

(t,µ) in parameter space.

To accomplish this using the methods NLL and AS, it is necessary to have access to

the gradient ∇K at the sampled points. Noting that [∂t, ∂x] = [∂t, ∂µi
] = [∂x, ∂µi

] = 0
for 1 ≤ i ≤ 3, simple differentiation yields

∇K(t,µ) = (KtKµ)
⊺ =

(

1

2

∫ b

a

w(x, t,µ)2 dx

∫ t

0

∫ b

a

w(x, τ,µ)wµ(x, τ,µ) dx dτ

)⊺

.
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(a) (b)

(c) (d)

Figure 6: Regression on R0 ◦ h: (a) New NLL; (b) Old NLL; (c) 1-D AS; (d) 2-D AS.

It follows that Kt can be obtained immediately from the solution w, and the compo-

nents Kµ are further computable by solving sensitivity equations. In particular, differ-

entiating (5.1) with respect to µ yields the following system of initial value problems

in the variable wµ:

wµ,t + (wwµ)x = (0 xµ3e
µ2x eµ2x)⊺ ,

wµ(a, t,µ) = (1 0 0)⊺,

wµ(x, 0,µ) = 0.

(5.2)

Solving (5.1) and (5.2) provides the necessary samples {K(ts,µs), ∇K(ts,µs)}s∈S for

applying the NLL and AS algorithms.

In the example at hand, the parameters are chosen to take values in (t, µ1, µ2, µ3) ∈
[25, 30] × [3, 8] × [0.015, 0.06] × [0, 0.05] with x ∈ [0, 100]. Systems (5.1) and (5.2) are

discretized using simple forward Euler with upwinding with increments of ∆x = 0.4
and ∆t = 0.025. Old NLL respectively New NLL are trained for 5000 epochs using a

7-layer RevNet with learning rates of 0.1 respectively 0.005, and regressions are per-

formed using a neural network as in the case of function f4. Again, Old NLL is trained

using the functional L̂.
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(a) (b)

(c)

Figure 7: (a) Relative regression errors on K ◦h; (b) Relative sensitivity of K ◦h to zA as a percentage of
total; (c) Relative value of loss during the first 2500 epochs of NLL training.

Results are displayed in Figs. 7 and 8. Predictably, both versions of NLL are able

to reproduce a reasonable one-dimensional approximation, although the New NLL ap-

proximation is much more accurate. Moreover, while a one-dimensional AS approxi-

mation can only capture the general trend in the function, a two-dimensional AS ap-

proximation (slightly) outperforms the Old NLL approximation. When using New NLL,

Figs. 7(a) and (b) show that 100 training samples is sufficient for a sensitivity concen-

tration of 98% and regression errors of around 0.5%.

6. Conclusion

An improved version of the NLL algorithm from [41] has been proposed which re-

duces the input dimension to one in every case. By reformulating the central learning

problem as the minimization of a Dirichlet-type energy functional, good stability and

convergence properties are exhibited despite the use of sparse and high-dimensional

training data. Through various illustrative examples it has been demonstrated that

New NLL has several benefits over the original NLL algorithm and the linear method of

Active Subspaces, including faster training than Old NLL and a sharper, more complete

dimension reduction. Results show that regression approximations trained after New

NLL are also more accurate, leading to confident prediction when approximating func-

tionals of ODE/PDE solutions. Future work includes obtaining rigorous estimates on

the data dependence and algorithmic convergence of New NLL, as well as studying the

connection between harmonic maps and minimizers of the NLL algorithm. Finally, it

remains to investigate the performance of NLL when the level sets of f in U cannot be

covered by just one coordinate chart. Does a procedure motivated by the local IFT still
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(a) (b)

(c) (d)

Figure 8: Regression on K ◦ h: (a) New NLL; (b) Old NLL; (c) 1-D AS; (d) 2-D AS.

produce a good mapping in this case? If not, is there a straightforward modification

which yields better results? Although these concerns can always be addressed in prin-

ciple by shrinking the domain U , it would be interesting to have an algorithm which is

agnostic to such topological considerations.
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(Eds.), Vol. 32, Curran Associates Inc., 2019.

[42] Y. ZHANG, Z. ZHANG, J. QIN, L. ZHANG, B. LI, AND F. LI, Semi-supervised local multi-

manifold isomap by linear embedding for feature extraction, Pattern Recognit. 76 (2018),
662–678.


