
J Sci Comput
DOI 10.1007/s10915-017-0433-8

POD/DEIM Reduced-Order Modeling of
Time-Fractional Partial Differential Equations
with Applications in Parameter Identification

Hongfei Fu1 · Hong Wang2 · Zhu Wang2

Received: 11 June 2016 / Revised: 3 February 2017 / Accepted: 6 April 2017
© Springer Science+Business Media New York 2017

Abstract In this paper, a reduced-order model (ROM) based on the proper orthogonal
decomposition and the discrete empirical interpolation method is proposed for efficiently
simulating time-fractional partial differential equations (TFPDEs). Both linear and nonlinear
equations are considered.We demonstrate the effectiveness of the ROMby several numerical
examples, in which the ROM achieves the same accuracy of the full-order model (FOM) over
a long-term simulation while greatly reducing the computational cost. The proposed ROM
is then regarded as a surrogate of FOM and is applied to an inverse problem for identifying
the order of the time-fractional derivative of the TFPDE model. Based on the Levenberg–
Marquardt regularization iterative method with the Armijo rule, we develop a ROM-based
algorithm for solving the inverse problem. For cases in which the observation data is either
uncontaminated or contaminated by random noise, the proposed approach is able to achieve
accurate parameter estimation efficiently.
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1 Introduction

Although being “invented” around the same time as the conventional calculus, fractional
calculus did not attract much attentions of researchers until very recently. Due to the nonlocal
nature of fractional integral or differential operators, the numerical schemes for solving
fractional partial differential equations (FPDEs) give rise to dense stiffness matrices and/or
long tails in time or a combination of both, which results in high computational complexity
and large memory requirements. This is one of the main reasons why FPDE models have
not been widely used. However, it has been shown recently that fractional integrals and
derivatives possess better modeling capabilities for describing challenging phenomena in
physics, material science, biology, stochastic computation, finance, etc.; see, for example,
[3,14,15,25–28,31,32].

In particular, time-fractional partial differential equations (TFPDEs) are typically used to
model subdiffusion phenomena. Because of the fractional time derivative of the state variable
in the model, a solution at a time instance t is related to the solution at all the time previous
to t . Thus, the corresponding numerical schemes would yield a long-tail in time. As a result,
the numerical simulation by classical numerical methods could become too expensive to be
feasible, especially in problems requiring long time modeling and of large scales. Hence,
in terms of computational complexity and memory requirement, it is of great importance to
seek efficient and reliable numerical techniques to solve the TFPDEs. So far, there are few
publications for developing fast algorithms of the TFPDEs: for example, in [20,22], based
on the block lower triangular Toeplitz with tri-diagonal block matrix resulting from the
finite difference discretization, an approximate inversion method and a divide-and-conquer
strategy are developed respectively; a parareal algorithm combined with the spectral method
is presented in [39]; and in [42], several second-order in time fast Poisson solvers for high-
dimensional subdiffusion problems are proposed to reduce the computational complexity in
physical space.

One of the main challenges in applying TFPDEs is to identify certain free parameters of
the model. For example, the fractional order of TFPDEs is typically related to the fractal
dimension of the media and is usually unknown a priori [16,26]. The related identification
process can be formulated as an inverse problem: given some experimental data, to find the
parameter value by minimizing the difference between the numerical output of TFPDEs and
data under certain norms. Some research has been done in this direction: for instance, Liu et al.
[11] proposed a fast finite difference scheme for identifying the fractional derivative orders
of two-dimensional (2D) space-fractional diffusion model; Zhuang et al. [40] considered
a time-fractional heat conduction problem for an experimental heat conduction process in
a 3-layer composite medium and the time-fractional order was numerically identified by
the Levenberg–Marquardt (L–M) method; Cheng et al. [12] presented a theoretical proof
for the uniqueness of the diffusion coefficient in an inverse problem of one-dimensional
(1D) time-fractional diffusion equation; Jin et al. studied an inverse problem of recovering
a spatially varying potential term in a 1D time-fractional diffusion equation in [19]; Wei et
al. [37] proposed a Tikhonov regularization method for solving a backward problem of the
time-fractional diffusion equation; and a coupled method was developed to solve the inverse
source problem of spatial fractional anomalous diffusion equation in [38].

Overall, tackling the inverse problems through an optimization approach would involve
many runs of the forward problems, which solves the TFPDEs at different values of the
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parameters. Since the forward problem simulation is already computationally expensive, the
optimization process could become computationally prohibitive. To overcome this issue,
model reduction techniques, such as proper orthogonal decomposition (POD), balanced
truncation method, reduced basis method and related variations, and CVT-based approach
([2,5,17,24,30]), have a great potential. In this paper, we propose a reduced order modeling
approach for TFPDEs by using the POD method and the discrete empirical interpolation
method (DEIM). The POD has been widely used in providing a computationally inex-
pensive, yet accurate surrogate model for large-scale simulations of PDEs (for example,
[4,6,13,17,18,21,34,36]). The main idea of the POD is to extract a handful of optimal,
global basis functions from given snapshots and obtain a reduced-order approximation on
the subspace spanned by the basis set. Since the dimension of the resulting system is low,
the computational cost could be greatly reduced. When systems involve non-polynomial
nonlinearities, the DEIM could be used to further reduce the computational complexity for
evaluating the nonlinear terms [9]. To our knowledge, the performance of POD/DEIM has
not been well investigated in the context of FPDEs. Thus, in this paper, we first develop
a POD/DEIM reduced-order model (ROM) for TFPDEs; and then design a ROM-based
optimization strategy for the parameter identification problem.

The rest of the paper is organized as follows. In Sect. 2, we present a model problem
governed by TFPDEs and develop a full-order model (FOM) by using finite difference
approximations. In Sect. 3, we construct the POD/DEIM ROM and test its numerical per-
formance. Several numerical experiments show that the ROM yields accurate approximation
over a long-time simulation, hence it provides a natural, efficient alternative model of the
TFPDEs in practice. In Sect. 4, an inverse problem for identifying the order of the fractional
derivative of TFPDEs is presented, which is then formulated as an optimization problem.
Taking the POD/DEIM ROM as a surrogate, the optimization problem is then solved by an
algorithm combining an L–M regularization iterative method and the Armijo rule. We carry
out numerical experiments in Sect. 4.2, which demonstrate the effectiveness and efficiency
of the proposed method. A few concluding remarks are drawn at the last section.

2 The Full-Order Model

In this paper, we consider the following time-fractional diffusion-reaction partial differential
equation

⎧
⎨

⎩

C
0 D

β
t u(x, t) − ∇ · (μ(x)∇u(x, t)) + g(u(x, t)) = f (x, t), x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T,

u(x, 0) = u0(x), x ∈ Ω,

(1)

where Ω ⊂ R
d for d = 1, 2, 3, C0 D

β
t u is the Caputo fractional derivative of order β (0 <

β < 1) defined by (see [31])

C
0 D

β
t u(x, t) := 1

�(1 − β)

∫ t

0

∂u(x, s)
∂s

(t − s)−β ds, (2)

μ(x) is a diffusion coefficient that is bounded from below and above by

0 < μmin ≤ μ(x) ≤ μmax < ∞,

g(u(x, t)) is a nonlinear reaction term that depends on the unknown u(x, t) and f (x, t)
accounts for external source and sink, u0(x) a prescribed initial data. To shorten our presen-
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tation, in the following, we consider the 1D case, i.e., d = 1. However, higher dimensional
cases can be treated in a similar manner.

To seek a numerical solution to the TFPDE (1), we use a finite difference scheme. The time
interval I := [0, T ] is divided into M equal subintervals with the time step Δt = T

M . The
spatial domainΩ := [a, b] is partitioned uniformly with the mesh size h = b−a

N+1 , where N is
the number of interior grids. Denoted by umi the finite difference approximation to u(xi , tm),
where xi = a + ih for 0 ≤ i ≤ N + 1 and tm = mΔt for m = 0, 1, . . . , M . We define
μi+ 1

2
:= μ(xi+ 1

2
), introduce F(u, x, t) := g(u(x, t))− f (x, t) and let Fm

i := F(umi , xi , tm).
As pointed out in [23], the Caputo fractional derivative (2) can be approximated by the

L1 scheme as follows:

C
0 D

β
t u(xi , tm) = 1

�(2 − β)

m−1∑

j=0

b j
um− j
i − um− j−1

i

Δtβ
+ O(Δt2−β), (3)

where b j = ( j+1)1−β − j1−β for j = 0, 1, · · · ,m−1with the following properties: b j > 0,
1 = b0 > b1 > · · · > bm, bm → 0 as m → ∞, and

∑m−1
j=0 (b j − b j+1) + bm = 1. Indeed,

other methods such as Grünwald-Letnikov scheme can also be used here to approximate
the Caputo fractional time derivative, the proposed reduced-order modeling can be naturally
extended to them. Meanwhile, the 1D diffusion operator in (1) can be approximated by the
standard centered-difference scheme

∂

∂x

(

μ
∂u

∂x

) ∣
∣
∣
∣ x = xi
t = tm

=
μi+ 1

2
umi+1 − (μi+ 1

2
+ μi− 1

2
)umi + μi− 1

2
umi−1

h2
+ O(h2). (4)

Substituting the approximations (3)–(4) into (1), we get

1

�(2 − β)

m−1∑

j=0

b j
um− j
i − um− j−1

i

Δtβ
−

μi+ 1
2
umi+1 − (μi+ 1

2
+ μi− 1

2
)umi + μi− 1

2
umi−1

h2

+Fm
i = 0. (5)

Denote γ := Δtβ�(2 − β) and ηi+ 1
2

:= μi+ 1
2
/h2, then (5) can be rewritten as, for i =

1, · · · , N and m = 1, . . . , M ,

−ηi− 1
2
γ umi−1 +

(
1 + ηi− 1

2
γ + ηi+ 1

2
γ
)
umi − ηi+ 1

2
γ umi+1+γ Fm

i

=
m−1∑

j=1

(b j−1 − b j )u
m− j
i + bm−1u

0
i (6)

with

um0 = umN+1 = 0, u0i = u0(xi ).

Let um = [um1 , um2 , . . . , umN ]� and Fm = [Fm
1 , Fm

2 , . . . , Fm
N ]�, we can write the finite

difference scheme (6) into the following matrix-vector formulation.

(IN + γA) um+γFm =
m−1∑

j=1

(b j−1 − b j )um− j + bm−1u0, (7)
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where IN is the identity matrix of order N , and A is a tri-diagonal stiffness matrix of order
N such that

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

η 1
2

+ η 3
2

−η 3
2−η 3

2
η 3

2
+ η 5

2
−η 5

2
. . .

. . .
. . .

−ηN− 3
2

ηN− 3
2

+ ηN− 1
2

−ηN− 1
2−ηN− 1

2
ηN− 1

2
+ ηN+ 1

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (8)

When g(u) = 0, the system (7), named the FOM, is a tri-diagonal linear system of
order N . It can be directly solved using Thomas algorithm in O(N ) flops per time step. The
total computational complexity for the full-order simulation is O(M2N ) flops. The required
memory storage is O(MN ) due to the nonlocal property of the time-fractional derivative.

When g(u) 	= 0, the system is nonlinear. To find a solution, we apply Gauss–Newton
iterative method at each time step. The Jacobian of the system (7) is

J(um) := IN + γA + γDF(um), (9)

where DF(um) is a diagonal matrix given by

DF(um) := diag{F ′(um1 ), F ′(um2 ), . . . , F ′(umN )} ∈ R
N×N (10)

and F ′ = ∂F
∂u . Denote

rm(l) := (IN + γA) um(l) + γFm −
m−1∑

j=1

(b j−1 − b j )um− j − bm−1u0, (11)

the Gauss–Newton method finds the search step dl at the l-th iteration satisfying

J
(
um(l)

)
dl = −rm(l) (12)

and update the approximation

um(l+1) = um(l) + dl

till a prescribed tolerance is satisfied.
Note that the linearized system (12) is a tri-diagonal system of order N , which can also

be solved by the Thomas algorithm in O(N ) flops per iteration. Thus, the computational
complexity for the full-order simulation isO(M2NK ) flops, where K is the total number of
Newton iterations used in the simulation.

3 The POD/DEIM Reduced-Order Model

For the purpose of real-time control or optimizations, the full-order model (7) needs to be
simulated for many times at different values of control inputs or parameters. To obtain an
efficient yet reliable surrogatemodel,we develop aPODreduced-ordermodel for theTFPDEs
in this section.
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3.1 The POD Method

Let the L2(Ω) space be endowedwith inner product (·, ·) and norm ‖·‖0. Assume that the data
V (so-called snapshots) is a collection of time-varying functions u(x, t) ∈ L2(0, T ; L2(Ω)),
the POD method seeks a low-dimensional basis, ϕ1(x), . . . , ϕr (x) ∈ L2(Ω), that optimally
approximates the data. Mathematically, for any positive r , the POD basis is determined by
minimizing the error between the data and its projection onto the basis, that is,

min
{ϕ j }rj=1

∫ T

0

∥
∥
∥u(·, t) −

r∑

j=1

(
u(·, t), ϕ j (·)

)
ϕ j (·)

∥
∥
∥
2

0
dt, (13)

subject to the conditions that (ϕi , ϕ j ) = δi j , 1 ≤ i, j ≤ r , where δi j is the Kronecker delta.
This is equivalent to finding the basis function ϕ(x) that maximizes the ensemble average of
the inner product between u(x, t) and ϕ(x):

max
∫ T

0
|(u(·, t), ϕ(·))|2 dt s.t. ‖ϕ‖2 = 1. (14)

In the context of the calculus of variations, the functional of this constrained variational
problem is

J [ϕ] =
∫ T

0
|(u(·, t), ϕ(·))|2 dt − λ(‖ϕ‖2 − 1) (15)

and a necessary condition for extrema is that the functional derivative vanishes for all admis-
sible variations ψ(x) ∈ L2(Ω) and any ε ∈ R:

d

dε
J [ϕ + εψ]

∣
∣
∣
ε=0

= 0. (16)

It can be shown that the POD basis {ϕ1, . . . , ϕr } is the first r dominant eigenfunctions of the
integral equation ∫

Ω

R(x, x ′)ϕ(x ′) dx ′ = λϕ(x), (17)

where the kernel is the averaged autocorrelation R(x, x ′) = ∫ T
0 u(x, t)u∗(x ′, t) dt . For more

details on POD, the reader is referred to [17].
Once the POD basis functions are obtained, the state variable u(x, t) can be approximated

by

ur (x, t) =
r∑

i=1

ai (t)ϕi (x) = ϕ(x)a(t),

where ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕr (x)] and a(t) = [a1(t), a2(t), . . . , ar (t)]�. By substi-
tuting ur into the Eq. (1), we get a reduced-order approximation

C
0 D

β
t ϕ(x)a(t) − ∇ · (μ(x)∇ϕ(x))a(t) + F(ϕ(x)a(t), x, t) = 0, (18)

where F(ϕ(x)a(t), x, t) = g (ϕ(x)a(t)) − f (x, t) and a(0) = (u0(x),ϕ(x)).

Remark 1 Weneed to consider the finite dimensional case in numerical simulations, in which
the snapshot matrix U = [u1, . . . ,uns ] ∈ R

N×ns . The j-th column of U is the trajectory u j

at a particular time instance t j and at certain parameter values. Then the PODmethod seeks a
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low-dimensional basis by minimizing the mean square error in 2-norm between the snapshot
data and its projection onto the basis, that is,

min
Rank(Φ)=r

ns∑

j=1

∥
∥
∥u j − ΦΦ�u j

∥
∥
∥
2

s.t. Φ�Φ = Ir , (19)

where the POD basis matrix Φ = [φ1, . . . ,φr ] ∈ R
N×r and Ir is an r × r identity matrix.

The POD basis is typically the first r left singular vectors of the snapshot matrix U. Assume
the associated i-th dominant singular value is σi , the POD truncation error satisfies

ns∑

j=1

∥
∥
∥u j − ΦΦ�u j

∥
∥
∥
2 =

d∑

i=r+1

σ 2
i , (20)

where d is the rank of the snapshot matrix U.

3.2 The DEIM Approximation

Because the nonlinear term in ROMs needs to be evaluated at all the grid points, the com-
putational complexity of the reduced-order simulation still depends on the total number of
degrees of freedom. Therefore, the discrete empirical interpolation method was developed
to reduce such computational cost [9]. It has been successfully applied in many nonlinear
ROMs [7–9,33,41].

In general, it employs the following ansatz on a nonlinear function F(u(x, t)):

F(u(x, t)) =
s∑

j=1

ψ j (x)c j (t), (21)

where ψ j (x) is the j-th nonlinear POD basis obtained by applying the POD method on
the nonlinear snapshots. Define the nonlinear POD basis vectors � = [ψ1, . . . ,ψ s] ∈
R

N×s , the DEIM optimally selects a set of interpolation points ℘ := [℘1, . . . , ℘s]ᵀ as
shown in Algorithm 1, in which e℘i be the ℘i -th column in the identity matrix. The DEIM
approximation of the nonlinear term

F(u) = [F(u(x1, t)), F(u(x2, t)), . . . , F(u(xN , t))]�

is given by
Fs = �(Pᵀ�)−1PᵀF(u), (22)

where P = [e℘1 , . . . , e℘s ] ∈ R
N×s is the matrix for selecting the corresponding s indices

℘1, . . . , ℘s . For a detailed description of the DEIM method, the read is referred to [9].

3.3 The POD/DEIM ROM

In what follows, we will consider a full discretization of the POD/DEIMROM and regard the
order of fractional diffusion, β, as a parameter, which belongs to the domain [β, β] ⊂ (0, 1).
To construct a discrete ROM, we first select several representative samples β1, . . . , βk in the
parameter space and solve the corresponding full-order models respectively. For example,
we choose the samples uniformly in the parameter space and use the same grid for the spatial
discretization in all the full-order simulations. The snapshot set is then composed of the
corresponding numerical solutions at selected time instances. Depends on the choice of time
integration in each simulation, the number of snapshots for parameters β j could be different.
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Algorithm 1: DEIM

input : {ψ�}s�=1 ⊂ R
s linear independent

output: ℘ = [℘1, . . . , ℘s ]ᵀ ∈ R
s

[|ρ|, ℘1] = max{|ψ1|};
� = [ψ1],P = [e℘1 ], ℘ = [℘1];
for � = 2 to s do

Solve (Pᵀ�)c = Pᵀψ� for c ;
r = ψ� − �c;
[|ρ|, ℘�

] = max{|r|};
� ← [� ψ�],P ← [P e℘�

], ℘ ←
[

℘

℘�

]

;

end

Define the number of snapshots for the parameter β j to be Mj , and denoted by um,β j the
vector values of u(·, tm) for m = 1, . . . , Mj . Let the snapshot matrix

U = [u1,β1 ,u2,β1 , . . . ,uM1,β1 , . . . ,u1,βk ,u2,βk , . . . ,uMk ,βk ],
and the nonlinear snapshot matrix

F : =
[
F

(
u1,β1

)
, F

(
u2,β1

)
, . . . , F

(
uM1,β1

)
, . . . ,

F
(
u1,βk

)
, F

(
u2,βk

)
, . . . , F

(
uMk ,βk

) ]
.

Correspondingly, the POD basis matrix Φ ∈ R
N×r and the nonlinear POD basis matrix

� ∈ R
N×s . We use the same symbol a to denote the unknown POD basis coefficient a(t) =

[a1(t), . . . , ar (t)]�, then the POD approximation ur (t) = Φa(t). With the same numerical
discretization as (7),we use the PODmethod and theDEIMapproximation (22), and construct
the POD/DEIM ROM as follows.

(IN + γA) Φam + γ �(Pᵀ�)−1PᵀF(Φam)

=
m−1∑

j=1

(b j−1 − b j )Φam− j + bm−1Φa0, (23)

where am := a(tm). Multiplying Φ� on both sides of the above equation and using Φ�Φ =
Ir , we have the following Galerkin projection-based POD/DEIM ROM

(
Ir + γ ΦᵀAΦ

)
am + γ Φᵀ�(Pᵀ�)−1PᵀF(Φam)

=
m−1∑

j=1

(b j−1 − b j )am− j + bm−1a0, (24)

for m = 1, . . . , M and initial condition a0 = Φᵀu0.
The Gauss–Newton iterative method can also be used to solve the POD/DEIM ROM (24)

for am . The Jacobian matrix of the ROM reads

J̃(am) := Ir + γ ΦᵀAΦ + γ Φᵀ�(Pᵀ�)−1PᵀD̃F(Φam), (25)

where D̃F(Φam) := diag{F ′
1, F

′
2, . . . , F

′
N )}Φ ∈ R

N×r with F ′
j = ∂F

∂u (
∑r

i=1(φi ) j a
m
i ).

Denote
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r̃m(l) : = (Ir + γ ΦᵀAΦ)am(l) + γ Φᵀ�(Pᵀ�)−1PᵀF(Φam(l))

−
m−1∑

j=1

(b j−1 − b j )am− j − bm−1a0. (26)

The Gauss–Newton iterative algorithm, at the l-th iteration, finds the step size d̃(l) and update
the solution am(l+1) as follows:

⎧
⎨

⎩

J̃
(
am(l)

)
d̃(l) = −r̃m(l),

am(l+1) = am(l) + d̃(l).
(27)

For each iteration, it takes O(r3 + rs + mr) flops to solve (27). The simulation requires
a total memory storage of O(Mr + s). Comparing with the FOM, the POD/DEIM ROM
(24) is computationally more competitive since r, s � N , especially, for problems requiring
repeated large scale simulations in control and optimization applications.

3.4 Verification of ROMs

The goal of this subsection is to test the numerical performance of the reduced-order model
for the TFPDEs. Both linear and nonlinear equations are considered. The error at the final
time in the discrete L2 norm is used for the criterion, that is, for any u, v

‖u − v‖L2 :=
( N∑

i=1

h
∣
∣u(xi ) − v(xi )

∣
∣2

)1/2
. (28)

For cases in which exact solution u is known, we compare the full-order approximation
errors, ‖u−uh‖, with the reduced-order approximation error, ‖u−uh,r‖. For cases in which
exact solution is unknown, we compare the difference between the full-order solution and
reduced-order solution, ‖uh − uh,r‖.

Test I In this test, we consider the 1D linear TFPDEs with g(u) = 0, μ(x) = 1+ x , and the
exact solution depends on the parameter β that is given by

u(x, t) = t1+β sin(πx) on [0, 1] × [0, T ].
The corresponding source term

f (x, t) = �(2 + β)

�(2)
t sin(πx) + t1+β [(1 + x)π2 sin(πx) − π cos(πx)]. (29)

Assume a prescribed range of the parameter β ∈ (0, 1). To construct the ROM, we first
solve the FOM at several sampling parameters. We uniformly select β = 0.2, 0.4, 0.6, 0.8
for simplicity. In these simulations, mesh size h and time step Δt are taken as 1/64. The
obtained solutions are collected as snapshots and the POD basis functions are obtained
correspondingly. The first four basis functions are shown in Fig. 1. These basis are then used
to derive the r -dimensional ROM (24). Note that the ROM is linear since g = 0. It is observed
that r = 2 yields accurate reduced-order approximations.

The numerical performance of r -dimensional ROMs is investigated at different values of
β, including both the samples and non-sample points. The numerical errors when t = 1 of
the FOM, ‖u − uh‖, and the 2-dimensional ROM, ‖u − uh,2‖, are listed in Table 1. It is
observed that the reduced-order solutions achieve the same accuracy as that of the FOM; and
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Fig. 1 The first four POD basis functions in Test I

Table 1 Error comparison of FOM and ROM at t = 1 for different β in Test I

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

‖u − uh‖ – 1.31E−4 – 1.36E−4 – 1.66E−4 – 3.07E−4 –

‖u − uh,2‖ 1.31E−4 1.31E−4 1.32E−4 1.36E−4 1.45E−4 1.66E−4 2.12E−4 3.07E−4 5.02E−4

Table 2 Error comparison of FOM and ROM at t = 10 for different β in Test I

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

‖u − uh‖ – 2.12E−3 – 3.40E−3 – 5.46E−3 – 8.79E−3 –

‖u − uh,2‖ 1.67E−3 2.12E−3 2.69E−3 3.40E−3 4.31E−3 5.46E−3 6.92E−3 8.79E−3 1.13E−2

the reduced-order approximations have the same order of accuracy at all the tested parameter
values. To study a long term behavior of the ROM, we change the final time to be T = 10.
The results at t = 10 are listed in Table 2, which shows that the ROM is also competitive
even for long time modeling.

Test II In this test, we consider a 1D nonlinear TFPDE model with g(u) = sin(u), μ = 0.05
and an analytic solution

u(x, t) = 4t2x(1 − x) exp(−50(x − 0.5)2) on [0, 1] × [0, T ].
The related source term is

f (x, t) = sin(u(x, t)) + 4�(3)

�(3 − β)
t2−βx(1 − x) exp(−50(x − 0.5)2)

−4μt2(−10000x4 + 20000x3 − 12000x2 + 2000x + 98)

exp(−50(x − 0.5)2). (30)
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Fig. 2 The first four POD basis functions (left) and the first four nonlinear POD basis functions with DEIM
points in Test II

Table 3 Error comparison of FOM and ROM at t = 1 for different β in Test II

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

‖u − uh‖ – 6.68E−4 – 6.72E−4 – 7.41E−4 – 1.18E−3 –

‖u − uh,4‖ 6.71E−4 6.68E−4 7.92E−4 6.72E−4 7.84E−4 7.41E−4 7.67E−4 1.18E−3 1.80E−3

We postulate β ∈ (0, 1) and construct the POD/DEIM ROM based on the full-order
simulations at β = 0.2, 0.4, 0.6, 0.8 and mesh sizes h = Δt = 1/64. When the final time
T = 1, the first four POD basis, nonlinear POD basis and corresponding four DEIM points
are shown in Fig. 2, respectively. We generate the POD/DEIM ROM using r = 4 POD basis
functions and s = 10 DEIM points. To study the performance of the ROM, we vary the
length of simulation time by taking T = 1 and T = 10 separately, and test the values of β

from 0.1 to 0.9.
The numerical errors of the POD–DEIM simulations at the final time are listed in Tables

3 and 4. It is found that, similar to the linear case, the nonlinear reduced-order approxi-
mation achieves the same accuracy as that of the full-order solution; and the reduced-order
approximation errors keep the same order of magnitude at all the tested parameter values.

From the preceding two numerical tests, we demonstrate that the POD/DEIM ROM (24)
yields a reliable approximation, thus could be regarded as an alternative model for TFPDEs.

4 Parameter Identification

Many application problems demand the identification of parameters of mathematical models.
A typical example is the order of time derivativeβ in the TFPDEs,which is not known a priori.
Therefore, one obtains certain measurements through physical/mechanical experiments, and
uses the data to calibrate the parameters in the mathematical model. This is an inverse
problem: given the source function f (x, t), the initial value u0(x) of the TFPDE (1), and
certain observation (or desired) data such as values of the state variable g at the final time,
one seeks for the order β of the time-fractional PDE. In this section, we formulate the inverse
problem as an optimization and develop a Levenberg–Marquardt regularization method (see,
[10,29,35]) to iteratively identify the parameter. It is known that the inverse problem usually
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Table 4 Error comparison of FOM and ROM at t = 10 for different β in Test II

β 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

‖u − uh‖ – 7.17E−2 – 7.31E−2 – 7.46E−2 – 7.63E−2 –

‖u − uh,4‖ 7.18E−2 7.21E−2 7.25E−2 7.31E−2 7.38E−2 7.45E−2 7.54E−2 7.62E−2 7.73E−2

requires a multiple runs of the forward problem, in which the parameter is chosen and the
TFPDE is solved. Considering the computational cost of the forward problem is already
high, the inverse problem could become infeasible. Therefore, we use the POD/DEIM ROM
developed in Sect. 3 as a surrogate model and design an efficient ROM-based optimization
algorithm for parameter identification.

4.1 L–M Regularization Method

The parameter identification of β can be formulated as follows: to find βinv satisfying

βinv = arg min
β∈(0,1)

F(β) := 1

2

N∑

i=1

(u(xi , T ;β) − gi )
2 , (31)

where gi is the value of observations g at the point xi .
An iterative algorithm such as Newton method with line searching could be employed to

find the solution of (31). Basically, the Newton algorithm for minimizing (31) uses the first
and second derivatives of the objective function F(β):

βk+1 = βk − F ′(βk)

F ′′
(βk)

, (32)

where k represents the kth iteration. It is easy to check that (32) is equivalent to solve

βk+1 = βk − (J�
k Jk)

−1J�
k rk, (33)

where rk = (r1, · · · , rN )� with ri = u(xi , T ;β) − gi and

Jk =
(

∂u(x1, T ;β)

∂β
, . . . ,

∂u(xN , T ;β)

∂β

)�
∈ R

N . (34)

Note that in practice, one may use the finite difference u(xi ,T ;β+δ)−u(xi ,T ;β)
δ

with a small
enough δ to approximate the derivatives in (34).

However, the Newton method may fail to work because of J�
k Jk may be nearly zero.

Therefore, the search direction dk := −J�
k rk/J

�
k Jk may not point in a descent direction. A

common technique to overcome this problem is the L–M algorithm (or Levenberg algorithm
since a single parameter case is considered in this paper), which modifies (33) by introducing
some regularity:

βk+1 = βk − (J�
k Jk + αk)

−1J�
k rk, (35)

where αk is a positive penalty parameter. The method coincides with the Newton algorithm
when αk = 0; and it gives a step close to the gradient descent direction when αk is large.

The proposed approach of the inverse parameter identification is summarized in Algo-
rithm 4.1, which includes the details of the L–M method. In particular, the Armijo rule
[1] in Step 3. of the online process, known as one of the inexact line search techniques, is
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Algorithm 4.1. ROM- based parameter identification algorithm.
Given the observation data g and other information of the TFPDE;
Offline. Select some samples in the parameter space [β, β] ⊂ (0, 1) and solve the FOM
problem (7) respectively, and construct ROM (24) by using the r POD basis functions.
Online. Given an initial guess β0 and choose ρ ∈ (0, 1), σ ∈ (0, 1

2 ), α0 > 0 and δ small enough.
For k = 0, 1, · · · , Kmax
� Step 1. Solve the ROM problem (24) corresponding to βk and βk + δ respectively
to obtain ur (·, T ; βk ) and ur (·, T ;βk + δ) .

� Step 2. Compute Jk and rk , and update the search direction dk := −J�
k rk/J�

k Jk .
� Step 3. Determine the search step ρm by the Armijo rule:

F(βk + ρmdk ) ≤ F(βk ) + σρmdkJ�
k rk

where m is the least nonnegative integer.
� Step 4. If |ρmdk | ≤ Tol, then stop and let βinv := βk . Otherwise update

βk+1 := βk + ρmdk , αk+1 := αk/2
and go to Step 1 again.

imposed to ensure the objective function F has sufficient decent. Other rules and related
convergence theory can be found in [35].

4.2 Numerical Experiments

Next, we test the proposed method for numerically identifying the parameter β. Denoted
by β∗ the exact order of the time-fractional derivative in (1), β0 an initial guess for the
optimization and βinv the numerical finding. Let ‘Itr.’ be the number of iterations, and ‘CPU
time’ represent the online time for implementing Algorithm 4.1.

To test the algorithm, we take the observation data g to be the solution of FOM (7) at t = T
when fractional derivative is β∗. Since the realistic data may be contaminated by noise, we
also consider cases in which the data has a small random perturbation, i.e.,

gε(xi ) = g(xi )(1 + ε% · randn(i)), (36)

for i = 1, · · · , N , where ε is the noise level and randn represents the randomnoise generated
by the standard normal distribution.

Assume β ∈ (0, 1) and β∗ = 0.75. In the following tests, we use a four-dimensional
(r = 4) ROM generated offline based on the full-order solutions corresponding to β =
0.2, 0.4, 0.6, 0.8; and select the parameters α0 = 1, ρ = 0.75, σ = 0.25, δ = 10−3, and Tol
= 10−7 in the online process. Test cases in 1D and 2D spatial domains are considered.

4.2.1 One Dimensional Cases

We revisit some examples used in Sect. 3. The space-time domain is chosen as [0, 1]2 and
the mesh sizes are h = Δt = 1/64.

Example 1 The exact solution, initial condition and source function in this example are
the same as those in Test I. Varying the initial guess β0 and the noise level ε, we test the
proposed algorithm (Algorithm 4.1) on this linear problem. The associated output βinv

and approximation error |β∗ − βinv|, and iteration numbers of the optimization process are
listed in Table 5.

For cases in which the data is uncontaminated and contaminated by random noise at a
relative 1%-level, we plot the change of parameter errors and values of the objective function
with respect to the number of iterations in Figs. 3 and 4, respectively. Note that different
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Table 5 Numerical observation of β∗ = 0.75 with ε%-level noise-contaminated data in Example 1

ε β0 βinv |β∗ − βinv | Itr. β0 βinv |β∗ − βinv | Itr.

0 0.1 7.5000E−1 8.8659E−9 12 0.7 7.5000E−1 6.2172E−8 11

0.3 7.5000E−1 6.3319E−9 12 0.8 7.5000E−1 6.6172E−8 11

0.5 7.5000E−1 3.7111E−9 12 0.9 7.5000E−1 2.8085E−9 12

0.01 0.1 7.4971E−1 2.8815E−4 12 0.7 7.5026E−1 2.5526E−4 11

0.3 7.5006E−1 5.7065E−5 12 0.8 7.5007E−1 7.0675E−5 11

0.5 7.5043E−1 4.3908E−4 12 0.9 7.5010E−1 1.0379E−4 12

0.1 0.1 7.5104E−1 1.0463E−3 12 0.7 7.4556E−1 4.4472E−3 11

0.3 7.4978E−1 2.2298E−4 12 0.8 7.5236E−1 2.3619E−3 11

0.5 7.5078E−1 7.8280E−4 12 0.9 7.5734E−1 7.3391E−3 12

1 0.1 7.3621E−1 1.3791E−2 12 0.7 7.2562E−1 2.4375E−2 11

0.3 7.6237E−1 1.2373E−2 12 0.8 7.1960E−1 3.3040E−2 11

0.5 7.0238E−1 4.7617E−2 12 0.9 7.6846E−1 1.8461E−2 12
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Fig. 3 β∗ = 0.75 for uncontaminated observation data in Example 1

random noises are imposed for each run of the algorithm, thus, the data to be used is different
in every inverse problem when the initial guess changes. Therefore, we can see that, for
example, in the 1%-level case with the initial guesses 0.1 and 0.3, the outputs βinv are
different.

It is seen that (i) the proposed algorithm achieves a close approximation of the desired
parameter β∗ for different initial guesses, in particular, β0 = 0.1 and 0.9 are beyond the
range of sampling set; (ii) the optimization process takes only a few iterations to reach
the tolerance; (iii) When the observation data g is contaminated by random noise, it can
still produce satisfactory results but with a relatively low error accuracy compared with the
uncontaminated case. For example, if the initial guess β0 = 0.7, the numerical observation
βinv equals to 7.5000×10−1, 7.5026×10−1, 7.4556×10−1, and 7.2562×10−1, respectively,
for the uncontaminated data, the 0.01%-level contaminated data, the 0.1%-level contaminated
data, and the 1%-level contaminated data. This is because the real parameter β∗ has been
slightly perturbed by the noise on the observation data. Such influence becomesmore obvious
when the noise level increases.
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Fig. 4 β∗ = 0.75 for 1%-level noise contaminated observation data in Example 1

Table 6 Numerical observation of β∗ = 0.75 with ε%-level noise-contaminated data in Example 2

ε β0 βinv |β∗ − βinv | Itr. β0 βinv |β∗ − βinv | Itr.

0 0.1 7.5000E−1 9.9664E−10 8 0.7 7.5000E−1 2.9806E−8 7

0.3 7.5000E−1 3.4394E−10 8 0.8 7.5000E−1 3.6300E−8 7

0.5 7.5000E−1 1.6732E−9 8 0.9 7.5000E−1 1.0195E−7 7

0.01 0.1 7.4998E−1 1.5424E−5 8 0.7 7.4989E−1 1.1190E−4 7

0.3 7.4997E−1 3.0629E−5 8 0.8 7.5006E−1 5.6022E−5 7

0.5 7.5003E−1 2.8158E−5 8 0.9 7.5007E−1 6.5169E−5 7

0.01 0.1 7.5044E−1 4.3990E−4 8 0.7 7.5012E−1 1.2027E−4 7

0.3 7.5025E−1 2.4610E−4 8 0.8 7.4959E−1 4.0968E−4 7

0.5 7.5007E−1 7.4076E−5 8 0.9 7.4968E−1 3.1646E−4 7

1 0.1 7.5440E−1 4.3964E−3 8 0.7 7.5120E−1 1.2030E−3 7

0.3 7.5246E−1 2.4605E−3 8 0.8 7.4590E−1 4.0992E−3 7

0.5 7.5074E−1 7.4073E−4 8 0.9 7.4683E−1 3.1669E−3 8

Example 2 We consider Test II again and perform the same type of tests as in Example 1.
The algorithm output βinv and approximation error |β∗ −βinv|, and iteration numbers of the
optimization process are listed in Table 6. For cases in which the data is uncontaminated and
contaminated by random noise at a relative 1%-level, we plot the change of parameter errors
and values of the objective function with respect to the number of iterations in Figs. 5 and 6,
respectively. The same conclusions as that of Example 1 can be drawn in this case.

4.2.2 Two Dimensional Cases

In this subsection, we consider an application of the ROM-based algorithm (Algorithm
4.1) for 2D TFPDEs (1). A linear equation is considered in Example 3 and a nonlinear case
is considered in Example 4. The goal of these tests is two-fold: we check the accuracy of the
estimated parameter; and measure the efficiency of the proposed ROM-based algorithm by
comparing the CPU time with a FOM-based L–M algorithm.

Example 3 First, a linear TFPDE is considered, that is, g = 0 in (1). Let Ω = [−1, 1]2,
T = 1, μ = 1, f = 0, and the initial condition u0(x, y) = (x − 1)(x + 1)(y − 1)(y + 1).
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Fig. 5 β∗ = 0.75 for uncontaminated observation data in Example 2
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Fig. 6 β∗ = 0.75 for 1%-level noise contaminated observation data in Example 2

The forward problem is solved at parameter samples β = 0.2, 0.4, 0.6, 0.8 to generate
snapshots. The space-time domain is decomposed into a 64 × 64 × 64 grid. It indicates that
one has to solve a series of 3096-by-3096 linear algebraic systems when the FOM-based L–
M algorithm is used. The offline construction work of a four-dimensional POD-ROM takes
about 195s. The four POD basis functions are shown in Fig. 7. Since the dimension is low,
the computational cost for the online implementation would be greatly reduced.

As the linear algebraic systems are all symmetric and positive definite, during the tests we
consider utilizing the preconditioned conjugate gradient (PCG) iterative solver. In Tables 7
and 8, we show the numerical results for the parameter estimation problem based on FOM
and ROM when the data is uncontaminated and contaminated by 1% level random noise,
respectively. The ideal observation data and one example of a 1%-level noise are shown in
Fig. 8. The error |β∗ −βinv| and the objective function F(β) versus the number of iterations
for different initial guesses are plotted in Figs. 9 and 10, respectively.

It is seen that the proposed ROM-based algorithm achieves the same accuracy as the
FOM-based L–M algorithm, and both algorithms converge after a few number of iterations.
However, the CPU time of the former approach has obviously reduced from, for instance,
529 s to 34 s (the online time) for the latter one when the initial guess β0 = 0.5 and data is
free of noise. As the observation data is contaminated by 1%-level noise, the CPU time for
the FOM could be greatly increased, while the ROM-based approach still consumes about
35 s to complete the optimization process. Of course, for large-scale or long-time modeling
problems, the ROM-based approach will become more competitive.
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Fig. 7 The first four POD basis functions in Example 3

Table 7 Comparison of FOM
and ROM with uncontaminated
data in Example 3

β0 βinv |β∗ − βinv | Itr. CPU time (s)

FOM

0.5 7.5000E−1 2.0301E−8 5 529

0.6 7.5000E−1 3.4855E−9 5 528

0.7 7.5000E−1 2.8237E−8 4 418

0.8 7.5000E−1 6.9110E−10 5 505

0.9 7.5000E−1 8.7546E−9 5 494

ROM-4

0.5 7.5000E−1 2.0300E−8 5 34

0.6 7.5000E−1 3.4840E−9 5 35

0.7 7.5000E−1 2.8235E−8 4 28

0.8 7.5000E−1 6.8953E−10 5 35

0.9 7.5000E−1 8.7531E−9 5 35

Example 4 Next, we consider a nonlinear TFPDE model (1) with Ω = [0, 1]2, T = 1, and

μ =
[
1 0
0 2

]

, g(u) = u3 and the source term

f (x, t) = u(x, t)3 + 6π2u(x, t) +
(

�(3 + β)

�(3)
t2 + �(3)

�(3 − β)
t2−β

)

sin(2πx) sin(πy)

(37)
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Table 8 Comparison of FOM
and ROM with fixed 1%-level
noise-contaminated data in
Example 3

β0 βinv |β∗ − βinv | Itr. CPU time (s)

FOM

0.5 7.4986E−1 1.3766E−4 5 556

0.6 7.4986E−1 1.3768E−4 5 1162

0.7 7.4986E−1 1.3765E−4 4 442

0.8 7.4986E−1 1.3768E−4 5 506

0.9 7.4986E−1 1.3767E−4 5 695

ROM-4

0.5 7.4986E−1 1.3766E−4 5 34

0.6 7.4986E−1 1.3768E−4 5 33

0.7 7.4986E−1 1.3765E−4 4 26

0.8 7.4986E−1 1.3768E−4 5 35

0.9 7.4986E−1 1.3767E−4 5 33
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Fig. 8 The observation data and the fixed 1%-level noise in Example 3
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Fig. 9 β∗ = 0.75 for uncontaminated observation data in Example 3
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Fig. 10 β∗ = 0.75 for fixed 1%-level noise contaminated observation data in Example 3
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Fig. 11 The first four POD basis functions in Example 4

such that the analytic solution is u(x, t) = (t2+β + t2 + 1) sin(2πx) sin(πy).
The same spatial and temporal discretization as in Example 3 is used for this test. The set

of parameter samples for constructing the POD/DEIM ROM is also selected to be the same
as used in Example 3. We construct a 4-dimensional POD/DEIM ROM, which uses r = 4
leading POD basis functions as shown in Fig. 11, s = 10 nonlinear POD basis (the first four
ones are plotted in Fig. 12), and 10 DEIM points as shown in Fig. 13. The offline time of the
reduced-order simulations is about 528s.

The numerical results for the parameter identification problem based on FOM and ROM
are listed in Tables 9 and 10, for cases in which the data is uncontaminated and contaminated
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Fig. 12 The first four POD basis functions for the nonlinear function F(u) in Example 4
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by 1% level random noise, respectively. The ideal observation data and one example of
a 1%-level noise are shown in Fig. 14. The error |β∗ − βinv| and the objective function
F(β) versus the number of iterations for different initial guesses are plotted in Figs. 15,
16.
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Table 9 Comparison of FOM
and ROM with uncontaminated
data in Example 4

β0 βinv |β∗ − βinv | Itr. CPU time (s)

FOM

0.01 7.5000E−1 4.6031E−9 8 2803

0.1 7.5000E−1 3.9489E−9 8 2784

0.3 7.5000E−1 2.6262E−9 8 2753

0.5 7.5000E−1 1.4268E−9 8 2725

0.8 7.5000E−1 2.9511E−8 7 2334

0.9 7.5000E−1 8.8339E−8 7 2334

0.99 7.5000E−1 1.3489E−9 8 2647

ROM

0.01 7.5000E−1 4.6045E−9 8 9

0.1 7.5000E−1 3.9490E−9 8 9

0.3 7.5000E−1 2.6276E−9 8 9

0.5 7.5000E−1 1.4268E−9 8 9

0.8 7.5000E−1 2.9511E−8 7 8

0.9 7.5000E−1 8.8337E−8 7 8

0.99 7.5000E−1 1.3504E−9 8 9

Table 10 Comparison of FOM
and ROM with fixed 1%-level
noise-contaminated data in
Example 4

β0 βinv |β∗ − βinv | Itr. CPU time (s)

FOM

0.01 7.3045E−1 1.9554E−2 8 2821

0.1 7.3045E−1 1.9554E−2 8 3038

0.3 7.3045E−1 1.9554E−2 8 2789

0.5 7.3045E−1 1.9554E−2 8 2761

0.8 7.3045E−1 1.9554E−2 7 2381

0.9 7.3045E−1 1.9554E−2 8 3503

0.99 7.3045E−1 1.9554E−2 8 2682

ROM

0.01 7.3045E−1 1.9554E−2 8 10

0.1 7.3045E−1 1.9554E−2 8 10

0.3 7.3045E−1 1.9554E−2 8 10

0.5 7.3045E−1 1.9554E−2 8 10

0.8 7.3045E−1 1.9554E−2 7 9

0.9 7.3045E−1 1.9554E−2 8 10

0.99 7.3045E−1 1.9554E−2 8 9

The proposed ROM-based algorithm achieves the same accuracy as the FOM-based L–M
algorithm, and both algorithms converge after a few number of iterations. However, the CPU
time of the former approach is dramatically decreased from, for instance, 2803 s to 9 s (the
online time) for the latter one when the initial guess β0 = 0.01 and data is free of noise.
Similar speed-up factors are also obtained for the noise-contaminated data.
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Fig. 15 β∗ = 0.75 for uncontaminated observation data in Example 4
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Fig. 16 β∗ = 0.75 for fixed 1%-level noise contaminated observation data in Example 4

5 Conclusions

As a first step of investigations on the reduced-ordermodeling of fractional partial differential
equations, a POD/DEIM-based reduced-ordermodel is proposed for time-fractional diffusion
problems in this paper. The numerical study on the reduced-order simulations shows that the
POD/DEIM ROM is able to achieve the same accuracy as the full-order model, but greatly
reduces the associated computational complexities. Motivated by realistic applications of the
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time-fractional diffusion problems, in which the fractional order β of TFPDEs is usually
unknown a priori, we consider an inverse problem for parameter identification. Based on
the POD/DEIM ROM of TFPDEs and the Levenberg–Marquardt algorithm, we developed a
ROM-based optimization algorithm for seeking an optimal β so that our model output can
match the experimental observations. Numerical tests verify the effectiveness of the proposed
algorithm on both linear and nonlinear TFPDEs.

At the next step, we will extend the idea to more general FPDEs including the case of
β > 1 and apply the proposed methods to the application problems in engineering and
scientific computing.
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