
J Sci Comput (2017) 73:644–666
DOI 10.1007/s10915-017-0507-7

Adjoint-Based, Superconvergent Galerkin
Approximations of Linear Functionals

Bernardo Cockburn1 · Zhu Wang2

Received: 27 February 2017 / Revised: 16 May 2017 / Accepted: 14 July 2017 /
Published online: 1 August 2017
© Springer Science+Business Media, LLC 2017

Abstract We propose a new technique for computing highly accurate approximations to
linear functionals in terms of Galerkin approximations. We illustrate the technique on a sim-
ple model problem, namely, that of the approximation of J (u), where J (·) is a very smooth
functional and u is the solution of a Poisson problem; we assume that the solution u and the
solution of the adjoint problem are both very smooth. It is known that, if uh is the approxima-
tion given by the continuous Galerkin method with piecewise polynomials of degree k > 0,
then, as a direct consequence of its property of Galerkin orthogonality, the functional J (uh)
converges to J (u) with a rate of order h2k . We show how to define approximations to J (u),
with a computational effort about twice of that of computing J (uh), which converge with
a rate of order h4k . The new technique combines the adjoint-recovery method for provid-
ing precise approximate functionals by Pierce and Giles (SIAM Rev 42(2):247–264, 2000),
which was devised specifically for numerical approximations without a Galerkin orthogo-
nality property, and the accuracy-enhancing convolution technique of Bramble and Schatz
(Math Comput 31(137):94–111, 1977), which was devised specifically for numerical meth-
ods satisfying a Galerkin orthogonality property, that is, for finite element methods like, for
example, continuous Galerkin, mixed, discontinuous Galerkin and the so-called hybridizable
discontinuous Galerkin methods. For the latter methods, we present numerical experiments,
for k = 1, 2, 3 in one-space dimension and for k = 1, 2 in two-space dimensions, which show
that J (uh) converges to J (u) with order h2k+1 and that the new approximations converges

Dedicated to Chi-Wang Shu on the occasion of his 60-th birthday.

Research supported by the U.S. National Science Foundation Grants DMS-1522657 and DMS-1522672.

B Bernardo Cockburn
cockburn@math.umn.edu

Zhu Wang
wangzhu@math.sc.edu

1 School of Mathematics, University of Minnesota, 206 Church St SE, Minneapolis, MN 55455, USA

2 Department of Mathematics, University of South Carolina, 1523 Greene Street, Columbia,
SC 29208, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-017-0507-7&domain=pdf
http://orcid.org/0000-0001-6085-3441

J Sci Comput (2017) 73:644–666 645

with order h4k . The numerical experiments also indicate, for the p-version of the method,
that the rate of exponential convergence of the new approximations is about twice that of
J (uh).

Keywords Approximation of linear functionals · Adjoint-based error correction ·
Galerkin methods · Filtering · Convolution

Mathematics Subject Classification 35J47 · 65N12 · 65N30

1 Introduction

This is the first of a series of papers devoted to devising techniques for using Galerkin
approximations to define superconvergent approximations to functionals. In many engineer-
ing applications such as flow control and optimization, it is more important to obtain accurate
approximations of certain functionals J (·) of the state variables u than to get accurate approx-
imations of the variables themselves. These functionals are useful in describing quantities of
interest like, for example, significant physical parameters of a dynamical system, the mean
value in a domain, or the flux crossing certain boundary. See the 2002 paper by Giles and
Süli [11] which contains a thorough overview of these adjoint methods. Here, we consider
the problem of approximating the model functional

J (u) := (g, u)� :=
∫

�

g(x) u(x) dx,

where u is the solution of a second-order elliptic problem

− �u = f in �, (1.1a)

u = uD on ∂�, (1.1b)

in terms of aGalerkin approximation uh to the state variable u and show that, by only doubling
the computational effort needed for computing J (uh), a new approximation can be obtained
which is significantly closer to J (u) than J (uh).

This new technique is based on a combination of the adjoint-recovery method for approx-
imating functionals obtained by Pierce and Giles in 2000 [14] and the accuracy-enhancing
convolution method proposed by Bramble and Schatz in 1977 [1]. Next, we describe these
methods for the functional J (u) just introduced. However, note that the two above-mentioned
methods are general enough as to be applicable to very general functionals, and not only to
a wide variety of partial differential equations but to a wide class of Galerkin numerical
approximations including those provided by the mixed methods, by all adjoint-consistent
DG methods and by the classic continuous Galerkin methods.

1.1 The Adjoint Error Correction Method

Let us begin by describing the adjoint error correction method by Pierce and Giles [14]. If
uh is any H1(�) approximation to u such that uh = uD on ∂�, we can write that

J (u) = (u, g)�

= (uh, g)� + (u − uh, g)�

= (uh, g)� + (u − uh,−�v)�

123

646 J Sci Comput (2017) 73:644–666

= (uh, g)� + (∇(u − uh),∇v)�

= (uh, g)� + (∇(u − uh),∇vh)� + (∇(u − uh),∇(v − vh))�,

where v is the solution of the adjoint problem

− �v = g in �, (1.2a)

v = 0 on ∂�, (1.2b)

and vh is any H1(�) approximation to v.
Thus, if we take, as approximation to J (u), not J (uh) but

Jh(uh, vh) := J (uh) + (∇(u − uh),∇vh)�,

we obtain

|J (u) − Jh(uh, vh)| ≤ ‖∇(u − uh)‖L2(�)‖∇(v − vh)‖L2(�).

Therefore, if we are willing to pay the price of computing an approximation vh to v (which
essentially doubles the computational effort) in order to incorporate the adjoint-correction
term

ACh := (∇(u − uh),∇vh)�,

into the approximation of the functional, we can, remarkably enough, double the order of
convergence of the approximation since the approximation error is

J (u) − Jh(uh, vh) = Eh := (∇(u − uh),∇(v − vh))�,

because

|J (u) − J (uh)| ≤ ‖∇(u − uh)‖L2(�)‖∇v‖L2(�).

This is the adjoint-correction technique proposed by Pierce and Giles [14].

1.2 Extension to Galerkin Methods

Note that the adjoint-correction term is zero if the method defining uh has the well-known
Galerkin orthogonality property. Indeed, in this case

ACh = (∇(u − uh),∇vh)� = 0.

In general, the adjoint-correction terms are different from zero for numericalmethodswithout
aGalerkin orthogonality property. Because of this, onemight conclude that it is not possible to
obtain better approximations of the functional under consideration if uh satisfies the Galerkin
orthogonality property. However, if we could use the finite element approximations uh and vh
to efficiently compute approximations u∗

h and v∗
h which converge faster to u and v that uh and

vh , respectively, the new approximation, Jh(u∗
h, v

∗
h), would converge faster than Jh(uh, vh)

since

|J (u) − Jh(u
∗
h, v

∗
h)| ≤ ‖∇(u − u∗

h)‖L2(�)‖∇(v − v∗
h)‖L2(�).

The first result of this type was obtained by Pierce and Giles in their original 2000 work
[14]. They considered the model problem (1.1) with� a square, defined uh as the continuous
finite element solution using piecewise bilinear elements, and took the postprocessing u∗

h
as the bicubic spline interpolation through the computed nodal values. They did obtain that
Jh(u∗

h, v
∗
h) converges with a rate of orderO(h4). Later in 2004, Giles et al. [10], remarkably

123

J Sci Comput (2017) 73:644–666 647

enough, extended this result to unstructured meshes made of triangles. On the other hand,
Pierce and Giles ended their 2000 paper [14] wondering if there was a systematic way of
doing this for k > 1 and for other partial differential equations.

An effort to answer such questionwas carried out by Cockburn and Ichikawa in 2007 [7] in
the framework of ordinary differential equations and one-dimensional convection-diffusion
equations; discontinuous Galerkin (DG) approximations uh and vh were used. For these two
problems, the approximation Jh(u∗

h, v
∗
h) was proven to converge with a rate of order O(h4k)

when polynomials of degree k were used to define uh and vh . The convergence properties of
the locally computed functions u∗

h and v∗
h are based on the superconvergence properties of

the numerical traces of the DG methods obtained, for ODEs, back in 1981 [9] and, for the
above-mentioned one-dimensional problem, in 2007 [2]. Unfortunately, these properties do
not hold in the multidimensional case and so this approach cannot be used in that case.

1.3 Filtering by Convolution

Fortunately, in the multidimensional case, there is a technique that allows us to locally post-
process an approximation uh defined by Galerkin methods to get a better approximation u∗

h .
It is well known that functions satisfying a Galerkin orthogonality property must oscillate
around the exact solutions in a fixed pattern. If the mesh is translation invariant, it is possible
to filter out these oscillations and achieve a much better approximation in a very efficient
manner. Indeed, in 1977, Bramble and Schatz [1] showed that if uh is given by a Galerkin
method converging with order hk+1, a simple, local convolution converges with order h2k in
the interior of the domain. Applications of this technique to discontinuous Galerkin methods
for linear hyperbolic problems was carried out in 2003 by Cockburn et al. [8]. In 1977,
Thomée [18] showed how to use the technique to approximate derivatives of any order and
in 2009, Ryan and Cockburn [17] applied Thomée’s approach to discontinuous Galerkin
methods for hyperbolic problems.

In 2010, Ichikawa [12] considered our model elliptic problem and proposed for the first
time to use the 1977 accuracy-enhancing local filter (by convolution) of Bramble and Schatz
[1] to compute the functions u∗

h and v∗
h from the approximations uh and vh , respectively.

He used the hybridizable discontinuous Galerkin (HDG) [5,6] with piecewise polynomial
approximations of degree k to define uh and vh , and then applied a convolution, using both the
symmetric convolution kernel advocated by Bramble and Schatz [1] and the non-symmetric
ones proposed by Ryan and Shu [15], to define u∗

h and v∗
h in the whole two-dimensional

square domain �. Ichikawa’s [12] numerical results, on uniform meshes made of squares,
show that Jh(u∗

h, v
∗
h) actually converges with a rate of order O(h4k) for k = 1, 2, 3.

1.4 The New Technique

Here, we propose a variation of Ichikawa’s way of computing the functions u∗
h and v∗

h . This
variation ismotivated by the fact that,we can use the symmetric kernels advocated byBramble
and Schatz [1] and Thomée [18] to compute these functions only in a strict subdomain �0

of �. To compute them in the whole domain �, we could use one-sided convolution kernels,
see Ryan and Shu [15], to be able to go up to the boundary, as shown by Ichikawa [12] in
2010. However, we prefer not to do that for three reasons. The first is that there is still no
theoretical justification that going up to the boundary with one-sided filters results in a high-
order approximation. The second is that filters able to deal with curved or very complicated
boundaries remain to be developed. The last is that, as Ryan et al. [16] put it: “…near the

123

648 J Sci Comput (2017) 73:644–666

Fig. 1 A schematic of the definition of the function u∗
h

boundaries, where the one-sided post-processor is applied, the error is larger than in the
interior, where the symmetric post processor is applied”.

Next, we describe how do we compute u∗
h . A schematic illustration of such definition is

shown in Fig. 1. To fix ideas, let u�
h denote the HDG approximation which uses polynomial

approximations of degree � on each element; a similar definition holds for any other finite
element method. We proceed in four steps as follows:

(I) Using a translation-invariant mesh in most of the domain, we set ukh to be the HDG
solution of the model problem.

(II) Using the accuracy-enhancing local convolution ofBramble andSchatz [1],we compute
u∗
h on the subdomain �0 with a symmetric convolution kernel.

(III) We compute the approximation u2kh given by the HDG method on the domain �1 :=
� \ �0 where the boundary condition on the boundary of �0 is the trace of u∗

h .
(IV) On �1, we set u∗

h to be the approximation u2kh .

Note that, for some special domains and boundary data, it is possible to take the set �0 to
be �, as Bramble and Schatz themselves showed in their original work [1]. In this case, we
do not need to carry out the last two steps of the construction of u∗

h . Let us also note that we
have tacitly assumed that the set �0 is independent of the mesh and of k. This need not to be
the case, as our numerical results show.

The computation of the function v∗
h is obtained in the same manner except that there is no

need to compute v∗
h outside �0. As we are going to see, the reason is that u∗

h outside �0 is

123

J Sci Comput (2017) 73:644–666 649

defined by a Galerkin method and so the corresponding contribution to the adjoint-correction
term is zero.

To end, let us give the heuristics of why we believe this new algorithm provides what we
want. First, note that it can be proven that J (ukh) converges with a rate of order h2k+1 to
J (u) whenever u and v are both very smooth. For the same reasons, u∗

h and v∗
h can also be

proven to converge to u and v, respectively, with a rate of order h2k+1 in L2(�0) and even in
L∞(�0), if u and v are sufficiently smooth. This motivates the definition of u∗

h in �1 as u2kh
since we would have that it converges to u with a rate of order h2k+1 in L2(�1) and even in
L∞(�1), if u and v are sufficiently smooth. In this way, we ensure that u2kh and v∗

h converge
to u and v, respectively, with a rate of order h2k+1 in L2(�) and even in L∞(�), and that,
as a consequence, Jh(u∗

h, v
∗
h) converges to J (u) with a rate of order O(h4k). Our numerical

experiments show that this is indeed the case. This is the main contribution of this paper. A
rigorous a priori error analysis putting in firm mathematical ground of this approach will be
carried out elsewhere.

1.5 The Organization of the Paper

The remainder of the paper is organized as follows. In Sect. 2, we present our main result,
Theorem 2.1, which provides a systematic way to defining the adjoint-correction approxi-
mations Jh(u∗

h, v
∗
h) while providing the corresponding approximation errors. It is a simple

variation of the approach proposed by Pierce and Giles [14]. We then present two particular
cases which provide the new approximations we seek. They differ in how the approximation
in �1 is used to define them. One approximation uses the piecewise gradients while the
other, the approximate fluxes. Expressions for their approximation errors are then given in
Theorems 2.2 and 2.3, respectively. In Sect. 3, we give detailed proofs of our theorems. In
Sect. 4, we provide numerical experiments showing the performance of the approximations.
Finally, in Sect. 5, we end with a short discussion on possible variations, extensions, and with
a short description of our forthcoming work.

2 Adjoint-Based Super-Convergent Approximations

In this section, we show how to define the adjoint-based approximations Jh(u∗
h, v

∗
h). We

begin by introducing the Galerkin methods we are going to use, namely, the HDG methods.
We then introduce the convolution kernel and recall how to actually compute it. We finally
present a general approach for defining the adjoint-based approximations and then give two
particular cases.

2.1 The HDG Methods

The HDGmethod was introduced in the framework of steady-state diffusion by Cockburn et
al. in 2009 [6]; see also the recent review in [5]. We use it here because it has a framework
general enough which allows us to consider other Galerkin methods.

For any given triangulation of the domain �, Th , made of elements K , we set ∂Th to be
the set of all boundaries ∂K of the elements K . We say that F is an interior face of the
triangulation if there are two elements K+ and K− in Th such that F = ∂K+ ∩ ∂K− and its
(d − 1)−Lebesgue measure is not zero; we denote by F i

h the set of interior faces associated
with the triangulation. We say that F is a boundary face of the triangulation if there is an
element K ∈ Th such that F = ∂K ∩ ∂� and its (d − 1)−Lebesgue measure is not zero;

123

650 J Sci Comput (2017) 73:644–666

we denote by Fb
h = ∂� ∩ ∂Th the set of boundary faces. We denote by Fh the set of all

faces.
On any face F ∈ F i

h such that F = ∂K+ ∩ ∂K−, we denote by v+ and v− the traces
of a function v defined inside K+ and K−, respectively. We denote by n± the unit outward
normal to K± and set

�w�|F := w− · n− + w+ · n+,

for any vector-valued functions w ∈ H1(Th). Similarly, for ŵ ∈ L2(∂Th) we set

�ŵ�|F := ŵ− · n− + ŵ+ · n+,

where ŵ+ and ŵ− are the values of the function ŵ on ∂K+ and ∂K−, respectively. Note that
for a function ŵ ∈ L2(∂Th) these two values are not necessarily the same. In contrast, any
function ŵ ∈ L2(Fh) is single valued on any face of the triangulation.

Finally, we set

(·, ·)Th :=
∑
K∈Th

(·, ·)K , 〈·, ·〉∂Th :=
∑
K∈Th

〈·, ·〉∂K , and 〈·, ·〉Fh :=
∑
F∈Fh

〈·, ·〉F ,

where (η, ζ)D and 〈η, ζ 〉G denote the integral of the product η, ζ on D ⊂ R
d andG ⊂ R

d−1,
respectively. Note that, for ζ ∈ L2(Fh), w ∈ H1(Th) and ŵ ∈ L2(∂Th), we have

〈w · n, ζ 〉∂Th = 〈w · n, ζ 〉Fb
h

+ 〈�w�, ζ 〉F i
h
,

〈ŵ · n, ζ 〉∂Th = 〈ŵ · n, ζ 〉Fb
h

+ 〈�ŵ�, ζ 〉F i
h
.

We are now ready to define the HDG method. It seeks an approximation (qh, uh, ûh) ∈
Vh × Wh × Mh(uD) where

Vh :=
{
v ∈ L2(�) : v|K ∈ P�(K)d ∀ K ∈ Th

}
,

Wh := {
w ∈ L2(�) : w|K ∈ P�(K)∀ K ∈ Th

}
,

Mh(η) :=
{
m ∈ L2(Fh) : m|F ∈ P�(F)∀ F ∈ F i

h,m|∂� = η
}

,

to the exact solution (q|�, u|�, u|Fh) by considering a global problem for the trace ûh and
local problems for (qh, uh). Wherein, the approximation (qh, uh) is expressed in terms of f
and ûh by local solvers:

(qh, r)Th − (uh,∇ · r)Th = −〈̂uh, r · n〉∂Th , ∀ r ∈ Vh,

−(qh,∇w)Th + 〈̂qh · n, w〉∂Th = (f, w)Th , ∀ w ∈ Wh,

q̂h · n = qh · n + τ(uh − ûh) on ∂Th,

and ûh ∈ Mh(uD) is determined from the global solver by imposing the transmission condi-
tion

〈̂qh · n, μ〉∂Th = 〈�̂qh�, μ〉F i
h

= 0 ∀ μ ∈ Mh(0).

2.2 Filtering the Errors of a Galerkin Approximation

Here, we recall the definition of the convolution used by Bramble and Schatz [1] and show
that to compute it on any element, we only have to carry out a matrix multiplication with a
single matrix which can be obtained offline. We illustrate this in the one-dimensional case.

Let us first describe the kernel of the convolution. The convolution uses a symmetric kernel
which is a linear combination of B-splines and is defined as follows. Denote by χ a function

123

J Sci Comput (2017) 73:644–666 651

which is one on the interval (− 1
2 ,

1
2) and zero outside of it, and set ψ(0) = δ, where δ is the

Dirac delta function. The B-spline of n-th order is ψ(n) = ψ(n−1) ∗ χ . Then, given uh , the
convolution is u∗

h := Kh ∗ uh(x), where Kh := 1
h K

(x
h

)
and

K (x) =
γ2∑

γ=γ1

Cγ ψ(k+1)(x − γ),

where h is the mesh size. For a symmetric kernel, −γ1 = γ2 = k. The coefficients of the
kernel Cγ are determined by requiring that (xl ∗ K)(x) = xl for l = 0, . . . , 2k. A simple
calculation gives the system of equations of Cγ

γ2∑
γ=γ1

Cγ

∫ ∞

−∞
ylψ(k+1)(y − γ) dy =

{
1 if l = 0,
0 if l = 1, . . . , 2k.

(2.1)

Note that the support of ψ(k+1)(·) is [− k+1
2 , k+1

2]. As a consequence, the support of the
kernel Kh involves only a fixed number of elements.

Finally, let us point out that another way of computing the kernels is provided by Thomée
in 1977 [18] by using Fourier techniques. It can be easily implemented in any symbolic
manipulator.

Now, suppose uh is an approximate solution to a one-dimensional problem on a uniform
mesh. Let us show how to compute u∗

h(x) for any x in the interval Ii = (xi−1, xi). If there
are N intervals, then uh can be written in the following expansion form:

uh(x) =
N∑

�=1

Np∑
m=1

u�
mlm

(
x − x�−1/2

h/2

)
χI� (x),

where lm is the Legendre polynomial of degree m − 1 and x�−1/2 is the midpoint of the
interval I�, and Np = k + 1.

For x ∈ Ii , we have

Kh ∗ uh(x) =
∫ ∞

−∞
1

h

γ2∑
γ=γ1

Cγ ψ(k+1)
(
x − y

h
− γ

)
uh(y) dy

=
γ2∑

γ=γ1

Cγ

h

∫ x�

x�−1

ψ(k+1)
(
x − y

h
− γ

) N∑
�=1

Np∑
m=1

u�
mlm

(
y − x�−1/2

h/2

)
dy

=
γ2∑

γ=γ1

Np∑
m=1

N∑
�=1

Cγ

2
u�
m

∫ 1

−1
ψ(k+1)

(
x − x�−1/2 − h

2 r

h
− γ

)
lm(r) dr,

where r ∈ (−1, 1) is defined by y = x�−1/2 + h
2 r .

Now, for x ∈ Ii , we have that ξ ∈ (−1, 1) when we define it by x = h
2 ξ + xi−1/2. Then

x − x�−1/2

h
= x − xi−1/2

h
+ xi−1/2 − x�−1/2

h
= ξ

2
+ i − �,

and, setting j := � − i , we get

Kh ∗ uh(x) =
γ2∑

γ=γ1

Np∑
m=1

2k∑
j=−2k

Cγ

2
u�
m

∫ 1

−1
ψ(k+1)

(
ξ

2
− j − r

2
− γ

)
lm(r)dr.

123

652 J Sci Comput (2017) 73:644–666

Note that we are taking −2k ≤ j ≤ 2k because, for the values of j outside this range, the

function ψ(k+1) is zero at
(

ξ
2 − j − r

2 − γ
)
.

In our implementation, we need to evaluate Kh ∗ uh at Nq quadrature points xn on the
Interval Ii . This means that we only have to precompute a single array, independent of the
elements, namely,

An, j,s,m =
∫ 1

−1
ψ(k+1)

(
ξn

2
− j − r

2
− γs

)
lm(r)dr, (2.2)

where j = −2k, . . . , 2k, s = −k, . . . , k, andm, n = 1, . . . , Np .More details on the efficient
implementation of this convolution can be found in the 2012 paper by Mirzaee et al. [13].

Algorithm 1: Calculation of the coefficient matrix for Kh ∗ uh
for ξn, n = 1, . . . , Nq ; /* # of quadrature points on the element */
do

for j = −2k, . . . , 2k ; /* Neighbors */
do

Calculate

⎡
⎢⎢⎢⎣

An, j,−k,1 An, j,−k+1,1 . . . An, j,k,1
An, j,−k,2 An, j,−k+1,2 . . . An, j,k,2

.

.

.
.
.
. . . .

.

.

.

An, j,−k,Np An, j,−k+1,Np . . . An, j,k,Np

⎤
⎥⎥⎥⎦ ;

end
end

2.3 A General Approach to Getting Adjoint-Based Approximations

The choices for the new approximations we seek are in fact particular cases of a general, but
simple result which provides both the definition of the approximation and its corresponding
error. As we pointed out in the Introduction, it is a simple variation of the approach by Pierce
and Giles [14].

Theorem 2.1 For any functions

(qh,uh, q̂h · n, ûh), (ph, vh, p̂h · n, v̂h) ∈ L2(Th) × H1(Th) × L2(∂Th) × L2(Fh),

such that ûh = u and v̂h = 0 on ∂�, we have that

J (u) := (u, g)� = J (uh) + ACh + Eh,

where

ACh := (f, vh)Th + (qh,∇vh)Th − 〈̂qh · n, vh〉∂Th

+ (qh + ∇uh,ph)Th − 〈uh − ûh,ph · n〉∂Th

+ 〈̂qh · n, v̂h〉∂Th\∂�

+ 〈uh − ûh, (ph − p̂h) · n〉∂Th ,

Eh := (q − qh, p − ph)Th

+ (q − qh,ph + ∇vh)Th + (qh + ∇uh, p − ph)Th

+ 〈(̂qh − q) · n, vh − v̂h〉∂Th + 〈uh − ûh, (̂ph − p) · n〉∂Th .

123

J Sci Comput (2017) 73:644–666 653

Let us briefly discuss this identity. Note that this result holds for arbitrary functions

(qh,uh, q̂h · n, ûh) and (ph, vh, p̂h · n.̂vh).

This means that we can use any numerical approximation to define these functions; the use
of HDG methods is not required. Of course, these functions should be approximations of

(q|�, u|�, q · n|∂Th , u|Fh) and (p|�, v|�, p · n|∂Th , v|Fh)

respectively, if we expect the error term Eh to be small. Because of this, it is reasonable to
take ûh = u and v̂h = v = 0 on ∂�, as well as to expect that the functions qh + ∇uh and
ph +∇vh to be small because q+∇u = 0 and p+∇v = 0. These considerations are behind
the choices we have taken in order to obtain the approximations presented in the previous
subsection.

Note also that we are assuming that the numerical traces ûh and v̂h lie in L2(Fh), which
means that they are single valued on each face lying on Fh . In contrast, we are not making
this assumption on the normal components of the numerical traces q̂h and p̂h .

Finally, note that the definition of the adjoint-correction term ACh is suggested by the
very definition of the HDGmethods. Thus, the first two terms correspond to the definition of
the so-called local problems and the last term to the transmission condition. The fourth term
can be interpreted as the contribution of the lack of conformity of the spaces of the HDG
method.

The motivation for defining the adjoint-correction term ACh in this way is that we want
to extend the idea that the adjoint-correction term must be different from zero whenever the
numerical scheme does not satisfy a “Galerkin orthogonality” property. In our extension,
instead of the “Galerkin orthogonality” property, we use the weak formulations defining the
scheme both inside the elements and across their boundaries. Moreover, we also consider a
term (the fourth term) which is generated by the lack of conformity of the numerical methods.

Let us illustrate this result on some simple cases. To consider the case treated in the
Introduction, we set

(qh,uh, q̂h · n, ûh) := (−∇uh, uh,−∇uh · n, uh),

(ph, vh, p̂h · n, v̂h) := (−∇vh, vh,−∇vh · n, vh),

and, since uh and vh lie in C1(�), we get that

ACh = (f − fh, vh)Th , Eh = (∇(u − uh),∇(v − vh))Th .

We thus recover the identity

J (u) = J (uh) + (f − fh, vh)Th + (∇(u − uh),∇(v − vh))Th ,

obtained in the Introduction.
Let us now consider the case in which

(qh,uh, q̂h · n, ûh) := (qh, uh, q̂h · n, ûh),

(ph, vh, p̂h · n, v̂h) := (ph, vh, p̂h · n, v̂h),

where the above functions are provided by an HDG method for the model and adjoint prob-
lems, respectively. In this case, a simple calculation gives that

ACh = 〈uh − ûh, (ph − p̂h) · n〉∂Th .

Note that the first three terms of the adjoint correction terms ACh are zero by the very
definition of the HDG methods. This is certainly not an accident, as the adjoint correction

123

654 J Sci Comput (2017) 73:644–666

term was devised with this in mind, as we pointed out above. The fourth term measures the
lack of conformity of the methods. It is zero for any mixed method and for the staggered DG
method [3,4].

2.4 Two Adjoint-Based Approximations

Here, we define two adjoint-based approximations to the functional J (u).

2.4.1 Notation

To do that, we begin by introducing some notation.We assume that any given element K ∈ Th
is fully included in either �0 or �1 and set, or j = 0, 1,

T jh := {
K ∈ Th : K ⊂ � j

}
,

∂T jh := {
∂K ∈ Th : K ⊂ � j

}
,

F jh := {
F ∈ F(K) : K ∈ T jh

}
.

We denote by
(
qkh, u

k
h, q̂

k
h · n, û k

h

)
and

(
pkh, v

k
h, p̂

k
h · n, v̂ k

h

)
,

the HDG approximations, using polynomials of degree � := k, of the model and adjoint
problems, respectively, on the whole domain �. We also denote by

(
q2kh , u2kh , q̂ 2k

h · n, û 2k
h

)
and

(
p2kh , v2kh , p̂ 2k

h · n, v̂ 2k
h

)
,

the HDG approximations, using polynomials of degree � := 2k, of the model and adjoint
problems, respectively, on the domain �1. The Dirichlet boundary conditions for the model
and adjoint problems on ∂�1 \ ∂� are

û 2k
h = Kh ∗ ukh and v̂ 2k

h = Kh ∗ vkh .

Finally, we denote our approximations by Jh(u∗
h, v

∗
h), where

u∗
h :=

{
Kh ∗ ukh in K ∈ T0h,

u2kh in K ∈ T1h,
and v∗

h :=
{
Kh ∗ vkh in K ∈ T0h,

v2kh in K ∈ T1h,

even though, by Theorem 2.1, the approximations do depend on the numerical traces and
the approximation of the gradients. The two approximations we present next have the same
way of using the information on �0; they use both u∗

h and v∗
h as well as their gradients ∇u∗

h
and ∇v∗

h therein. However, the approximations differ only in the way the information on the
solution in �1 is used.

2.4.2 An Approximation Using the Piecewise Gradients in �1

Our first approximation uses both u2kh and v2kh as well as their piecewise gradients ∇u2kh and
∇v2kh on T1h . (This is why we use the superscript G to denote it.) It is given by

J G
h (u∗

h, v
∗
h) := J (u∗

h) + ACG
h ,

123

J Sci Comput (2017) 73:644–666 655

where the adjoint-correction term is

ACG
h := (f, v∗

h)Th − (∇u∗
h,∇v∗

h)Th

+ 〈̂q 2k
h · n, v̂2kh − v2kh 〉∂T1h

+ 〈̂u 2k
h − u2kh , p̂ 2k

h · n〉∂T1h ,

The expression of the error of this approximation is provided in the following result.

Theorem 2.2 We have that J (u) = J G
h (u∗

h, v
∗
h) + EG

h, where the error of the approximation
is

EG
h := (q + ∇u∗

h, p + ∇v∗
h)Th

+ 〈(̂q 2k
h − q) · n, v2kh − v̂ 2k

h 〉∂T1h

+ 〈u2kh − û2kh , (p̂ 2k
h − p) · n〉∂T1h .

2.4.3 An Approximation Using the Approximate Fluxes in �1

Our second approximation uses the approximate fluxes q2kh and p2kh instead piecewise gra-
dients ∇u2kh and ∇v2kh in T1h . (This is why we use the superscript F to denote it.) It is given
by

J F
h(u

∗
h, v

∗
h) := J (u∗

h) + ACF
h,

where the adjoint-correction term is

ACF
h := (f, v∗

h)T0h − (∇u∗
h,∇v∗

h)T0h

+ 〈̂q 2k
h · n, v̂ 2k

h 〉∂�1\∂�

+ 〈u2kh − û 2k
h , (p2kh − p̂ 2k

h) · n〉∂T1h .

Note that the contribution to the adjoint-correction term of the approximation in �1 can
be expressed only in terms of boundary integrals which are easier to compute that volume
integrals.

The error of this approximation is characterized in the following result.

Theorem 2.3 We have J (u) = J F
h(u

∗
h, v

∗
h) + E F

h, where the error of the approximation is

E F
h := (q + ∇u∗

h, p + ∇v∗
h)T0h

+ (q − q2kh , p − p2kh)T1h

+ (q − q2kh , p2kh + ∇v2kh)T1h + (q2kh + ∇u2kh , p − p2kh)T1h

+ 〈(̂q 2k
h − q) · n, v2kh − v̂ 2k

h 〉∂T1h + 〈u2kh − û2kh , (p̂ 2k
h − p) · n〉∂T1h .

3 Proofs

This Section is devoted to providing detailed proofs of the expressions and corresponding
approximation errors for our two approximations, Theorems2.2 and 2.3. Since these theorems
are particular cases of Theorem 2.1, we begin by proving it.

123

656 J Sci Comput (2017) 73:644–666

3.1 Proof of the Identity for J(u) of Theorem 2.1

To prove Theorem 2.1, we begin by noting that, if we use the fact that −�v = g and set
p = −∇v, we easily get that

J (u) = J (uh) + (u − uh,∇ · p)Th

= J (uh) − (∇(u − uh), p)Th + 〈u − uh, p · n〉∂Th

= J (uh) + (q + ∇uh, p)Th + 〈u − uh, p · n〉∂Th ,

since q = −∇u. Now, we perform very simple algebraic manipulations in order to exploit
the fact that we expect the functions qh + ∇uh and ph + ∇vh to be small. We have

J (u) − J (uh) = (q − qh, p)Th + (qh + ∇uh, p)Th + 〈u − uh, p · n〉∂Th

= (q − qh,ph)Th + (qh + ∇uh,ph)Th

+ (q − qh, p − ph)Th + (qh + ∇uh, p − ph)Th + 〈u − uh, p · n〉∂Th

= − (q − qh,∇vh)Th + (qh + ∇uh,ph)Th + (q − qh, p − ph)Th

+ (qh + ∇uh, p − ph)Th + (q − qh,ph + ∇vh)Th + 〈u − uh, p · n〉∂Th .

Next, we suitably rewrite the second term of the above right-hand side. Integrating by parts
and using the fact that ∇ · q = f , we get

−(q − qh,∇vh)Th = − (q,∇vh)Th + (qh,∇vh)Th

= (f, vh)Th − 〈q · n, vh〉∂Th + (qh,∇vh)Th

= (f, vh)Th + (qh,∇vh)Th − 〈̂qh · n, vh〉∂Th + 〈(̂qh − q) · n, vh〉∂Th

= (f, vh)Th + (qh,∇vh)Th − 〈̂qh · n, vh〉∂Th

+ 〈̂qh · n, v̂h〉∂Th + 〈(̂qh − q) · n, vh − v̂h〉∂Th − 〈q · n, v̂h〉∂Th .

Using this expression and rearranging terms, we get

J (u) − J (uh) = (f, vh)Th + (qh,∇vh)Th − 〈̂qh · n, vh〉∂Th

+ (qh + ∇uh,ph)Th

+ 〈̂qh · n, v̂h〉∂Th

+ (q − qh, p − ph)Th

+ (qh + ∇uh, p − ph)Th + (q − qh,ph + ∇vh)Th

+ 〈(̂qh − q) · n, vh − v̂h〉∂Th

− 〈q · n, v̂h〉∂Th + 〈u − uh, p · n〉∂Th .

Next, we add and subtract several terms to obtain

J (u) − J (uh) = (f, vh)Th + (qh,∇vh)Th − 〈̂qh · n, vh〉∂Th

+ (qh + ∇uh,ph)Th − 〈uh − ûh,ph · n〉∂Th

+ 〈̂qh · n, v̂h〉∂Th

+ 〈uh − ûh,ph · n〉∂Th − 〈uh − ûh, p̂h · n〉∂Th

+ (q − qh, p − ph)Th

+ (qh + ∇uh, p − ph)Th + (q − qh,ph + ∇vh)Th

+ 〈(̂qh−q) · n, vh−v̂h〉∂Th + 〈uh−ûh, p̂h · n〉∂Th −〈uh − ûh, p · n〉∂Th

− 〈q · n, v̂h〉∂Th + 〈u − uh, p · n〉∂Th − 〈uh − ûh, p · n〉∂Th ,

123

J Sci Comput (2017) 73:644–666 657

and so,

J (u) = J (uh) + ACh + Eh − 〈q · n, v̂h〉∂Th + 〈u − ûh, p · n〉∂Th

Note that so far, we have not used any property of continuity across inter-element bound-
aries or any property of single-valuedness of the numerical traces. However, nowwe are going
to use the fact that ûh and v̂h are single valued, since they belong to L2(Fh), to conclude that

〈u − ûh, p · n〉∂Th = 〈u − ûh, p · n〉∂� = 0,

〈q · n, v̂h〉∂Th = 〈q · n, v̂h〉∂� = 0,

because ûh = u and v̂h = 0 on ∂�.
This completes the proof of Theorem 2.1.

3.2 Proof of the Identities Defining the Two Approximations

We are now ready to prove Theorems 2.2 and 2.3. We proceed in several steps.

Step 1

We apply Theorem 2.1 with uh := u∗
h and vh := v∗

h , so that we do have that J (u) =
Jh(u∗

h, v
∗
h) + Eh where Jh(u∗

h, v
∗
h) := J (u∗

h) + ACh with ACh = AC0h + AC1h , where

AC0h := (f, vh)T0h + (qh,∇vh)T0h − 〈̂qh · n, (vh − v̂h)〉∂T0h

+ (qh + ∇uh,ph)T0h − 〈uh − ûh, p̂h · n〉∂T0h ,

AC1h := (f, vh)T1h + (qh,∇vh)T1h − 〈̂qh · n, vh〉∂T1h

+ (qh + ∇uh,ph)T1h − 〈uh − ûh,ph · n〉∂T1h

+ 〈̂qh · n, v̂h〉∂T1h\∂�

+ 〈uh − ûh, (ph − p̂h) · n〉∂T1h ,

and Eh = E0h + E1h , where

E0h := (q − qh, p − ph)T0h

+ (q − qh,ph + ∇vh)T0h + (qh + ∇uh, p − ph)T0h

+ 〈(̂qh − q) · n, vh − v̂h〉∂T0h + 〈uh − ûh, (̂ph − p) · n〉∂T0h ,

E1h := (q − qh, p − ph)T1h

+ (q − qh,ph + ∇vh)T1h + (qh + ∇uh, p − ph)T1h

+ 〈(̂qh − q) · n, vh − v̂h〉∂T1h + 〈uh − ûh, (̂ph − p) · n〉∂T1h .

Step 2

If uh and vh lie on C1(�0), we can take

qh := −∇uh, ph := −∇vh in T0h,
ûh := uh, v̂h := vh on F0h,

123

658 J Sci Comput (2017) 73:644–666

and obtain that

AC0h = (f, vh)T0h − (∇uh,∇vh)T0h = ACG
0h = ACF

0h,

E0h = (q + ∇uh, p + ∇vh)T0h = EG
0h = E F

0h,

with the obvious notation.

Step 3

Now, if we take

uh := u∗
h := u2kh , vh := v∗

h := v2kh in T1h,
qh := −∇u2kh , ph := −∇v2kh in T1h,

q̂h · n := q̂2kh · n, p̂h · n := p̂2kh · n on ∂T1h,
ûh := û 2k

h , v̂h := v̂ 2k
h on F1h,

we get, taking into account that v̂ 2k
h = 0 on ∂�,

AC1h = (f, v∗
h)Th − (∇u∗

h,∇v∗
h)Th − 〈̂q 2k

h · n, v2kh 〉∂T1h

+ 〈̂q2kh · n, v̂2kh 〉∂T1h

− 〈u2kh − û2kh , p̂ 2k
h · n〉∂T1h

= ACG
1h,

E1h = (q + ∇u2kh , p + ∇v2kh)T1h

+ 〈(̂q 2kh − q) · n, v2kh − v̂ 2k
h 〉∂T1h + 〈u2kh − û 2k

h , (p̂ 2k
h − p) · n〉∂T1h

= EG
1h,

and the identity of Theorem 2.2 follows.

Step 4

If we now take

uh := u∗
h := u2kh , vh := v∗

h := v2kh in T1h,
qh := q2kh , ph := p2kh in T1h,

q̂h · n := q̂2kh · n, p̂h · n := p̂2kh · n on ∂T1h,
ûh := û 2k

h , v̂h := v̂ 2k
h on F1h,

we get, by using the definition of the HDG method on �1,

AC1h = 〈̂q2kh · n, v̂ 2k
h 〉∂�1\∂� + 〈u2kh − û 2k

h , (p2kh − p̂ 2k
h) · n〉∂T1h = ACF

1h,

E1h = (q − q2kh , p − p2kh)T1h

+ (q − q2kh , p2kh + ∇v2kh)T1h + (q2kh + ∇u2kh , p − p2kh)T1h

+ 〈(̂q 2k
h − q) · n, v2kh − v̂2kh 〉∂T1h + 〈u2kh − û2kh , (p̂ 2k

h − p) · n〉∂T1h

= E F
1h,

123

J Sci Comput (2017) 73:644–666 659

0 0.2 0.4 0.6 0.8 1

−3

−2

−1

0

1

2

3

x 10
−3

N=32

0 0.2 0.4 0.6 0.8 1

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

N=64

0 0.2 0.4 0.6 0.8 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−5

N=128

Fig. 2 Approximation errors of the postprocessed solution u∗
h when k = 1 and N = 32, 64 and 128. Note

that the error in the set � \ �0, which consists of the three leftmost and three rightmost elements of the
mesh, is not bigger than the error in the rest of the domain. Note also that the maximum errors are about
3× 10−3, 4× 10−4, 5× 10−5, for N = 32, 64, 128 which means that the error converges with order 3, as it
diminishes by a factor 8 each time N is doubled

and the identity of Theorem 2.3 follows.
This completes the proofs of Theorems 2.2 and 2.3.

4 Numerical Experiments

This section is devoted to testing the convergence properties of the approximations J G
h (u∗

h, v
∗
h)

and J F
h(u

∗
h, v

∗
h) to J (u) := (g, u)� whenever the solutions u and v of the model problem

(1.1) and its adjoint (1.2), respectively, are very smooth. As argued in the introduction, we
expect that, when k-th degree of polynomials are used for theHDG approximation, the above-
mentioned adjoint-corrected approximations will converge with a rate of order O(h4k). The
numerical results we present confirm this expectation.

4.1 The One-Dimensional Case

We consider the model problem (1.1) with� := (0, 1) and take f such that the exact solution
of the problem is u := sin(3πx). Moreover, we take g := 9π2 sin(3πx) so that the exact
solution to the adjoint problem is v = sin(3πx).

In our implementation, to be able to clearly see the orders of convergence for highly refined
meshes, we use MATLAB symbolic toolbox and select 60 digits in the variable precision
arithmetic (vpa). We use the HDG method with polynomials of degree k on a uniform mesh
of N elements to define uh and vh . We define �0 by removing from � the 2k + 1 leftmost
and 2k + 1 rightmost intervals of its mesh.

Let us begin by showing how the function u∗
h converges as we refine the mesh. In Fig. 2,

for k = 1 and N = 32, 64, and 128, we see that the magnitude of the approximation error
u − u∗

h decays at the order of O(h3=2k+1), as expected. We also see that the error u − u∗
h

behaves differently on�0 and on the region�1. The latter consists of the 3 = 2k+1 leftmost
intervals and the 3 = 2k + 1 rightmost intervals of the mesh. This reflects the fact that u∗

h is
computed differently in each of those sets. Indeed, recall that in �0, u∗

h is Kh ∗ ukh whereas
in �1, it is u2kh . Since the effect of the convolution is to filter out the oscillations of the error
u − ukh , we expect the error u − u∗

h not to oscillate much around zero within each element on
�0. In contrast, in�1, we see that, although the error is oscillatory, it does not really oscillate
around zero. This is consistent with the fact that the boundary data on the points of �1 lying
on the boundary of � are exact whereas the boundary data at the points lying in the interior
of � are not.

123

660 J Sci Comput (2017) 73:644–666

Table 1 History of convergence of JG
h (u∗

h , v∗
h) (h-version) for g(x) = π2 sin(3πx)

N ‖u − uh‖L2(�) Order |J (u) − J (uh)| Order |J (u) − JG
h (u∗

h , v∗
h)| Order

k = 1

16 1.10e−01 – 1.13e+00 – 1.96e−01 –

32 2.78e−02 1.99 1.45e−01 2.97 2.96e−03 6.05

64 6.96e−03 2.00 1.83e−02 2.99 5.50e−05 5.75

128 1.74e−03 2.00 2.29e−03 3.00 2.11e−06 4.71

256 4.36e−04 2.00 2.86e−04 3.00 1.17e−07 4.17

512 1.09e−04 2.00 3.58e−05 3.00 7.15e−09 4.04

1024 2.73e−05 2.00 4.48e−06 3.00 4.44e−10 4.01

2048 6.81e−06 2.00 5.60e−07 3.00 2.77e−11 4.00

k = 2

16 5.04e−03 – 3.97e−03 – 1.03e−07 –

32 6.35e−04 2.99 1.26e−04 4.98 1.79e−10 9.17

64 7.95e−05 3.00 3.96e−06 4.99 5.21e−13 8.43

128 9.95e−06 3.00 1.24e−07 5.00 1.62e−15 8.33

256 1.24e−06 3.00 3.88e−09 5.00 5.84e−18 8.12

512 1.56e−07 3.00 1.21e−10 5.00 2.26e−20 8.02

1024 1.94e−08 3.00 3.80e−12 5.00 8.87e−23 7.99

2048 2.43e−09 3.00 1.19e−13 5.00 3.49e−25 7.99

k = 3

16 1.80e−04 – 7.07e−06 – 8.12e−10 –

32 1.13e−05 3.99 5.60e−08 6.98 1.17e−13 12.76

64 7.07e−07 4.00 4.39e−10 6.99 2.17e−18 15.72

128 4.42e−08 4.00 3.44e−12 7.00 3.11e−23 16.09

256 2.77e−09 4.00 2.69e−14 7.00 4.41e−28 16.11

512 1.73e−10 4.00 2.10e−16 7.00 1.54e−32 14.80

1024 1.08e−11 4.00 1.64e−18 7.00 2.83e−36 12.41

2048 6.75e−13 4.00 1.28e−20 7.00 6.89e−40 12.00

Next, we show the history of convergence of the h-version of the method. The numerical
results related to the approximation using the piecewise gradients of u∗

h and v∗
h in �1 are

listed in Table 1; those related to the approximation using the approximate fluxes in �1 are
listed in Table 3. As expected, we observe that uh converges at the rate of O(hk+1), that the
linear functional approximation J (uh) converges to J (u) at the rate of O(h2k+1), and that
J F
h(u

∗
h, v

∗
h) converges to J (u) at the rate of O(h4k) in both approaches. In Table 3, we also

see that the approximation using the approximate fluxes seems to be superior to that using
the piecewise gradients, especially in coarser meshes and k = 1. The difference, however,
becomes smaller and smaller as we refine the mesh. Moreover, for k = 2 and k = 3 there
seems to be no difference between the two approximations at all.

123

J Sci Comput (2017) 73:644–666 661

Table 2 History of convergence of JG
h (u∗

h , v∗
h) (p-version) for g(x) = π2 sin(3πx)

k ‖u − uh‖L2(�) Rate |J (u) − J (uh)| Rate |J (u) − JG
h (u∗

h , v∗
h)| Rate

N = 1024

1 2.73e−05 – 4.48e−06 – 4.44e−10 –

2 1.94e−08 6.9 3.79e−12 13.9 8.87e−23 29.2

3 1.08e−11 7.8 1.64e−18 14.7 2.83e−36 31.1

N = 2048

1 6.81e−06 – 5.60e−07 – 2.77e−11 –

2 2.43e−09 7.9 1.19e−13 15.4 3.49e−25 32.0

3 6.75e−13 8.2 1.28e−20 16.0 6.89e−40 33.9

Table 3 History of convergence
of J F

h (u∗
h , v∗

h) (h-version) and

g(x) = π2 sin(3πx), and
comparison with the
approximation JG

h (u∗
h , v∗

h)

N |J (u) − J F
h (u∗

h , v∗
h)| Order R∗

h

k = 1

16 2.93e−02 – 6.69

32 7.81e−04 5.23 3.79

64 3.13e−05 4.64 1.76

128 1.76e−06 4.15 1.20

256 1.10e−07 4.00 1.06

512 6.95e−09 3.98 1.03

1024 4.38e−10 3.99 1.01

2048 2.75e−11 3.99 1.01

Here R∗
h denotes the ratio of the

approximation error
|J (u) − JG

h (u∗
h , v∗

h)| to the
approximation error
|J (u) − J F

h (u∗
h , v∗

h)|. For k = 2
and k = 3 this ratio is 1.00 in all
the meshes considered below

Finally, let us show the history of convergence of the p-version of the methods. In Table 2,
we compare the rates of exponential convergence with respect to the polynomial degree k.
(We say that e(k) converges exponentially to zero with rate α if we can write that e(k) =
c exp(−α k).) We see that the rate of exponential convergence of |J (u) − J G

h (u∗
h, v

∗
h)| (and

that of |J (u) − J F
h(u

∗
h, v

∗
h)| by the results in Table 3) is twice that of |J (u) − J (uh)| which,

in turn, is twice that of ‖u − uh‖L2(�).

4.2 The Two-Dimensional Case

For our model problem (1.1) in two-space dimensions, we now select the exact solution to
be u(x, y) := sin(3πx) sin(3πy) on � = (0, 1) × (0, 1); the boundary conditions and the
source term f is determined accordingly. We also take g(x, y) := 18π2 sin(3πx) sin(3πy)
so that v(x, y) := sin(3πx) sin(3πy).

Unlike what was done in the one-dimension case, we use the MATLAB default double
precision arithmetic in this implementation. We use the HDG method with polynomials of
degree k on a uniform mesh of 2N triangular elements to define uh and vh . The mesh is
obtained by first dividing � into N 2 identical squares and then dividing each of the squares

123

662 J Sci Comput (2017) 73:644–666

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

x

h =
√
2/16

y

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h =

√
2/16

x

y

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

−3

−2

−1

0

1

2

3

x 10
−3

x

h =
√
2/32

y

−3

−2

−1

0

1

2

3

x 10
−3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h =

√
2/32

x

y

−3

−2

−1

0

1

2

3

x 10
−3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

x

h =
√
2/64

y

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h =

√
2/64

x

y

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

Fig. 3 Approximation errors of u∗
h when k = 1 and N = 16 (top), N = 32 (middle) and N = 64 (bottom).

Note that the maximum error size in the set � \ �0, which consists of a strip of elements of the mesh, is
essentially the same as the maximum of the error size in the rest of the domain. Note also that the maximum
errors are about 3.2×10−3, 3.8×10−4, 4.6×10−5, for N = 16, 32, 64 which means that the error converges
with order 3, as it diminishes by a factor 8 each time N is doubled

by joining the upper-right and lower-left vertices. We define �0 by removing from � a
boundary layer with at thickness of 2k + 1 squares.

Let us start by showing that the function u∗
h seems to converge just as in the one-

dimensional case. Indeed, in Fig. 3, for k = 1 and N = 16, 32, and 64, we see that the
approximation errors u − u∗

h are smaller in the region �1 than in the region �0. We also see

123

J Sci Comput (2017) 73:644–666 663

Table 4 History of convergence of JG
h (u∗

h , v∗
h) (h-version) for g(x, y) = 18π2 sin(3πx) sin(3πy)

h ‖u − uh‖L2(�) Order |J (u) − J (uh)| Order |J (u) − JG
h (u∗

h , v∗
h)| Order

k = 1

√
2/8 2.76e−01 – 7.97e+00 – 8.73e+00 –√
2/16 7.73e−02 1.84 1.23e+00 2.69 4.22e−01 4.37√
2/32 1.99e−02 1.96 1.64e−01 2.91 1.67e−02 4.66√
2/64 5.02e−03 1.99 2.10e−02 2.97 6.49e−04 4.68

k = 2

√
2/8 4.44e−02 – 3.32e−01 – 8.51e−03 –√
2/16 5.97e−03 2.90 1.33e−02 4.64 3.15e−05 8.08√
2/32 7.61e−04 2.97 5.12e−04 4.70 8.18e−08 8.59√
2/64 9.57e−05 2.99 2.11e−05 4.60 1.49e−10 9.10

Table 5 History of convergence
of J F

h (u∗
h , v∗

h) (h-version) for
g(x, y) =
18π2 sin(3πx) sin(3πy), and
comparison with the
approximation JG

h (u∗
h , v∗

h)

h |J (u) − J F
h (u∗

h , v∗
h)| Order R∗

h

k = 1

√
2/8 1.30e−01 – 67.15√
2/16 4.09e−02 1.67 10.31√
2/32 2.75e−03 3.90 6.07√
2/64 1.78e−04 3.95 3.64

k = 2

√
2/8 1.10e−04 – 77.36√
2/16 3.34e−06 5.04 9.43√
2/32 2.87e−08 6.86 2.85√
2/64 6.19e−11 8.86 2.41

Here R∗
h denotes the ratio of the

approximation error
|J (u) − JG

h (u∗
h , v∗

h)| to the
approximation error
|J (u) − J F

h (u∗
h , v∗

h)|

that the errors have the same shape as N increases and that their magnitude decays at the
order ofO(h3=2k+1), as expected. Note that �0 is obtained by removing from � a boundary
layer thick of 3 = 2k + 1 squares.

Let us now show the history of convergence of the h-version of the methods. In Tables 4
and 5, we see that the HDG solution uh obtained by using k-th order polynomials converges at
the rate ofO(hk+1), the approximation J (uh) has the accuracy ofO(h2k+1) and the adjoint-
correction approximations J G

h (u∗
h, v

∗
h) and J F

h(u
∗
h, v

∗
h) converges not slower than O(h4k), as

anticipated. We also see that the approximation by J F
h(u

∗
h, v

∗
h) seems to be better.

Finally, let us show the history of convergence of the p-version of the method. In Tables 6
and 7, we compare the rates of exponential convergence with respect to the polynomial
degree k. We see a behavior similar to that of the one-dimensional case. Indeed, the rate of

123

664 J Sci Comput (2017) 73:644–666

Table 6 History of convergence of JG
h (u∗

h , v∗
h) (p-version) for g(x, y) = 18π2 sin(3πx) sin(3πy)

k ‖u − uh‖L2(�) Rate |J (u) − J (uh)| Rate |J (u) − JG
h (u∗

h , v∗
h)| Rate

h = √
2/32

1 1.99e−02 – 1.64e−01 – 1.67e−02 –

2 7.61e−04 3.3 5.12e−04 5.8 8.18e−08 12.2

h = √
2/64

1 5.02e−03 – 2.10e−02 – 6.49e−04 –

2 9.57e−05 4.0 2.11e−05 6.9 1.49e−10 15.3

Table 7 History of convergence of J F
h (u∗

h , v∗
h) (p-version) for g(x, y) = 18π2 sin(3πx) sin(3πy)

k ‖u − uh‖L2(�) Rate |J (u) − J (uh)| Rate |J (u) − J F
h (u∗

h , v∗
h)| Rate

h = √
2/32

1 1.99e−02 – 1.64e−01 – 2.75e−03 –

2 7.61e−04 3.3 5.12e−04 5.8 2.87e−08 11.5

h = √
2/64

1 5.02e−03 – 2.10e−02 – 1.78e−04 –

2 9.57e−05 4.0 2.11e−05 6.9 6.19e−11 14.9

exponential convergence of |J (u) − J (uh)| is about 7
4 times that of ‖u − uh‖L2(�) whereas

that of |J (u) − J F
h(u

∗
h, v

∗
h)| is about four times that of ‖u − uh‖L2(�).

4.3 Computational Complexity of the Method

From the results of the previous two subsections, it is reasonable to conclude that, in the case
in which both u and v are very smooth functions, our proposed method allows us to obtain
an approximation converging with a rate of order O(h4k) for the h-version of the method.
Not only that, the actually errors are actually significantly smaller, as we see in Table 8 for
the 2D example. Therein, we see that the error |J (u) − J F

h(u
∗
h, v

∗
h)| is always smaller than

the error |J (u) − J (uh)|, except for the first mesh of the case k = 1. When h = √
2/32, for

example, the error is about 10 times smaller for k = 1 and 6000 times for k = 2. And, when
h = √

2/64, the error is about 30 times smaller for k = 1 and 120,000 times for k = 2!
Let us now argue that the computational effort needed to achieve such a remarkable result is,
essentially, only twice the effort needed to compute uh .

First, it is clear that to compute J F
h(u

∗
h, v

∗
h), we need to compute vh . However, for the

particular problemweare dealingwith, the problemsolvedbyvh differs from that solvedbyuh
only in the data, and this implies that computing both uh and vh involves numerically inverting
the same exact matrix. The additional computational effort to get vh is thus negligible. Of
course, in more general situations, this is certainly not the case. Assuming that numerical

123

J Sci Comput (2017) 73:644–666 665

Table 8 The ratio
Rh := |J (u) − J (uh)|/|J (u) −
J F
h (u∗

h , v∗
h)| for the 2D example

h Rh h Rh

k = 1 k = 2

√
2/8 9.13e−01

√
2/8 3.90e+01√

2/16 2.91e+00
√
2/16 4.22e+02√

2/32 9.82e+00
√
2/32 6.26e+03√

2/64 3.24e+01
√
2/64 1.23e+05

solving for vh takes as much effort as computing uh , we could then conclude that the new
method requires, at least and roughly speaking, the doubling of the computational effort.

The computation of u∗
h in �0 entails the multiplication of the degrees of freedom of uh

by a matrix whose size is only depends on the dimension of the local spaces used by the dis-
cretization. If we can manage to carry out those multiplications in parallel, the computational
cost is then negligible with that of solving for uh . Moreover, although to solve for u∗

h in �1

implies the use of higher-degree polynomials, the number of degrees of freedom is reduced
by a factor 1/h, by the very construction of �0. As a consequence the computational effort
to get u∗

h in �1 is also negligible in comparison with the computational effort needed to get
uh and vh .

For these reasons, we say that to compute J F
h(u

∗
h, v

∗
h) takes essentially twice the compu-

tational effort needed to compute J (uh).

5 Concluding Remarks

Althoughwe considered a simple, second-order elliptic problem and a very simple functional,
a wide variety of boundary-value problems and functionals can be treated with the very same
technique as already indicated by Pierce and Giles [14]; see also the overview by Giles and
Süli [11].

The technique proposed here has been tested for a particular HDGmethod, but it certainly
works for any other numericalmethod forwhich the filtering proposed byBramble and Schatz
[1] also works. The distinctive feature of those methods is that their approximate solution
must oscillate in a fixed pattern when defined in translation-invariant meshes. This is why we
mentioned in the Introduction that the technique can be used with Galerkin methods like the
mixed methods, the adjoint-consistent discontinuous Galerkin methods (including the LDG
and IP methods), and the continuous Galerkin methods.

Finally, let us point out that we only considered problemswith very smooth exact solutions
and very smooth functionals in order to stress the power of the technique. How to handle their
lack of smoothness and more involved boundary-valued problems constitutes the subject of
ongoing work.

References

1. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method.Math.
Comput. 31(137), 94–111 (1977)

2. Celiker, F., Cockburn, B.: Superconvergence of the numerical traces of discontinuous Galerkin and
hybridized mixed methods for convection-diffusion problems in one space dimension. Math. Comput.
76, 67–96 (2007)

123

666 J Sci Comput (2017) 73:644–666

3. Chung, E.T., Cockburn, B., Fu, G.: The staggered DG method is the limit of a hybridizable DG method.
SIAM J. Numer. Anal. 52, 915–932 (2014)

4. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in
higher dimensions. SIAM J. Numer. Anal. 47(5), 3820–3848 (2009)

5. Cockburn, B.: Static condensation, hybridization, and the devising of the HDGmethods. In: Barrenechea,
G.R., Brezzi, F., Cagniani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in
Modern Approaches to Numerical Partial Differential Equations, vol 114 of Lect. Notes Comput. Sci.
Engrg., pp. 129–177. Springer, Berlin, 2016. LMSDurhamSymposia funded by the LondonMathematical
Society. Durham, U.K., on July 8–16 (2014)

6. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed,
and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–
1365 (2009)

7. Cockburn, B., Ichikawa, R.: Adjoint recovery of superconvergent linear functionals fromGalerkin approx-
imations. The one-dimensional case. J. Sci. Comput. 32(2), 201–232 (2007)

8. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Enhanced accuracy by post-processing for finite element
methods for hyperbolic equations. Math. Comput. 72(242), 577–606 (2003)

9. Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equations.
Math. Comput. 36, 455–473 (1981)

10. Giles, M.B., Pierce, N.A., Süli, E.: Progress in adjoint error correction for integral functionals. Comput.
Visual. Sci. 6, 113–121 (2004)

11. Giles, M.B., Süli, E.: Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality.
Acta Numer. 11, 145–236 (2002)

12. Ichikawa, R.: Adjoint recovery of superconvergent linear functionals from Galerkin approximations.
Ph.D. thesis, School of Mathematics, University of Minnesota, Minneapolis (2012)

13. Mirzaee, H., Ryan, J.K., Kirby, R.M.: Efficient implementation of smoothness-increasing accuracy-
conserving (SIAC) filters for discontinuous Galerkin solutions. J. Sci. Comput. 52(1), 85–112 (2012)

14. Pierce, N.A., Giles, M.B.: Adjoint recovery of superconvergent functionals from PDE approximations.
SIAM Rev 42(2), 247–264 (2000)

15. Ryan, J.K., Shu, C.-W.:On a one-sided post-processing technique for the discontinuousGalerkinmethods.
Methods Appl. Anal. 10(2), 295–307 (2003)

16. Ryan, J.K., Shu, C.-W., Atkins, H.: Extension of a post processing technique for the discontinuous
Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM J. Sci.
Comput. 26(3), 821–843 (2005)

17. Ryan, J.K., Cockburn, B.: Local derivative post-processing for the discontinuous Galerkin method. J.
Comput. Phys. 228(23), 8642–8664 (2009)

18. Thomée, V.: High order local approximations to derivatives in the finite element method. Math. Comput.
31, 652–660 (1977)

123

	Adjoint-Based, Superconvergent Galerkin Approximations of Linear Functionals
	Abstract
	1 Introduction
	1.1 The Adjoint Error Correction Method
	1.2 Extension to Galerkin Methods
	1.3 Filtering by Convolution
	1.4 The New Technique
	1.5 The Organization of the Paper

	2 Adjoint-Based Super-Convergent Approximations
	2.1 The HDG Methods
	2.2 Filtering the Errors of a Galerkin Approximation
	2.3 A General Approach to Getting Adjoint-Based Approximations
	2.4 Two Adjoint-Based Approximations
	2.4.1 Notation
	2.4.2 An Approximation Using the Piecewise Gradients in Ω1
	2.4.3 An Approximation Using the Approximate Fluxes in Ω1

	3 Proofs
	3.1 Proof of the Identity for J(u) of Theorem 2.1
	3.2 Proof of the Identities Defining the Two Approximations
	Step 1
	Step 2
	Step 3
	Step 4

	4 Numerical Experiments
	4.1 The One-Dimensional Case
	4.2 The Two-Dimensional Case
	4.3 Computational Complexity of the Method

	5 Concluding Remarks
	References

