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a b s t r a c t

This paper presents a conforming finite element discretization of the streamfunction formulation of the
one-layer stationary quasi-geostrophic equations, which are a commonly used model for the large scale
wind-driven ocean circulation. Optimal error estimates for this finite element discretization with the
Argyris element are derived. To the best of the authors’ knowledge, these represent the first optimal error
estimates for the finite element discretization of the quasi-geostrophic equations. Numerical tests for the
finite element discretization of the quasi-geostrophic equations and two of its standard simplifications
(the linear Stommel model and the linear Stommel–Munk model) are carried out. By benchmarking
the numerical results against those in the published literature, we conclude that our finite element dis-
cretization is accurate. Furthermore, the numerical results have the same convergence rates as those pre-
dicted by the theoretical error estimates.

! 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the continuous increase in computational power, complex
mathematical models are becoming more and more popular in the
numerical simulation of oceanic and atmospheric flows. For some
geophysical flows in which computational efficiency is of para-
mount importance, however, simplified mathematical models are
central. For example, the quasi-geostrophic equations (QGE), a stan-
dard mathematical model for large scale oceanic and atmospheric
flows [1–4], are often used in climate modeling [5].

The QGE are usually discretized in space by using the finite dif-
ference method (FDM) (see, e.g., [6]) or by the finite volume method
(FVM) (see, e.g., [7,8]). The FVM is particularly appealing for geo-
physical flows since it can be used on unstructured grids and can
preserve the conservation properties of the underlying equations.
The finite element method (FEM), however, offers several advanta-
ges over the popular FDM, as outlined in [9]: (i) an easy treatment
of complex boundaries, such as those of continents for the ocean,
or mountains for the atmosphere; (ii) an easy grid refinement to
achieve a high resolution in regions of interest [10]; (iii) a natural
treatment of boundary conditions; and (iv) a straightforward ap-
proach for the treatment of multiply connected domains [9]. De-

spite these advantages, there are relatively few papers that
consider the FEM applied to the QGE. Most finite element (FE) dis-
cretizations of the QGE have been developed for the streamfunc-
tion–vorticity formulation (see, e.g., [9–18]), very few using the
streamfunction formulation (see, e.g., [12]). The reason is simple:
The streamfunction–vorticity formulation yields a second order
partial differential equation (PDE), whereas the streamfunction for-
mulation yields a fourth order PDE. Thus, although the streamfunc-
tion–vorticity formulation has two variables (q and w) and the
streamfunction formulation has just one (w), the former is the pre-
ferred formulation used in practical computations, since its con-
forming FE discretization requires low-order (C0) elements,
whereas the latter requires high-order (C1) elements (see, e.g., Sec-
tion 11.3 and Section 13.1 in [19] for the Navier–Stokes equation
(NSE) setting). Thus, the state-of-the-art in the FE discretization
of the QGE seems to reflect that for the 2D NSE, to which the
QGE are similar in form. Indeed, most FE discretizations for the
2D NSE have used the streamfunction–vorticity formulation and
C0 elements, and relatively few have used the streamfunction for-
mulation and C1 elements (see [19–21] for a detailed presentation
of both approaches). We note, however, that the streamfunction
formulation of the 2D NSE and its discretization by C1 elements
is an active area of research (see, e.g., [22–32]).

Although the FE discretizations of the QGE are relatively scarce,
the corresponding error analysis seems to be even more scarce. To
our knowledge, all the error analysis for the FE discretization of the
QGE has been done for the streamfunction–vorticity formulation,
and none has been done for the streamfunction formulation.
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Furthermore, to the best of our knowledge, all the available error
estimates for the FE discretization of the QGE are suboptimal. The
first error analysis for the FE discretization of the QGE was carried
out by Fix [11], in which suboptimal error estimates for the
streamfunction–vorticity formulation were proved. Indeed, rela-
tionships (4.7) and (4.8) (and the discussion above these) in [11]
show that the FE approximations for both the potential vorticity
(denoted by f) and streamfunction (denoted by w) consist of piece-
wise polynomials of degree k! 1. At the top of page 381, the
author concludes that the error analysis yields the following
estimates:

kw! whk1 ¼ Oðhk!1Þ; ð1Þ

kf! fhk0 ¼ Oðhk!1Þ; ð2Þ

where k % k0 and k % k1 denote the L2 and the H1 norms, respectively.
Although the streamfunction error estimate (1) appears to be opti-
mal, the potential vorticity error estimate (2) is clearly suboptimal.
Indeed, using piecewise polynomials of degree k! 1 for the FE
approximation of the vorticity, one would expect an OðhkÞ error
estimate in the L2 norm. Medjo [14,15] used a FE discretization of
the streamfunction–vorticity formulation and proved error esti-
mates for the time discretization, but no error estimates for the spa-
tial discretization. Finally, Cascon et al. [10] proved both a priori and
a posteriori error estimates for the FE discretization of the linear
Stommel–Munk model (see Section 5.2 for more details). This model,
while similar to the QGE, has one significant difference: the linear
Stommel–Munk model is linear, whereas the QGE are nonlinear.

We note that the state-of-the-art in the FE error analysis for the
QGE seems to reflect that for the 2D NSE. Indeed, as carefully dis-
cussed in [19] (see also [33–36]), the 2D NSE in streamfunction–
vorticity formulation are easy to implement (only C0 elements
are needed for a conforming discretization), but the available error
estimates are suboptimal (see Section 11.6 in [19]). Next, we sum-
marize the discussion in [19], since we believe it sheds light on the
QGE setting. For C0 piecewise polynomial of degree k FE approxi-
mation for both the vorticity (denoted by x) and streamfunction
(denoted by w), the error estimates given in [21] are (see (11.26)
in [19]):

jw! whj1 þ kx!xhk0 6 C hk!1=2 j ln hjr; ð3Þ

where j % j1 denotes the H1 seminorm, r ¼ 1 for k ¼ 1 and r ¼ 0 for
k > 1. It is noted in [19] that the error estimate in (3) is not optimal:
one may loose a half power in h for the derivatives of the stream-
function (i.e., for the velocity), and three-halves power for the vor-
ticity. It is also noted that there is computational and theoretical
evidence that (3) is not sharp with respect to the streamfunction er-
ror. Furthermore, in [37] it was shown that, for the linear Stokes
equations, the derivatives of the streamfunction are essentially
optimally approximated (see (11.27) in [19]):

jw! whj1 6 C hk!e
; ð4Þ

where e ¼ 0 for k > 1 and e > 0 is arbitrary for k ¼ 1. It is, however,
noted in [19] that (3) seems to be sharp for the vorticity error and
thus vorticity approximations are generally poor.

The FE discretization of the streamfunction formulation gener-
ally requires the use of C1 elements (for a conforming discretiza-
tion), which makes their implementation challenging. From a
mathematical point of view, however, the streamfunction formula-
tion is appealing, since there are optimal error estimates for the FE
discretization of the streamfunction formulation (see the error
estimate (13.5) and Table 13.1 in [19]).

The main goal of this paper is twofold. First, we use a C1 finite
element (the Argyris element) to discretize the streamfunction for-
mulation of the QGE. To the best of our knowledge, this is the first

time that a C1 finite element has been used in the numerical dis-
cretization of the QGE. Second, we derive optimal error estimates
for the FE discretization of the QGE and present supporting numer-
ical experiments. To the best of our knowledge, this is the first time
that optimal error estimates for the QGE have been derived.

The rest of the paper is organized as follows: Section 2 presents
the QGE, their weak formulation, and mathematical support for the
weak formulation. Section 3 outlines the FE discretization of the
QGE, posing a special emphasis of the Argyris element. Rigorous er-
ror estimates for the FE discretization of the stationary QGE are de-
rived in Section 4. Several numerical experiments supporting the
theoretical results are presented in Section 5. Finally, conclusions
and our future research directions are included in Section 6.

2. The quasi-geostrophic equations

The large scale ocean flows, which play a significant role in cli-
mate dynamics [5,38], are driven by two major sources: the wind
and the buoyancy (see, e.g., Chapters 14–16 in [4]). Winds drive
the subtropical and subpolar gyres, which correspond to the
strong, persistent, subtropical and subpolar western boundary cur-
rents in the North Atlantic Ocean (the Gulf Stream and the Labra-
dor Current) and North Pacific Ocean (the Kuroshio and the
Oyashio Currents), as well as their subtropical counterparts in
the southern hemisphere [5,4]. One of the common features of
these gyres is that they display strong western boundary currents,
weak interior flows, and weak eastern boundary currents.

One of the most popular mathematical models used in the study
of large scale wind-driven ocean circulation is the QGE [1,4]. The
QGE represent a simplified model of the full-fledged equations
(e.g., the Boussinesq equations), which allows efficient numerical
simulations while preserving many of the essential features of
the underlying large scale ocean flows. The assumptions used in
the derivation of the QGE include the hydrostatic balance, the b-
plane approximation, the geostrophic balance, and the eddy viscos-
ity parametrization. Details of the derivation of the QGE and the
approximations used along the way can be found in standard text-
books on geophysical fluid dynamics, such as [1,39,2,40,3,4].

In the one-layer QGE, sometimes called the barotropic vorticity
equation, the flow is assumed to be homogenous in the vertical
direction. Thus, stratification effects are ignored in this model.
The practical advantages of such a choice are obvious: the compu-
tations are two-dimensional, and, thus, the corresponding numer-
ical simulation have a low computational cost. To include
stratification effects, QGE models of increasing complexity have
been devised (e.g., the two-layer QGE, the N-layer QGE, and the
continuously stratified QGE [4]). As a first step, in this report we
use the one-layer QGE (referred to as ‘‘the QGE’’ in what follows)
to study the wind-driven circulation in an enclosed, midlatitude
rectangular basin, which is a standard problem, studied exten-
sively by ocean modelers [1,39,2,40,3,4].

The nondimensional streamfunction–vorticity formulation of the
stationary one-layer quasi-geostrophic equations is (see, e.g., Eq.
(14.57) in [4], Eq. (1.1) in [2], Eq. (1.1) in [41], and Eq. (1) in [42]):

Jðw; qÞ ¼ !Re!1 Dqþ F ð5Þ

q ¼ !RoDwþ y; ð6Þ

where w is the velocity streamfunction, q is the potential vorticity, F
is the forcing, Jð%; %Þ is the Jacobian operator given by

Jðw; qÞ :¼ @w
@x

@q
@y
! @w
@y

@q
@x
; ð7Þ

Re is the Reynolds number, and Ro is the Rossby number. The Ross-
by number, Ro, is defined as (see, e.g., [42,43])
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Ro :¼ U
bL2 ; ð8Þ

where b is the coefficient multiplying the y coordinate in the b-
plane approximation [1,4], L is the width of the computational do-
main, and U is the Sverdrup velocity obtained from the balance be-
tween the b-effect and the curl of the divergence of the wind stress
[4]. The Reynolds number, Re, is defined as

Re :¼ U L
A
; ð9Þ

where A is the eddy viscosity parametrization. The horizontal veloc-
ity u can be recovered from w by using the following formula:

u ¼ @w
@y ;!

@w
@x

! "
.

Substituting (6) in (5) and dividing by Ro, we get the stream-
function formulation of the stationary one-layer quasi-geostrophic
equations

Re!1 D2wþ Jðw;DwÞ ! Ro!1 @w
@x
¼ Ro!1 F: ð10Þ

We note that the streamfunction–vorticity formulation has two
unknowns (q and w), whereas the streamfunction formulation has
only one unknown (w). Because the streamfunction–vorticity for-
mulation is a second-order PDE, whereas the streamfunction for-
mulation is a fourth-order PDE, the former is more popular in
practical computations.

We also note that (5)–(6) and (10) are similar in form to the 2D
NSE written in the streamfunction–vorticity and streamfunction
formulations, respectively. There are, however, several significant
differences between the QGE and the 2D NSE. First, the term y in
(6) and the corresponding term @w

@x in (10), which model the rotation
effects in the QGE, do not have counterparts in the 2D NSE. Second,
the Rossby number, Ro, in the QGE, which is a measure of the rota-
tion effects, does not appear in the 2D NSE.

Next, we comment on the significance of the two parameters in
(10), the Reynolds number, Re, and the Rossby number, Ro. As in
the 2D NSE case, Re is the coefficient of the diffusion term
!Dq ¼ D2w. The higher the Reynolds number Re, the smaller the
magnitude of the diffusion term as compared with the nonlinear
convective term Jðw;DwÞ. For small Ro, which corresponds to large
rotation effects, the forcing term, Ro!1 F, becomes large compared
with the other terms. The term Ro!1 @w

@x could be interpreted as a
convection type term with respect to w, not to q ¼ !Dw. When
Ro is small, Ro!1 @w

@x becomes large. Thus, the physically relevant
cases for large scale oceanic flows, in which Re is large and Ro is
small (i.e., small diffusion and high rotation, respectively) translate
mathematically into a convection-dominated PDE with large forcing.
Thus, from a mathematical point of view, we expect the restrictive
conditions used to prove the well-posedness of the 2D NSE
[20,21,19] to be even more restrictive in the QGE setting, due to
the rotation effects. We will later see that this is indeed the case.

To completely specify the equations in (10), we need to impose
boundary conditions. The question of appropriate boundary condi-
tions for the QGE is a thorny one, especially for the streamfunc-
tion–vorticity formulation (see, e.g., [44,4]). In this report, we
consider w ¼ @w

@n ¼ 0 on @X, which are also used in [19] for the
streamfunction formulation of the 2D NSE.

To derive the weak formulation of the QGE (10), we first intro-
duce the appropriate functional setting. Let X :¼ H2

0ðXÞ ¼
w 2 H2ðXÞ : w ¼ @w

@n ¼ 0 on @X
n o

. Multiplying (10) by a test func-
tion v 2 X and using the divergence theorem, we get the weak for-
mulation of the QGE in streamfunction formulation [19]:

Re!1
Z

X
DwDvdxþ

Z

X
Dw wy vx ! wx vy

! "
dx! Ro!1

Z

X
wx vdx

¼ Ro!1
Z

X
F vdx 8v 2 X: ð11Þ

Therefore, letting

a0ðw;vÞ ¼ Re!1
Z

X
DwDvdx; ð12Þ

a1ðf;w;vÞ ¼
Z

X
Df wy vx ! wx vy

! "
dx; ð13Þ

a2ðw;vÞ ¼ !Ro!1
Z

X
wx vdx; ð14Þ

‘ðvÞ ¼ Ro!1
Z

X
F vdx ð15Þ

gives the weak formulation of the QGE in streamfunction formula-
tion: Find w 2 X such that

a0ðw;vÞ þ a1ðw;w;vÞ þ a2ðw;vÞ ¼ ‘ðvÞ; 8v 2 X: ð16Þ

The linear form ‘, the bilinear forms a0 and a2, and the trilinear form
a1 are continuous: There exist C1 > 0 and C2 > 0 such that

ja0ðw;vÞj 6 Re!1 jwj2 jvj2 8w;v 2 X; ð17Þ

ja1ðf;w;vÞj 6 C1 jfj2 jwj2 jvj2 8f;w;v 2 X; ð18Þ

ja2ðw;vÞj 6 Ro!1 C2 jwj2 jvj2 8w; v 2 X; ð19Þ

j‘ðvÞj 6 Ro!1 kFk!2 jvj2 8v 2 X: ð20Þ

Inequalities (17), (18), and (20) are stated in [45] (see inequalities
(2.2) and (2.3) in [45]). Inequality (19) can be proved as follows.
Proposition 2.1 (iii) in [14] implies that

ja2ðw;vÞj 6 Ro!1 C kwk2 kvk2; ð21Þ

where C is a generic constant. Theorem 1.1 in [21] implies that j % j2,
the H2 seminorm, and k % k2, the H2 norm are equivalent on X ¼ H2

0.
Thus, (21) yields inequality (19).

For small enough data, one can use the same type of arguments
as those in Chapter 6 in [46] (see also [20,21]) to prove that the
steady QGE in streamfunction formulation (16) are well-posed
[47,48]. In what follows, we will always assume that the small data
condition involving Re;Ro and F, is satisfied and, thus, that there
exists a unique solution w to (16).

Using a standard argument [45], one can also prove the follow-
ing stability estimate:

Theorem 1. The solution w of (16)satisfies the following stability
estimate:

jwj2 6 ReRo!1 kFk!2: ð22Þ

Proof. Setting v ¼ w in (16), we get:

a0ðw;wÞ þ a1ðw;w;wÞ þ a2ðw;wÞ ¼ ‘ðwÞ: ð23Þ

Since the trilinear form a1 is skew-symmetric in the last two argu-
ments [20,21,19], we have

a1ðw;w;wÞ ¼ 0: ð24Þ

We also note that, applying Green’s theorem, we have

a2ðw;wÞ ¼ !Ro!1
Z Z

X

@w
@x

wdxdy ¼ !Ro!1

2

Z Z

X

@

@x
ðw2Þdxdy

¼ !Ro!1

2

Z Z

X

@

@x
ðw2Þ ! @

@y
ð0Þ

# $
dxdy

¼ !Ro!1

2

Z

@X
0dxþ w2 dy ¼ 0; ð25Þ
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where in the last equality in (25) we used that w ¼ 0 on @X (since
w 2 H2

0ðXÞ). Substituting (25) and (24) in (23) and using the Cau-
chy–Schwarz inequality, we get:

jwj22 ¼
Z

X
DwDwdx ¼ ReRo!1

Z

X
F wdx 6 ReRo!1 kFk!2 jwj2; ð26Þ

which proves (22). h

3. Finite element formulation

In this section, we present the functional setting and some aux-
iliary results for the FE discretization of the streamfunction formu-
lation of the QGE (16). Let T h denote a finite element triangulation
of X with meshsize (maximum triangle diameter) h. We consider a
conforming FE discretization of (16), i.e., Xh ' X ¼ H2

0ðXÞ.
The FE discretization of the streamfunction formulation of the

QGE (16) reads: Find wh 2 Xh such that

a0ðwh;vhÞ þ a1ðwh;wh;vhÞ þ a2ðwh;vhÞ ¼ ‘ðvhÞ; 8vh 2 Xh: ð27Þ

Using standard arguments [20,21], one can prove that, if the small
data condition used in proving the well-posedness result for the
continuous case holds, then (27) has a unique solution wh (see The-
orem 2.1 and subsequent discussion in [45]). One can also prove the
following stability result for wh using the same arguments as those
used in the proof of Theorem 1 for the continuous setting.

Theorem 2. The solution wh of (27) satisfies the following stability
estimate:

jwhj2 6 ReRo!1 kFk!2: ð28Þ

Remark 1. Note that Eq. (24), which was proven in the continuous
case, also holds in the discrete case:

a1ðwh;wh;whÞ ¼ 0 8wh 2 Xh: ð29Þ

We emphasize that (29) holds because the trilinear form a1ð%; %; %Þ
defined in (13) has been explicitly skew-symmetrized. Thus, no ex-
tra care needs to be taken to enforce (29) in our QGE setting; this is
in clear contrast with the NSE setting, where special care is needed
to enforce (29) (see, e.g., [49]). We also note that Eq. (25) holds in
the discrete case as well:

a2ðwh;whÞ ¼ 0 8wh 2 Xh: ð30Þ

Remark 2. The conservation properties of the FE discretization of
the QGE have been proved in the pioneering paper of Fix [11]. In that
report, it was shown that the FE discretization of the streamfunc-
tion–vorticity formulation of the QGE preserves the conservation
properties of the continuum system: conservation of potential vor-
ticity (equation ð5:1Þ in [11]), conservation of potential enstrophy
(equation ð5:2Þ in [11]), and conservation of kinetic energy (equation
ð5:3Þ in [11]). Since only the streamfunction is explicitly approxi-
mated in our QGE formulation, only the conservation of kinetic
energy is relevant to our setting. We emphasize, however, that one
can use the streamfunction approximation to derive a potential vor-
ticity approximation (see, e.g., [19]). In that case, the other two con-
servation properties of the FE discretization could also be
investigated. It is a straightforward calculation (similar to that in
Section 5.1 in [11]) to show that our FE discretization does preserve
the kinetic energy. Indeed, adding the time derivative information to
Eq. (27), neglecting the viscous effects (i.e., discarding the a0ð%; %Þ
term in (27)), neglecting the forcing term (i.e., discarding the ‘ð%Þ
term in (27)), and using (29) and (30), one can easily see that the
kinetic energy is conserved by our FE discretization.

In order to develop a conforming FEM for the QGE (16), we need
to construct subspaces of H2

0ðXÞ, i.e., to find C1 FEs, such as the
Argyris triangular element, the Bell triangular element, the
Hsieh-Clough-Tocher triangular element (a macroelement), or the
Bogner-Fox-Schmit rectangular element [50,19,51,52]. In what fol-
lows, we will use the Argyris FE. The Argyris FE employs piecewise
polynomials of degree five and has twenty-one degrees of freedom
(DOFs): the value at each vertex, the value of the first derivatives
at each vertex, the value of the second derivatives at each vertex,
the value of the mixed derivative at each vertex, and the value of
the normal derivatives at each of the edge midpoints. To maintain
the direction of the normal derivatives in the transformation from
the reference element to the physical element, we use the ap-
proach developed in [53].

By using Theorem 6.1.1 and inequality (6.1.5) in [50], we obtain
the following three approximation properties for the Argyris FE
space Xh:

8v 2 H6ðXÞ \ H2
0ðXÞ; 9vh 2 Xh such that kv! vhk2 6 C h4 jvj6; ð31Þ

8v 2 H4ðXÞ \ H2
0ðXÞ; 9vh 2 Xh such that kv! vhk2 6 C h2 jvj4; ð32Þ

8v 2 H3ðXÞ \ H2
0ðXÞ; 9vh 2 Xh such that kv! vhk2 6 C h jvj3; ð33Þ

where C is a generic constant that can depend on the data, but not
on the meshsize h. Property (31) follows from (6.1.5) in [50] with
q ¼ 2; p ¼ 2; m ¼ 2 and kþ 1 ¼ 6. Property (32) follows from
(6.1.5) in [50] with q ¼ 2; p ¼ 2; m ¼ 2 and kþ 1 ¼ 4. Finally, prop-
erty (33) follows from (6.1.5) in [50] with q ¼ 2; p ¼ 2; m ¼ 2 and
kþ 1 ¼ 3.

4. Error analysis

The main goal of this section is to develop a rigorous numerical
analysis for the FE discretization of the QGE (27) by using the con-
forming Argyris element. In Theorem 3, we prove error estimates
in the H2 norm by using an approach similar to that used in [45].
In Theorem 4, we prove error estimates in the L2 and H1 norms
by using a duality argument.

Theorem 3. Let w be the solution of (16) and wh be the solution of
(27). Furthermore, assume that the following small data condition is
satisfied:

Re!2 Ro P C1 kFk!2; ð34Þ

where Re is the Reynolds number defined in (9), Ro is the Rossby num-
ber defined in (8), C1 is the continuity constant of the trilinear form a1

in (18), and F is the forcing term. Then the following error estimate
holds:

jw! whj2 6 CðRe;Ro;C1;C2; FÞ inf
vh2Xh

jw! vhj2; ð35Þ

where C2 is the continuity constant of the bilinear form a2 in (19) and

CðRe;Ro;C1;C2; FÞ :¼
Ro!1 C2 þ 2Re!1 þ C1 ReRo!1 kFk!2

Re!1 ! C1 ReRo!1 kFk!2

ð36Þ

is a generic constant that can depend on Re;Ro;C1;C2; F, but not on the
meshsize h.

Remark 3. Note that the small data condition in Theorem 3
involves both the Reynolds number and the Rossby number, the
latter quantifying the rotation effects in the QGE.

Furthermore, note that the standard small data condition
Re!2 P C1 kFk!2 used to prove the uniqueness for the steady-state
2D NSE [20,21,46,49] is significantly more restrictive for the QGE,
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since (34) has the Rossby number (which is small when rotation
effects are significant) on the left-hand side. This is somewhat
counterintuitive, since in general rotation effects are expected to
help in proving the well-posedness of the system. We think that
the explanation is the following: Rotation effects do make the
mathematical analysis of 3D flows more amenable by giving them
a 2D character. We, however, are concerned with 2D flows (the
QGE). In this case, the small data condition (34) (needed in proving
the uniqueness of the solution) indicates that rotation effects make
the mathematical analysis of the (2D) QGE more complicated than
that of the 2D NSE.

Finally, we note that, just as in the NSE case, the theoretical
small data condition (34) is often too restrictive in practical (time-
dependent) computations, and thus is generally ignored. For a
detailed discussion of the small data condition in the NSE case, the
reader is referred to Chapter 6 in [46] (see also [49,20,21,54]).

Proof. Since Xh ' X, (16) holds for all v ¼ vh 2 Xh. Subtracting (27)
from (16) with v ¼ vh 2 Xh gives

a0ðw! wh;vhÞ þ a1ðw;w;vhÞ ! a1ðwh;wh;vhÞ þ a2ðw! wh;vhÞ ¼ 0

8vh 2 Xh: ð37Þ

Next, adding and subtracting a1ðwh;w;vhÞ to (37), we get

a0ðw! wh;vhÞ þ a1ðw;w;vhÞ ! a1ðwh;w;vhÞ þ a1ðwh;w;vhÞ

! a1ðwh;wh;vhÞ þ a2ðw! wh;vhÞ ¼ 0 8vh 2 Xh: ð38Þ

The error e can be decomposed as e :¼ w! wh ¼
ðw! khÞ þ ðkh ! whÞ :¼ gþuh, where kh 2 Xh is arbitrary. Thus, Eq.
(38) can be rewritten as

a0ðgþuh;vhÞ þ a1ðgþuh;w;vhÞ þ a1ðwh;gþuh;vhÞ

þ a2ðgþuh;vhÞ ¼ 0 8vh 2 Xh: ð39Þ

Letting vh :¼ uh in (39), we obtain

a0ðuh;uhÞ þ a2ðuh;uhÞ ¼ !a0ðg;uhÞ ! a1ðg;w;uhÞ ! a1ðuh;w;uhÞ
!a1ðwh;g;uhÞ ! a1ðwh;uh;uhÞ ! a2ðg;uhÞ:

ð40Þ

Note that, since a2ðuh;uhÞ ¼ !a2ðuh;uhÞ 8uh 2 Xh ' X ¼ H2
0, it fol-

lows that a2ðuh;uhÞ ¼ 0. We also have that a1ðwh;uh;uhÞ ¼ 0. Using
these equalities in (40), we get

a0ðuh;uhÞ ¼ !a0ðg;uhÞ ! a1ðg;w;uhÞ ! a1ðuh;w;uhÞ

! a1ðwh;g;uhÞ ! a2ðg;uhÞ: ð41Þ

Using a0ðuh;uhÞ ¼ Re!1 juhj22 and (12)–(14) in (41), simplifying, and
rearranging terms, gives

juhj2 6 Re!1 ! C1 jwj2
! "!1

Re!1 þ C1 jwj2 þ C1 jwhj2 þ Ro!1 C2

! "
jgj2:

ð42Þ

Using (42) and the triangle inequality along with the stability esti-
mates (22) and (28), gives:

jej2 6 jgj2 þ juhj2

6 1þ Re!1 þ C1 jwj2 þ C1 jwhj2 þ Ro!1 C2

Re!1 ! C1 jwj2

" #
jgj2

¼ Ro!1 C2 þ 2Re!1 þ C1 ReRo!1 kFk!2

Re!1 ! C1 ReRo!1 kFk!2

" #
jw! khj2; ð43Þ

where kh 2 Xh is arbitrary. We note that the small data condition
(34) ensures the positivity of the RHS of (43). Taking the infimum
over kh 2 Xh in (43) proves estimate (35). h

Next, we prove error estimates in the L2 norm and H1 seminorm
by using a duality argument. To this end, we first notice that the
QGE (10) can be written as

N w ¼ Ro!1 F; ð44Þ

where the nonlinear operator N is defined on X ¼ H2
0ðXÞ as

N w :¼ Re!1 D2wþ Jðw;DwÞ ! Ro!1 @w
@x

: ð45Þ

The linearization of N around w, a solution of (10), yields the fol-
lowing linear operator, which is defined on X ¼ H2

0ðXÞ:

Lv :¼ Re!1 D2vþ Jðv;DwÞ þ Jðw;DvÞ ! Ro!1 @v
@x

: ð46Þ

To find the dual operator L( of L, we use (46) and apply Green’s
theorem:

ðLv;w(Þ ¼ Re!1 D2vþ Jðv;DwÞ þ Jðw;DvÞ ! Ro!1 @v
@x

; w(
# $

¼ v; Re!1 D2 w( ! Jðw;Dw(Þ þ Ro!1 @w
(

@x

# $
þ v; JðDw;w(Þð Þ

¼ ðv;L(w(Þ: ð47Þ

Thus, the dual operator L(, which is defined on X ¼ H2
0ðXÞ, is given

by

L(w( ¼ Re!1 D2 w( ! Jðw;Dw(Þ þ JðDw;w(Þ þ Ro!1 @w(

@x
: ð48Þ

For any given g 2 L2ðXÞ, the weak formulation of the dual problem
is:

ðL(w(;vÞ ¼ ðg;vÞ 8v 2 X ¼ H2
0ðXÞ: ð49Þ

We assume that w(, the solution of (49), satisfies the following ellip-
tic regularity estimates:

w( 2 H4ðXÞ \ H2
0ðXÞ; ð50Þ

kw(k4 6 C kgk0; ð51Þ

kw(k3 6 C kgk!1; ð52Þ

where C is a generic constant that can depend on the data, but not
on the meshsize h.

Remark 4. We note that this type of elliptic regularity was also
assumed in [45] for the streamfunction formulation of the 2D
NSE. In that report, it was also noted that, for a polygonal
domain with maximum interior vertex angle h < 126), the
assumed elliptic regularity was actually proved in [55]. We note
that the theory developed in [55] carries over to our case. In
Section 5 in [55] it is proved that, for weakly nonlinear problems
that involve the biharmonic operator as linear main part and
that satisfy certain growth restrictions, each weak solution
satisfies elliptic regularity results of the form (50)–(52). Assum-
ing that X is a bounded polygonal domain with inner angle x at
each boundary corner satisfying x < 126:283696 . . .), Theorem 7
in [55] with k ¼ 0 and k ¼ 1 implies (50)–(52). Using an
argument similar to that used in Section 6(b) in [55] to prove
that the streamfunction formulation of the 2D NSE satisfies the
restrictions in Theorem 7, we can prove that w(, the solution of
our dual problem (49), satisfies the elliptic regularity results in
(50)–(52). Indeed, the main point in Section 6(b) in [55] is that
the corner singularities arising in flows around sharp corners are
essentially determined by the linear main part D2 in the
streamfunction formulation of the 2D NSE, which is the linear
main part of our dual problem (49) as well.
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Theorem 4. Let w be the solution of (16) and wh be the solution of
(27). Assume that the same small data condition as in Theorem 3 is
satisfied:

Re!2 Ro P C1 kFk!2: ð53Þ

Furthermore, assume that w 2 H6ðXÞ \ H2
0ðXÞ. Then there exist positive

constants C0; C1 and C2 that can depend on Re;Ro;C1;C2; F, but not on
the meshsize h, such that

jw! whj2 6 C2 h4; ð54Þ

jw! whj1 6 C1 h5; ð55Þ

kw! whk0 6 C0 h6
: ð56Þ

Remark 5. The Argyris FE error estimates in Theorem 4 can be
extended to other conforming C1 FE spaces.

Proof. Estimate (54) follows immediately from (31) and Theo-
rem 3. Estimates (56) and (55) follow from a duality argument.

The error in the primal problem (16) and the interpolation error
in the dual problem (49) (with the function g to be specified later)
are denoted as e :¼ w! wh and e( :¼ w( ! w(h, respectively.

To prove the L2 norm estimate (56), we consider g ¼ e in the
dual problem (49):

jej2 ¼ ðe; eÞ ¼ ðLe;w(Þ ¼ ðe;L(w(Þ ¼ ðe;L( e(Þ þ ðe;L(w(hÞ

¼ ðLe; e(Þ þ ðLe;w(hÞ: ð57Þ

The last term on the right-hand side of (57) is given by

ðLe;w(hÞ ¼ Re!1 D2eþ Jðe;DwÞ þ Jðw;DeÞ ! Ro!1 @e
@x
; w(h

# $
: ð58Þ

To estimate this term, we consider the error equation obtained by
subtracting (27) (with wh ¼ w(h) from (16) (with v ¼ w(h):

Re!1 D2e! Ro!1 @e
@x
; w(h

# $
þ Jðw;DwÞ ! Jðwh;DwhÞ; w(h
! "

¼ 0: ð59Þ

Using (59), Eq. (58) can be written as follows:

ðLe;w(hÞ ¼ Jðe;DwÞ þ Jðw;DeÞ ! Jðw;DwÞ þ Jðwh;DwhÞ; w(h
! "

:

ð60Þ

Thus, by using (60), Eq. (57) becomes

jej2 ¼ ðLe; e(Þ þ ðLe;w(hÞ
¼ a0ðe; e(Þ þ a2ðe; e(Þ þ a1ðe;w; e(Þ þ a1ðw; e; e(Þ

þ a1ðe;w;w(hÞ þ a1ðw; e;w(hÞ ! a1ðw;w;w(hÞ

þ a1ðwh;wh;w(hÞ
¼ a0ðe; e(Þ þ a2ðe; e(Þ þ a1ðe;w; e(Þ þ a1ðw; e; e(Þ

! a1ðe;w; e(Þ þ a1ðe;wh; e(Þ þ a1ðe; e;w(Þ: ð61Þ

Using the bounds in (17)–(19), (61) yields

jej2 6 Re!1 jej2 je
(j2 þ Ro!1 C2 jej2 je

(j2 þ C1 jej2 jwj2 je
(j2

þ C1 jwj2 jej2 je
(j2 þ C1 jej2 jwj2 je

(j2 þ C1 jej2 jw
hj2 je

(j2

þ C1 jej2 jej2 jw
(j2 ¼ jej2 je

(j2 Re!1 þ Ro!1 C2 þ C1 jwj2 þ C1 jwj2
!

þC1 jwj2 þ C1 jwhj2
"
þ jej22 C1 jw(j2ð Þ: ð62Þ

Using the stability estimates (22) and (28), (62) becomes

jej2 6 C jej2 je
(j2 þ jej

2
2 C1 jw(j2ð Þ; ð63Þ

where C is a generic constant that can depend on Re;Ro;C1;C2; F,
but not on the meshsize h. Using the approximation results (32),
we get

je(j2 6 C h2 jw(j4: ð64Þ

Using (50)–(51), the elliptic regularity results of the dual problem
(49) with g :¼ e, we get

jw(j4 6 C jej; ð65Þ

which obviously implies

jw(j2 6 C jej: ð66Þ

Inequalities (64)–(65) imply

je(j2 6 C h2 jej: ð67Þ

Inserting (66) and (67) in (63), we get

jej2 6 C h2 jej2 jejþ C jej22 jej: ð68Þ

Using the obvious simplifications and the H2 error estimate (54) in
(68) yields

jej 6 C h2 jej2 þ C jej22 6 C h6 þ C h8 ¼ C0 h6
; ð69Þ

which proves the L2 error estimate (56).
Estimate (55) can be proven using the same duality argument

as that used to prove estimate (56). The major differences are that
we use g ¼ !De in the dual problem (49) and we use the
approximation result (33). h

5. Numerical results

The main goal of this section is twofold. First, we show that the
FE discretization of the streamfunction formulation of the QGE (27)
with the Argyris element produces accurate numerical approxima-
tions, which are close to those in the published literature [10,9,4].
Second, we show that the numerical results follow the theoretical
error estimates in Theorem 3 and Theorem 4. The mathematical
models used in the numerical investigation are presented in Sec-
tion 5.1. The numerical tests in which both the accuracy and the
convergence rates of the FE discretization are investigated are pre-
sented in Section 5.2.

5.1. Mathematical models

Although the pure streamfunction formulation of the steady
QGE (10) is our main concern, we also test our Argyris FE discret-
ization on two simplified settings: (i) the linear Stommel model;
and (ii) the linear Stommel–Munk model. The reason for using these
two additional numerical tests is that they are standard test prob-
lems in the geophysical fluid dynamics literature (see, e.g., Chapter
14 in Vallis [4] as well as the reports of Myers and Weaver [9] and
Cascon et al. [10]). This allows us to benchmark our numerical re-
sults against those in the published literature. Since both the linear
Stommel and the linear Stommel–Munk models lack the nonlin-
earity present in the QGE (10), they represent good stepping stones
for testing our FE discretization.

The linear Stommel–Munk model (see Eq. (14.42) in [4] and
Problem 2 in [10]) is

!SDw! !MD2wþ @w
@x
¼ f : ð70Þ

The parameters !S and !M in (70) are the Stommel number and
Munk scale, respectively, which are given by (see, e.g., Eq. (10)
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in [9] and Eqs. (14.22) and (14.44) in [4]) !M ¼ A
bL3 and !S ¼ c

bL,
where A is the eddy viscosity parameterization, b is the
coefficient multiplying the y coordinate in the b-plane approxi-
mation, L is the width of the computational domain, and c is
the coefficient of the linear drag (Rayleigh friction) as might be
generated by a bottom Ekman layer (see Eq. (14.5) in [4]). The
model is supplemented with appropriate boundary conditions,
which will be described for each of the subsequent numerical
tests.

We note that the linear Stommel–Munk model (70) is similar in
form to the QGE (10). Indeed, both models contain the biharmonic
operator D2w, the rotation term @w

@x, and the forcing term f. The two
main differences between the two models are the following: First,
the QGE are nonlinear, since they contain the Jacobian term Jðw; qÞ,
whereas the Stommel–Munk model is linear. The second difference
is that the linear Stommel–Munk model contains a Laplacian term
Dw, whereas the QGE do not.

We also note that the two models use different parameters: the
Reynolds number, Re, and the Rossby number, Ro, in the QGE and
the Stommel number, !S, and the Munk scale, !M , in the linear
Stommel–Munk model. The parameters !M;Ro, and Re are related
through !M ¼ RoRe!1. There is, however, no explicit relationship
among !S;Ro, and Re. The reason is that the QGE (10) do not contain
the Laplacian term that is present in the Stommel–Munk model
(70), which models the bottom Rayleigh friction. Thus, the coeffi-
cient c does not have a counterpart in the QGE. This explains
why !S, which depends on c, cannot be directly expressed as a
function of Ro and Re.

The second simplified model used in our numerical investiga-
tion is the linear Stommel model (see, e.g., Eq. (14.22) in [4] and
Eq. (11) in [9]):

!SDwþ @w
@x
¼ f : ð71Þ

We note that the linear Stommel model (71) is just the linear Stom-
mel–Munk model (70) in which the biharmonic term is dropped
(i.e., !M ¼ 0).

5.2. Numerical tests

In this section, we present results for the linear Stommel model
(71), the linear Stommel–Munk model (70), and the (nonlinear)
QGE (10).

5.2.1. Linear Stommel model
This section presents the results for the FE discretization of the

linear Stommel model (71) by using the Argyris element. The com-
putational domain is X ¼ ½0;1+ , ½0;1+. For completeness, we pres-
ent results for two numerical tests. The first test, denoted by Test 1,
corresponds to the exact solution used by Vallis (Eq. (14.38) in [4]),
while the second test, denoted by Test 2, corresponds to the exact
solution used by Myers and Weaver (Eqs. (15) and (16) in [9]).

Test 1a: In this test, we choose the same setting as that used in
Eq. (14.38) in [4]. In particular, the forcing term and the non-homo-
geneous Dirichlet boundary conditions are chosen to match those gi-
ven by the exact solution wðx; yÞ ¼ ð1! x! e!x=!S Þp sin pyð Þ. We
choose the same Stommel number as that used in [4], i.e., !S ¼ 0:04.

Fig. 1(a) presents the streamlines of the approximate solution
obtained by using the Argyris element on a mesh with h ¼ 1

32 and
9670 DoFs. We note that Fig. 1(a) resembles Fig. 14:5 in [4]. Since
the exact solution is available, we can compute the errors in vari-
ous norms. Table 1 presents the errors e0; e1; and e2 (i.e., the
L2; H1; and H2 errors, respectively) for various values of the mesh-
size, h (the DoFs are also included). We note that the errors in Ta-
ble 1 follow the theoretical rates of convergence predicted by the
estimates (54)–(56) in Theorem 4. The orders of convergence in Ta-
ble 1 are close to the theoretical ones for the fine meshes, but not
as close for the coarse meshes. We think that the inaccuracies on
the coarse meshes are due to their inability to capture the thin
boundary layer at x ¼ 0. The finer the mesh gets, the better this
boundary layer is captured and the better the numerical accuracy
becomes. We also note that similar inaccuracies near the boundary
layer were observed in the numerical experiments in [10].

Test 1b: To verify whether the degrading accuracy of the
approximation is indeed due to the thin (western) boundary layer,
we use !S ¼ 1 in Test 1a, which will result in a much thicker wes-
tern boundary layer. We then run Test 1a, but with the new !S. As
can be seen in Table 2, the rates of convergence are the expected
theoretical orders of convergence. This shows that the reason for
the inaccuracies in Table 1 were indeed due to the thin western
boundary layer.

Test 2: For this test, we use the exact solution given by Eqs. (15)
and (16) in [9], i.e.,

wðx; yÞ ¼ sinðpyÞ
pð1þ 4p2!2

S Þ

n
2p!S sinðpxÞ þ cosðpxÞ

þ 1
eR1 ! eR2

ð1þ eR2 ÞeR1x ! ð1þ eR1 ÞeR2x% &o
;
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Fig. 1. Linear Stommel model (71): Streamlines of the approximation, wh , on a mesh with h ¼ 1
32.
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where R1;2 ¼
!1-

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4p2!2

S

p
2!S

. The forcing and the homogeneous Dirich-
let boundary conditions are chosen to match those given by the ex-
act solution. We choose the same Stommel number as that used in
[9], i.e., !S ¼ 0:05.

Fig. 2 presents the streamlines of the approximate solution ob-
tained by using the Argyris element on a mesh with h ¼ 1

32 and
9670 DoFs. We note that Fig. 2 resembles Fig. 2 in [9]. Table 3 pre-
sents the errors e0; e1; and e2 for various meshsizes h. The errors in
Table 3 follow the theoretical rates of convergence predicted by the
estimates (54)–(56) in Theorem 4. Again, we see that the orders of
convergence in Table 3 are close to the theoretical ones for the fine
meshes, but not as close for the coarse meshes. We again attribute
this to the inaccuracies at the thin (western) boundary layer at
x ¼ 0.

5.2.2. Linear Stommel–Munk model
This section presents results for the FE discretization of the lin-

ear Stommel–Munk model (70) by using the Argyris element. Our
computational setting is the same as that used by Cascon et al.
[10]: The computational domain is X ¼ ½0;3+ , ½0;1+, the Munk
scale is !M ¼ 6, 10!5, the Stommel number is !S ¼ 0:05, and the
boundary conditions are w ¼ @w

@n ¼ 0 on @X. For completeness, we
present results for two numerical tests, denoted by Test 3 and Test
4, corresponding to Test 1 and Test 2 in [10], respectively.

Test 3: For this test, we use the exact solution given by Test 1 in
[10], i.e., wðx; yÞ ¼ sin2 px

3

( )
sin2 pyð Þ. The forcing term is chosen to

match that given by the exact solution.
Fig. 3(a) presents the streamlines of the approximate solution

obtained by using the Argyris element on a mesh with h ¼ 1
32 and

28550 DoFs. We note that Fig. 3(a) resembles Fig. 7 in [9]. Table 4
presents the errors e0; e1; and e2 for various meshsizes h. The er-
rors in Table 4 follow the theoretical rates of convergence pre-
dicted by the estimates (54)–(56) in Theorem 4. This time, we
see that the orders of convergence in Table 4 are close to the the-
oretical ones for the fine meshes, but are higher than expected for
the coarse meshes. We attribute this to the fact that the exact solu-
tion does not display any boundary layers that could be challeng-
ing to capture by the Argyris element on a coarse mesh.

Test 4: For this test, we use the exact solution given by Test 2 in
[10], i.e., wðx; yÞ ¼ 1! x

3

( )
1! e!20x
( )

sin pyð Þ
% &2. We take the forcing

term f corresponding to the exact solution.
Fig. 3(b) presents the streamlines of the approximate solution

obtained by using the Argyris element on a mesh with h ¼ 1
32 and

28550 DoFs. We note that Fig. 3(b) resembles Fig. 10 in [9]. Table 5
presents the errors e0; e1; and e2 for various meshsizes h. We note
that the errors in Table 5 follow the theoretical rates of conver-
gence predicted by the estimates (54)–(56) in Theorem 4. Again,
we see that the orders of convergence in Table 5 are close to the
theoretical ones for the fine meshes, but not as close for the coarse

Table 1
Linear Stommel model (71), Test 1a [4]: The errors e0; e1; e2 for various meshsizes h.

h DoFs e0 L2 order e1 H1 order e2 H2 order

1/2 70 0.1148 – 1.81 – 83.67 –
1/4 206 0.01018 3.495 0.312 2.537 25.48 1.716
1/8 694 0.0004461 4.512 0.02585 3.593 3.902 2.707
1/16 2534 1:09, 10!5 5.355 0.001215 4.412 0.3494 3.481
1/32 9670 1:972, 10!7 5.788 4:349, 10!5 4.804 0.02335 3.903

Table 2
Linear Stommel model (71), Test 1b [4]: The errors e0; e1 ; e2 for various meshsizes h.

h DoFs e0 L2 order e1 H1 order e2 H2 order

1/2 70 1:689, 10!5 - 0.0003434 – 0.008721 –
1=4 206 3:722, 10!7 5.504 1:341, 10!5 4.678 0.0005616 3.957
1=8 694 4:891, 10!9 6.25 3:757, 10!7 5.158 3:25, 10!5 4.111
1=16 2534 7:079, 10!11 6:111 1:117, 10!8 5:071 1:964, 10!6 4:049
1=32 9670 1:08, 10!12 6:035 3:437, 10!10 5:023 1:213, 10!7 4:018
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Fig. 2. Linear Stommel model (71), Test 2 [9]: Streamlines of the approximation, wh ,
on a mesh with h ¼ 1

32 and 9670 DoFs.

Table 3
Linear Stommel model (71), Test 2 [9]: The errors e0 ; e1 ; e2 for various meshsizes h.

h DoFs e0 L2 order e1 H1 order e2 H2 order

1/2 70 0.005645 – 0.1451 – 6.602 –
1/4 206 0.0004276 3.723 0.02081 2.801 1.632 2.016
1=8 694 1:46, 10!5 4:872 0:001408 3:886 0:2066 2:982
1=16 2534 2:954, 10!7 5:627 5:829, 10!5 4:594 0:0165 3:646
1=32 9670 4:968, 10!9 5:894 1:998, 10!6 4:867 0:001069 3:948
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meshes. As stated previously, we attribute this to the inaccuracies
at the thin (western) boundary layer at x ¼ 0.

5.2.3. Quasi-geostrophic equations - rectangular domains
This section presents results for the FE discretization of the

streamfunction formulation of the QGE (10) in rectangular domains
by using the Argyris element. To solve the resulting nonlinear sys-
tem of equations, we use Newton’s method with the following stop-
ping criteria: the maximum residual norm is 10!8, the maximum
streamfunction iteration increment is 10!8, and the maximum
number of iterations is 10. Our computational domain is
X ¼ ½0;3+ , ½0;1+, the Reynolds number is Re ¼ 1:667, and the Ross-
by number is Ro ¼ 10!4. For completeness, we present results for
two numerical tests, denoted by Test 5 and Test 6, corresponding
to the exact solutions given in Test 1 and Test 2 of [10], respectively.

Test 5: In this test, we take the same exact solution as that in
Test 1 of [10], i.e., wðx; yÞ ¼ sin2 px

3

( )
sin2 pyð Þ. The forcing term

and homogeneous boundary conditions correspond to the exact
solution.

Fig. 4(a) presents the streamlines of the approximate solution ob-
tained by using the Argyris element on a mesh with h ¼ 1

32 and 28550

DoFs. We note that Fig. 4(a) resembles Fig. 7 in [10]. Table 6 presents
the errors e0; e1; and e2 for various meshsizes h. The errors in Table 6
follow the theoretical rates of convergence predicted by the esti-
mates (54)–(56) in Theorem 4. Again, since the exact solution does
not display any boundary layers, we see that the orders of conver-
gence in Table 6 are close to the theoretical ones for the fine meshes,
but are higher than expected for the coarse meshes.

Test 6: In this test, we take the same exact solution as that in
Test 2 of [10], i.e., wðx; yÞ ¼ 1! x

3

( )
1! e!20x
( )

sin pyð Þ
% &2. The forc-

ing term and the homogeneous boundary conditions correspond
to the exact solution.

Fig. 4(b) presents the streamlines of the approximate solution
obtained by using the Argyris element on a mesh with h ¼ 1

32 and
28550 DoFs. We note that Fig. 4(b) resembles Fig. 10 in [10]. Table 7
presents the errors e0; e1; and e2 for various meshsizes h. The er-
rors in Table 7 follow the theoretical rates of convergence pre-
dicted by the estimates (54)–(56) in Theorem 4. We see that the
orders of convergence in Table 7 are close to the theoretical ones
for the fine meshes, but not as close for the coarse meshes. We
attribute this to the inaccuracies at the thin boundary layer at
x ¼ 0.
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Fig. 3. Linear Stommel–Munk Model (70): Streamlines of the approximation, wh , on a mesh with h ¼ 1
32 and 28550 DoFs.

Table 4
Linear Stommel–Munk Model (70), Test 3 [10]: The errors e0 ; e1 ; e2 for various meshsizes h.

h DoFs e0 L2 order e1 H1 order e2 H2 order

1=2 170 0:00299 ! 0:04084 ! 0:7624 !
1=4 550 3:217, 10!5 6:539 0:001031 5:308 0:04078 4:225
1=8 1958 3:437, 10!7 6:548 2:491, 10!5 5:371 0:002253 4:178
1=16 7366 4:571, 10!9 6:232 7:026, 10!7 5:148 0:0001344 4:067
1=32 28550 6:704, 10!11 6:091 2:113, 10!8 5:056 8:26, 10!6 4:024

Table 5
Linear Stommel–Munk Model (70), Test 4 [10]: The errors e0 ; e1 ; e2 for various meshsizes h.

h DoFs e0 L2 order e1 H1 order e2 H2 order

1/2 170 0.06036 - 1.162 - 38.99 -
1/4 550 0.01132 2.414 0.3995 1.541 21.4 0.8656
1/8 1958 0.0008399 3.753 0.05914 2.756 5.656 1.92
1=16 7366 2:817, 10!5 4:898 0:004008 3:883 0:7378 2:939
1=32 28550 5:587, 10!7 5:656 0:0001607 4:641 0:0597 3:627
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5.2.4. Quasi-geostrophic equations - Mediterranean Sea
Test 7: This section presents results for the FE discretization of

the QGE (10) in complex domains by using the Argyris element. As
an example of complex computational domain, we chose the Med-
iterranean Sea [16–18]. We have created a FE mesh of the Mediter-
ranean Sea using GMSH [56]. The coastline data was obtained from
NOAA’s GSHHS database. Major islands such as Corsica, Sardinia,
and Sicily were connected to the nearest land mass in order to en-
sure a unique streamfunction (see the discussions in [9,19,35,36]).
Additionally, the Atlantic Ocean was closed off from the Mediterra-
nean Sea at the Straits of Gibraltar, from the Red Sea at the Suez
Canal, and from the Sea of Marmara at the Dardanelles Strait, while
the Gulf of Corinth was treated as land. The resultant FE mesh is
displayed in Fig. 5. We used a forcing function given by
Fðx; yÞ ¼ sin p

4 y
( )

, which is the same forcing function used by Bryan
in [57]. We note that Bryan used in [57] a forcing function given by
Fðx; yÞ ¼ sin p

2 y
( )

, but on a rectangular domain of height two. Since
the height of our computational domain is one, we used a forcing
function given by Fðx; yÞ ¼ sin p

4 y
( )

in order to maintain the same
flow structure as that used in [57].

The parameters used in the numerical simulation, which are
summarized in Table 8, were the same as those used in [16–18].
By using the parameters in Table 8, we calculated the parameters
used in the QGE (10) (i.e., Ro and Re) as follows: The characteristic
velocity scale, U, used in the definition of the Rossby number (de-
fined in (8)) is the Sverdrup velocity

U :¼ ps0

qHbL
; ð72Þ

where s0 is the amplitude of the wind stress, q is the density of the
fluid, H is the height of the computational domain, b is the coeffi-
cient multiplying the y coordinate in the b-plane approximation,
and L is the length of the computational domain. The Sverdrup bal-
ance, which was used in the derivation of (72), expresses the bal-
ance between the two dominant effects in the system: the b-
effect and the curl of the divergence of the wind stress (see, e.g.,
Section 14.1.3 in [4]). Using Eq. (2.80) from [4] and the parameters
in Table 8 gives the following approximation for the parameter b:

b ¼ 2x
re

cos h0 . 1:742, 10!11 m!1 s!1: ð73Þ
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Fig. 4. QGE (10): Streamlines of the approximation, wh , on a mesh with h ¼ 1
32 and 28550 DoFs.

Table 6
QGE (10), Test 5: The errors e0 ; e1 ; e2 for various meshsizes h.

h DoFs e0 L2 order e1 H1 order e2 H2 order

1=2 170 0:005709 ! 0:06033 ! 1:087 !
1=4 550 3:726, 10!5 7:259 0:001086 5:796 0:04113 4:724
1=8 1958 3:597, 10!7 6:695 2:534, 10!5 5:421 0:002252 4:191
1=16 7366 4:648, 10!9 6:274 7:065, 10!7 5:165 0:0001344 4:067
1=32 28550 6:737, 10!11 6:108 2:116, 10!8 5:061 8:26, 10!6 4:024

Table 7
QGE (10), Test 6: The errors e0 ; e1 ; e2 for various meshsizes h.

h DoFs e0 L2 order e1 H1 order e2 H2 order

1/2 170 0.3497 - 1.9 - 44.05 -
1/4 550 0.0302 3.533 0.4279 2.15 21.74 1.019
1/8 1958 0.001507 4.324 0.06085 2.814 5.661 1.941
1=16 7366 3:225, 10!5 5:547 0:004042 3:912 0:7379 2:94
1=32 28550 5:672, 10!7 5:829 0:000161 4:65 0:0597 3:628
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Using the approximation for b in (73), the parameter values in Ta-
ble 8, and the value s0 ¼ 0:06 kg m!1 s!2 from [58] yields the fol-
lowing approximation for the characteristic velocity scale in (72):

U . 1:054, 10!2ms!1: ð74Þ

Using (73), (74) and the value for L given in Table 8, definition (8)
yields the following value for the Rossby number:

Ro ¼ 6:051, 10!4: ð75Þ

Using (74) and the values for L and A given in Table 8, definition (9)
yields the following value for the Reynolds number:

Re ¼ 5:27: ð76Þ

Since there is no exact solution available for our computational set-
ting, we used a high-resolution numerical simulation as benchmark
(i.e., ‘‘truth’’ solution) for all our numerical experiments. This high-
resolution numerical simulation used a mesh with h ¼ 1

640 and
955302 DoFs, which was the highest resolution achievable with
the available computational resources.

Fig. 6 presents a plot of the streamfunction approximation ob-
tained by using the Argyris element on the fine mesh (i.e., with

h ¼ 1
640 and 955302 DoFs) with the parameters Ro ¼ 6:051, 10!4

and Re ¼ 5:27 given in (75) and (76), respectively. The streamfunc-
tion plot in Fig. 6 is qualitatively similar to the plot in Fig. 2.22 in
[16]. We note that the islands considered in [16] were not con-
nected to the nearest land mass. This is likely the main reason
for the differences between the plots in Fig. 2.22 in [16] and
Fig. 6 in our report. We plan to investigate the more realistic set-
ting used in [16] in a future study.

Table 9 presents the errors e0; e1; e2 for various meshsizes. The
error converges to zero in all three norms, as expected. We note,
however, that the errors in Table 9 do not follow the theoretical
rates of convergence predicted by estimates (54)–(56) in Theo-
rem 4. Specifically, the rates of convergence in Table 9 are signifi-
cantly lower than the theoretical rates of convergence in
Theorem 4. This behavior, however, is standard for higher-order
numerical methods like that used in this report. Indeed, for uni-
form meshes, it is well-known that an ra singularity with
0 < a < 1 yields at most OðhaÞ convergence rates for C0 elements
(see, e.g., [59–62]). Since we do not know the exact solution for
the Mediterranean Sea example considered in our setting, we do
not know whether the exact solution possesses an ra singularity
with 0 < a < 1. We emphasize, however, that the computational
domain in Figs. 5 and 6 does possess reentrant corners that often
yield this type of singularity [27–29,60–62]. A standard approach
used in recovering the optimal rates of convergence for high-order
C0 elements is the use of graded mesh refinement (e.g., radical
meshes) (see, e.g., [27–29,60–62] and the references therein). In
[29], for a second order elliptic boundary value problem, a radical
mesh was used to recover the optimal rates of convergence for the
Argyris element, which is the C1 element used in this report. We
plan to extend the approach in [29] to our QGE setting in a future
study. We also note that a similar decrease in the numerical solu-
tion accuracy was observed in [10] for the FE discretization of the
steady linear QGE with a low-order C0 piecewise linear element.
Numerical inaccuracies were reported for rectangular domains
with boundary layers (see Test 2 and Test 3 in [10]) and for do-
mains with reentrant corners (see the L-shaped domain in Test 4

Fig. 5. QGE (10), Test 7: Mesh of the Mediterranean Sea with h ¼ 1
320 and 240342 DoFs.

Table 8
QGE (10), Test 7: Parameter values used for the simu-
lations of the Mediterranean Sea [17], where
A; h0 ;x;H; L; re;q are the eddy viscosity, reference angle
for the b-plane approximation, angular velocity of the
Earth, domain height, domain length, radius of the Earth,
and density of seawater, respectively.

A 2, 103 m2s-1

h0 40)

x 7:2526, 10!5 s-1

H 1, 103 m
L 1, 106 m
re 6:3781, 106 m
q 1:027, 103 kg=m3

Fig. 6. QGE (10), Test 7: Streamfunction, wh , on a Mediterranean Sea mesh with h ¼ 1
640 and 955302 DoFs.
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in [10]). The numerical study in [10] clearly shows that complex
domains (with reentrant corners) can yield a decrease in solution
accuracy even for low-order C0 elements, although this decrease
is not as significant as that for high-order C1 elements. A mesh
refinement strategy was used in [10] to obtain optimal conver-
gence rates for the low-order FE discretization. As already noted,
we plan to use a similar mesh refinement approach in our QGE set-
ting in a future study.

6. Conclusions

This paper introduced a conforming FE discretization of the
streamfunction formulation of the stationary one-layer QGE based
on the Argyris element. For this FE discretization, we proved opti-
mal error estimates in the H2;H1 and L2 norms. A careful numerical
investigation of the FE discretization was also performed. To this
end, the QGE as well as the linear Stommel and Stommel–Munk
models (two standard simplified settings used in the geophysical
fluid dynamics literature [10,9,4]) were used in the numerical
tests. Based on the numerical results from the seven tests consid-
ered, we drew the following two conclusions: (i) our numerical re-
sults are close to those used in the published literature [10,9,4];
and (ii) the convergence rates of the numerical approximations
do indeed follow the theoretical error estimates in Theorems 3
and 4. The convergence rates followed exactly the theoretical ones
in the test problems where the exact solution did not display a thin
boundary layer, but where somewhat lower than expected in those
tests that displayed a thin western boundary layer, as expected.
Furthermore, for the Mediterranean Sea test case the convergence
rates were significantly lower than the theoretical convergence
rates. We attribute this behavior, which is standard for high-order
numerical methods, to the loss of regularity of the exact solution
due to the reentrant corners displayed by the computational
domain.

This paper laid rigorous mathematical foundations and pro-
vided numerical validation for the conforming FE discretization
of the streamfunction formulation of the QGE. We emphasize,
however, that other formulations (e.g., the streamfunction–vortic-
ity formulation), other types of FEs (e.g., nonconforming and low-
er-order), and other numerical methods (e.g., finite difference,
finite volume and spectral methods) can and should be used in
the numerical discretization of the QGE. Just as for the NSE,
although each choice has well-documented advantages and disad-
vantages, they all contribute to a better understanding of the
underlying problem.

We plan to extend this study in several directions. First, we will
treat the case of multiply connected domains [9,19,35,36] in order
to allow the numerical investigation of more realistic computa-
tional domains (e.g., islands in the Mediterranean Sea and in the
North Atlantic). Second, we will extend to the QGE setting the
mesh refinement approach in [29] to recover optimal error esti-
mates for the Argyris element on domains with reentrant corners,
such as the Mediterranean Sea and the North Atlantic. We note
that a similar mesh refinement strategy was successfully used in
[10] to alleviate the numerical inaccuracies of a low-order C0 FE
discretization of the linearized QGE in domains with reentrant cor-

ners. Finally, we will consider the time-dependent QGE and the
two-layer QGE (which will allow the study of stratification effects).
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