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I. INTRODUCTION

The fundamental boundary eigenproblems for planar elastostatics are defined as follows: to find
a non-zero deformation u = (u1, u2) in the domain � and on the boundary � satisfying

{
σij ,j = Cijkluk,lj = 0, in �,

ti = λui , on �, k, l, i, j = 1, 2,
(1)

where � ⊂ R2 is a bounded, simply connected domain with a smooth boundary �, ti is a traction
vector on �, σij = Cijkluk,l is a stress tensor, Cijkl is an elastic constant of the tensor, and λ is an
eigenvalue. Following vector computational rules, the repeated subscripts imply the summation
from 1 to 2.

The problems are called Steklov eigenproblems [1, 2] and the advantages compared with
traditional eigenproblems are as follows:

1. the eigenfunctions ũ associated with Eq.(1) satisfy the governing equation in the domain
�;

2. the infinite sequence of eigenfunctions {ũ(l)} can be used as basic functions for all solutions
in domain � governed by Eq.(1) with arbitrary well-defined conditions on �.

The governing equations in Eq.(1) have been widely applied in many physical problems, such
as for a cantilever beam, for a simply supported beam, for a plate with edge notch, edge crack,
bimaterial, circular holes, and so on [2, 3].

To obtain eigensolutions λ(l) and u(l), Eq.(1) is converted into the following boundary integral
equations [4–7] (BIEs) by potential theory:

αij (y)u
(l)

j (y) +
∫

�

k∗
ij (y, x)u

(l)

j (x)dsx = λ(l)

∫
�

h∗
ij (y, x)u

(l)

j (x)dsx , (2)

where αij (y) is related to the interior angle of tangent lines at y ∈ �, in particular, when y is not
a singular point, then αij = δij /2, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h∗
ij = 1

8πμ(1 − ν)
[−(3 − 4ν)δij ln r + r·i r·j ],

k∗
ij = 1

4π(1 − ν)r

[
∂r

∂n
((1 − 2ν)δij + 2r·i r·j ) + (1 − 2ν)(nir·j − nj r·i )

]
,

are Kelvin’s fundamental solutions [2, 8], where μ is the shear modulus, ν is the Poisson ratio,
r = √

(y1 − x1)2 + (y2 − x2)2 is the distance between x and y, r .i = ∂r/∂xi , and n = (n1, n2) is
the unit outward normal on �. Equation (2) are obviously singular integral equations. In particu-
lar, the second term of the left-hand side is characterized as a Hilbert singularity and the term of
the right-hand side is characterized as a logarithmic singularity. Consequently, the key to finding
the eigensolutions {λ(l), u(l)} accurately is converted to dealing with the logarithmic and Hilbert
singularities, respectively.

A considerable number of articles have researched the relevant problems. Alves and Antunes
[9] studied the application of the fundamental solutions method for solving the eigenvalue prob-
lem for the biharmonic operator. Constanda [10] solved the interior and exterior Dirichlet and
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Neumann problems of plane elasticity by real variables BIE method. Müller and Heise [11] cal-
culated the eigenvalues for plane elastostatic boundary value problems to construct the condition
numbers and to estimate the truncation error. Cheng et al., [12, 13] discussed Steklov eigenvalue
and its extrapolation for Laplace equation with smooth or polygonal boundary. Auchmuty [14]
described some properties and applications of Steklov eigenproblems for prototypical second-
order elliptic operators on bounded regions. Del Pezzo et al. [15] introduced the first Steklov
eigenvalue in a bounded smooth domain, and analyzed the dependence of the first eigenvalue on
some parameters. Parton and Perlin [16] introduced the eigenvalue λ into the boundary conditions
of the elasticity problem and got some analytical solutions in a circular isotropic elastic body.
Hadjesfandiari and Dargush [1,2,17] gave the general theory of fundamental boundary eigensolu-
tions for elasticity and potential problems. They showed the theorems of the generalized discrete
Fourier series constructed by the eigenvalues and the eigenvectors. They also used the finite ele-
ment method to achieve the error estimate of the approximate solution. Talbot and Crampton
[18] approached 2D vibrational problems by a pseudospectral method since the governing partial
differential equations were translated into a matrix eigenvalue problem, which was solved by a
collocation method. Torńe [19] outlined a method of obtaining a sequence of eigenvalues using
infinite dimensional Ljusternik–Schnirelman theory and investigated some nodal properties of
eigenfunctions associated with the first and second eigenvalues.

We have concisely expounded [20] the Nyström methods for solving the Steklov eigenproblems
and some numerical examples are shown for determination of eigenvalues. Compared with the
article [20], theoretical analysis is thoroughly carried out to obtain an asymptotic error expansion
with odd powers for the approximate solutions in this article. Then extrapolation algorithms (EAs)
[21–24] are established and the convergence rate is O(h5). On the other hand, based on the gener-
alized Fourier series, the Steklov eigensolutions are applied to Dirichlet and Neumann boundary
condition for elasticity by just calculating the coefficients of the series and the convergence rate
O(h5) is obtained. Additionally, we derive an a posteriori error estimate for constructing adap-
tive algorithms. A numerical example verifies the theoretic results and illustrates the features of
Nyström methods in practice.

This article is organized as follows: in section 2, we construct the Nyström methods and
obtained an asymptotic error expansion theoretically; in section 3, we construct the EAs and
obtain an a posteriori error estimate; in section 4, a generalized Fourier series is used for elasticity
problems; in section 5, a numerical example shows the significance of the algorithms.

II. NYSTRÖM METHODS

Define boundary integral operators on � as follows:⎧⎪⎪⎨
⎪⎪⎩

(Kijw)(y) =
∫

�

k∗
ij (y, x)w(x)dsx y ∈ �, i, j = 1, 2,

(Hijw)(y) =
∫

�

h∗
ij (y, x)w(x)dsx y ∈ �, i, j = 1, 2.

(3)

Then Eq. (2) can be converted into the following operator equations:(
1
2I0 + K11 K12

K21
1
2I0 + K22

)(
u

(l)

1

u
(l)

2

)
= λ(l)

(
H11 H12

H21 H22

)(
u

(l)

1

u
(l)

2

)
, (4)

where I0 is an identity operator.
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Assume that � can be described by a regular parametric mapping x(s) = (x1(s), x2(s)) :
(0, 2π ] → �, satisfying |x ′(s)|2 = |x ′

1(s)|2 + |x ′
2(s)|2 > 0, and xi(s) ∈ C2m+1[0, 2π ], i = 1, 2.

Define the integral operator on C2m+1[0, 2π ]:

(A0ω)(t) =
∫ 2π

0
a0(t , τ)ω(τ)|x ′(τ )|dτ

= c̄0

∫ 2π

0
ln

∣∣∣∣2e−1/2 sin

(
t − τ

2

)∣∣∣∣ω(τ)|x ′(τ )|dτ ,

(B0ω)(t) =
∫ 2π

0
b0(t , τ)ω(τ)|x ′(τ )|dτ

= c̄0

∫ 2π

0
ln

∣∣∣∣ x(t) − x(τ)

2e−1/2 sin((t − τ)/2)

∣∣∣∣ω(τ)|x ′(τ )|dτ ,

(Bijω)(t) =
∫ 2π

0
bij (t , τ)ω(τ)|x ′(τ )|dτ

= c1

∫ 2π

0

(xi(t) − xi(τ ))(xj (t) − xj (τ ))

|x(t) − x(τ)|2 ω(τ)|x ′(τ )|dτ ,

(C0ω)(t) =
∫ 2π

0
c0(t , τ)ω(τ)|x ′(τ )|dτ

= c2

∫ 2π

0
{(n1r·2 − n2r·1)/r}ω(τ)|x ′(τ )|dτ ,

(Miiω)(t) =
∫ 2π

0
mii(t , τ)ω(τ)|x ′(τ )|dτ

= c3

∫ 2π

0

{[
∂r

∂n
[(1−2v)+2r·i r·i]/r

}
ω(τ)|x ′(τ )|dτ ,

(Mijω)(t) =
∫ 2π

0
mij (t , τ)ω(τ)|x ′(τ )|dτ

= c3

∫ 2π

0

{
∂r

∂n
(2r·i r·j )/r

}
ω(τ)|x ′(τ )|dτ i �= j ,

where c̄0 = −(3 − 4ν)/[8πμ(1 − ν)], c1 = 1/[8πμ(1 − ν)], c2 = −(1 − 2ν)/[4π(1 − ν)],
c3 = −1/[4π(1 − ν)]. As t → s, depending on the properties of the kernels and using a Taylor
expansion, we know that A0 is a logarithmic weak singular operator [4], and B0, Bij , and Mij are
smooth operators. C0 is a Hilbert singularity operator as its kernel contains

nir·j − nj r·i
r

= (−1)i 1 + O(t − s)

(t − s) + O(t − s)
i �= j . (5)

Then Eq.(4) is equivalent to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

2
I + C + M

)
u(l) = λ(l)(A + B)u(l),

‖u(l)‖2
0,� =

∫ 2π

0
|u(l)(s)|2|x ′(s)|ds = 1,

(6)
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where

I =
(

I0 0
0 I0

)
, A =

(
A0 0
0 A0

)
, B =

(
B0 + B11 B12

B21 B0 + B22

)
,

C =
(

0 C0

−C0 0

)
, M =

(
M11 M12

M21 M22

)
.

A. Nyström Approximation

Let h = π/n, (n ∈ N) be the mesh width and tj = jh, (j = 0, 1, · · · , 2n−1) be the nodes. As B0,
Bij , and Mij are smooth integral operators with the period 2π , we can obtain the highly accurate
Nyström approximation by the midpoint rule [12, 13]. For example, the Nyström approximation
operator Bh

0 of B0 can be defined as:

(
Bh

0 ω
)
(t) = h

2n−1∑
j=0

b0(t , τj )ω(τj ), (7)

and the error is

(B0ω)(t) − (
Bh

0 ω
)
(t) = O(h2m). (8)

The Nyström approximation Bh
ij of Bij and Mh

ij of Mij can be defined similarly.
For the logarithmic singular operator A0, the continuous approximation of its kernel an(t , τ)

is defined as:

an(t , τ) =
{
a0(t , τ), for |t − τ | ≥ h,
c̄0h ln |e−1/2h/(2π)|, for |t − τ | < h,

(9)

and by Sidi’s quadrature rules [24], its Nyström approximation operator Ah
0 can be defined as:

(
Ah

0ω
)
(t) = h

2n−1∑
j=0

an(t , τj )ω(τj )|x ′(τj )|, (10)

which has the following error estimate

(A0ω)(t) − (
Ah

0ω
)
(t) = 2

m−1∑
μ=1

ς
′
(−2μ)

(2μ)! ω(2μ)(t)h2μ+1 + O(h2m), (11)

where ς ′(t) is the derivative of Riemann zeta function.
Because C0 is a Hilbert singular operator, its Nyström approximation operator Ch

0 can be
defined by Sidi’s quadrature rules [24]:

(
Ch

0 ω
)
(ti) = 2c2a1(ti , ti)h

2n−1∑
j=0

cot((tj − ti)/2)ω(tj )|x ′(tj )|εij , (12)

where ti = ih, i = 0, · · · , 2n − 1, h = π/n,

a1(t , s) = 1

(t − s) + O(t − s)

tan((t − s)/2)

1/2
, (13)
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and

εij =
{

1, if |i − j | is odd number
0, if |i − j | is even number

. (14)

The Nyström approximation has the following error bounds

(C0ω)(ti) − (Ch
0 ω)(ti) = O(h2m). (15)

Thus, we obtain the numerical approximate of Eq. (6),

⎧⎨
⎩
(

1
2I + Ch + Mh

)
u

(l)

h = λ
(l)

h (Ah + Bh)u
(l)

h ,

h
2∑

i=1

2n−1∑
j=0

(
u

(l)

ih (tj )
)2|x ′(tj )| = 1,

(16)

where Ah, Bh, Ch, and Mh are discrete matrices of order 4n corresponding to the operators A, B,
C, and M , respectively. λ(l)

h and u
(l)

h are the approximate solution of eigenvalue λ(l) and eigenvector
u(l), respectively.

B. Asymptotically Compact Convergence

Define Dh
1 = diag(a1(t0, t0), · · · , a1(t2n−1, t2n−1)), and Ch

1 is a circulant matrix:

Ch
1 = 2h circulant

(
0, − cot

( π

2n

)
, 0, · · · , 0, − cot

(2n − 1)π

2n

)
.

Let

Ch
0 = c2D

h
1 C

h
1 , Ch

2 =
(

0 Ch
1

−Ch
1 0

)
, Dh = diag(Dh

1 , Dh
1 ), (17)

we have

Ch = c2D
hCh

2 =
(

0 Ch
0

−Ch
0 0

)
. (18)

Lemma 1. The eigenvalues of the discrete matrix Ch
1 consist of

ρk =
⎧⎨
⎩

0, if k = 0, n;
2πi, if 1 ≤ k ≤ n − 1;
−2πi, if n + 1 ≤ k ≤ 2n − 1; i = √−1.

(19)

Proof. By properties of antisymmetric circulant matrix, the eigenvalue ofCh
1 must be an imag-

inary number and ρk = f (ξk) with f (z) = ∑n

j=1 z2j−1 cot( (2j−1)π

2n
) and ξk = exp(2πki/(2n)),

k = 0, 1, . . . , 2n − 1. We can obtain

ρk =
n∑

j=1

2h

2π
z

2j−1
k cot

(
(2j − 1)π

2n

)
= i

n

n∑
j=1

sin
2πk(2j − 1)

2n
cot

(2j − 1)π

2n
,
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where zk = exp(2πki/2n), k = 0, . . . , 2n − 1. Obviously ρk = −ρ2n−k , 1 ≤ k ≤ n, and
ρ0 = ρn = 0. We have

ρ1 = i

n

n∑
j=1

sin
2π(2j − 1)

2n
cot

(2j − 1)π

2n
= 2i

n

n∑
j=1

cos2 (2j − 1)π

2n
= 2πi,

and

ρ2 = i

n

n∑
j=1

sin
4π(2j − 1)

2n
cot

(2j − 1)π

2n
= 4i

n

n∑
j=1

cos
2π(2j − 1)

2n
cos2 (2j − 1)π

2n

= 2i

n

n∑
j=1

cos
2π(2j − 1)

2n

[
1 + cos

2π(2j − 1)

2n

]
= 2πi.

For 2 ≤ k ≤ n − 1, we obtain

ρk = i

n

n∑
j=1

sin

(
2πk(2j − 1)

2n

)
cot

(
(2j − 1)π

2n

)[
2 sin2

(
π(2j − 1)

2n

)
+ cos

(
2π(2j − 1)

2n

)]

= i

2n

n∑
j=1

cot

(
(2j − 1)π

2n

)[
sin

(
2π(k + 1)(2j − 1)

2n

)
+ sin

(
2π(k − 1)(2j − 1)

2n

)]

= ρk+1

2
+ ρk−1

2
,

which implies that ρk+1 − ρk = ρk − ρk−1 = . . . = ρ2 − ρ1 = 0. Therefore, ρk = 2πi,
2≤ k ≤ n − 1. Using ρk = −ρ2n−k , 1 ≤ k ≤ n, we obtain the proof of Lemma 1.

Corollary 1. The eigenvalues of Ch
2 consist of 0 and ±2π .

Corollary 2. (1/2)I + Ch
2 is invertible, and ((1/2)I + Ch

2 )−1 is uniformly bounded.

Lemma 2. [25] Let Y , Z be regular matrices of order m, and X = Y + Z. Then

|λ(X) − λj (Z)| ≤ max
1≤j≤m

|λj (Y )|, 1 ≤ j ≤ m,

where λ(X), λ(Z), and λ(Y ) are the eigenvalues of matrices X, Z, and Y , respectively. In
particular, if a complex number β does not satisfy:

|β − λj (Z)| ≤ max
1≤j≤m

|λj (Y )|, 1 ≤ j ≤ m,

then β is not an eigenvalue of matrix X.
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Corollary 3. (1) (1/2)I + Ch is invertible and ((1/2)I + Ch)−1 is uniformly bounded.

(2)
{(

1
2I + Ch

)−1
Mh

}
is a collectively compact operator sequence and convergent to(

1
2I + C

)−1
M , that is,

(
1

2
I + Ch

)−1

Mh c.c→
(

1

2
I + C

)−1

M .

where
c.c→ means the collectively compact convergence.

Proof. (1) We firstly have

1

2
I + Ch = 1

2

(
I + 2c2D

hCh
2

) = 1

2
Dh
(
(Dh)−1 + 2c2C

h
2

)
.

Next, we discuss the eigenvalues of (Dh)−1 + 2c2C
h
2 . As

1

a1(t , t)
= 1 >

1 − 2ν

1 − ν
≥ 2c2 max

1≤j≤4n

∣∣λj

(
Ch

2

)∣∣,
for any real number α ∈ (0, ν/(1 − ν)), we have∣∣∣∣ 1

a1(t , t)
− α

∣∣∣∣ ≥ 1 − α >
1 − 2ν

1 − ν
≥ 2c2 max

1≤j≤4n

∣∣λj

(
Ch

2

)∣∣.
From Lemma 2, we obtain ρ((Dh)−1 + 2c2C

h
2 ) > ν/(1 − ν). It means that ‖((Dh)−1 +

2c2C
h
2 )−1‖ ≤ (1−ν)/ν. Also as Dh is invertible and uniformly bounded, (1/2)I +Ch is invertible

and uniformly bounded.
(2) As the kernel of integral operator Mij , i, j = 1, 2, is a continuous function, we obtain

[26–28] that {Mh
ij } is a collectively compact operator sequence and convergent to Mij , that is,

Mh
ij

c.c→ Mij .

Thus, we have Mh c.c→ M . From Corollary 2, we also obtain that {( 1
2I + Ch)−1Mh} is a col-

lectively compact operator sequence and convergent to ( 1
2I + C)−1M . The proof of Corollary 3

is completed.

From Eq. (1) and Corollary 3, we find that u(l) is a trivial solution as λ(l) = 0, and if λ(l) �= 0,
we have λ

(l)

h �= 0. Let γ
(l)

h = 1/λ
(l)

h and also suppose that the eigenvalues of ( 1
2I + C)−1M and

( 1
2I + Ch)−1Mh do not include −1, then Eqs. (6) and (16) can be rewritten as follows: find γ (l)

and u(l) ∈ V (0) satisfying

γ (l)u(l) = Lu(l), with ‖u(l)‖2
0,� =

∫ 2π

0
|u(l)(s)|2|x ′(s)|ds = 1, (20)

and find γ
(l)

h and u
(l)

h satisfying

γ
(l)

h u
(l)

h = Lhu
(l)

h , with h

2∑
i=1

2n−1∑
j=0

(
u

(l)

ih (tj )
)2|x ′(tj )| = 1, (21)
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where Lh = [I +( 1
2I +Ch)−1Mh]−1( 1

2I +Ch)−1(Ah +Bh), and L = [I +( 1
2I +C)−1M]−1( 1

2I +
C)−1(A + B), and the space V (m) = C(m)[0, 2π ] × C(m)[0, 2π ], m = 0, 1, 2, . . ..

Theorem 1. The approximate operator sequence {Lh} is an asymptotically compact sequence
and convergent to L in V (0), that is,

Lh a.c→ L, (22)

where
a.c→ means asymptotically compact convergence.

Proof. As the kernels of B0 and Bij (i, j = 1, 2) are continuous functions, we have [16, 21]

Bh
0

c.c→ B0 and Bh
ij

c.c→ Bij in C[0, 2π ], as n → ∞.

Also as an(t , τ) is a continuous approximate of a(t , τ), the approximate operator {Ah
0} is an

asymptotically compact sequence and convergent to A0, that is, Ah
0

a.c→ A0 in C[0, 2π ], as n → ∞.
Then we have Ah a.c→ A and Bh c.c→ B in V (0). It implies that for any bounded sequence {ym ∈ V (0)}
there exists a convergent subsequence in {(Ah + Bh)ym}. Without loss of generality, we assume
(Ah + Bh)ym → z, as m → ∞. From the properties of asymptotically compact convergence and
quadrature rules [22, 24], we have

∥∥∥∥∥∥Lhym −
[
I +

(
1

2
I + C

)−1

M

]−1 (
1

2
I + C

)−1

z

∥∥∥∥∥∥
≤
∥∥∥∥∥∥
[
I +

(
1

2
I + Ch

)−1

Mh

]−1 (
1

2
I + Ch

)−1
∥∥∥∥∥∥ · ∥∥(Ah + Bh)ym − z

∥∥

+
∥∥∥∥∥∥
[
I +

(
1

2
I + Ch

)−1

Mh

]−1 (
1

2
I + Ch

)−1

[Ch − C + Mh − M]

·
[
I +

(
1

2
I + C

)−1

M

]−1 (
1

2
I + C

)−1

z

∥∥∥∥∥∥ → 0, as m → ∞ and h → 0, (23)

where ‖ · ‖ is a norm. It shows that {Lh : V (0) → V (0)} is an asymptotically compact operator
sequence. Moreover, we will show that Lh a,c→ L, as n → ∞. In fact, as Ah + Bh a,c→ A + B for
y ∈ V (0), we obtain

‖(Ah + Bh)y − (A + B)y‖ → 0, as h → 0. (24)

From Corollary 3 and quadrature rules [24], we derive

‖Lhy − Ly‖ ≤
∥∥∥∥∥∥
[
I +

(
1

2
I + Ch

)−1

Mh

]−1 (
1

2
I + Ch

)−1
∥∥∥∥∥∥ · ‖(Ah + Bh)y

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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−(A + B)y‖ +
∥∥∥∥∥∥
[
I +

(
1

2
I + Ch

)−1

Mh

]−1 (
1

2
I + Ch

)−1

[Ch − C + Mh − M]

[
I +

(
1

2
I + C

)−1

M

]−1 (
1

2
I + C

)−1

(A + B)y

∥∥∥∥∥∥ → 0, as h → 0.

The proof of Theorem 1 is completed.

Corollary 4. [6, 23, 24]. Under the assumption of Theorem 1, we have

‖(Lh − L)L‖ → 0 and ‖(Lh − L)Lh‖ → 0, as h → 0. (25)

Theorem 2. Suppose u(s) ∈ V (2l) and kernel mij (t , s) ∈ C2l+1[0, 2π ], i, j = 1, 2, then we
have the following asymptotic expansion

(Lh − L)u(s) =
l−1∑
j=1

ψj(s)diag(h2j+1, h2j+1) + O(h2l), (26)

where ψj(s) ∈ V (2l−j), j = 1, · · · , l − 1, are functions independent of h.

Proof. From the asymptotic expansion of the error for quadrature rules [26], we derive

(A + B)u(t) − (Ah + Bh)u(t) =
l−1∑
j=1

ϕj (t)diag(h2j+1, h2j+1) + O(h2l),

where ϕj (t) = ς ′(−2j)

(2j)! u(2j)(t) ∈ V (2l−j), j = 1, · · · , l − 1, are functions independent of h.
We also have the remainder estimate of the midpoint rule for periodic functions

max
0≤s≤2π

|(M − Mh)φ(s)| = ‖(M − Mh)φ‖ = O(h2l), ∀φ ∈ V (2l),

and the identity

Lhu − Lu =
[
I +

(
1

2
I + Ch

)−1

Mh

]−1 (
1

2
I + Ch

)−1

[(Ah + Bh)u

−(A + B)u] +
[
I +

(
1

2
I + Ch

)−1

Mh

]−1 (
1

2
I + Ch

)−1

[Ch − C

+Mh − M]
[
I +

(
1

2
I + C

)−1

M

]−1 (
1

2
I + C

)−1

(A + B)u.

According to the above equations and Eq. (15), when we let ψj(s) = [I + ( 1
2I +

Ch)−1Mh]−1( 1
2I + Ch)−1ϕj (s), we complete the proof of Theorem 2.
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We know that if γ (l) is an isolated eigenvalue of Eq. (20), then the dimension of its eigenspace
is finite [29] and the complex conjugate γ̄ (l) of γ (l) is also an eigenvalue of the conjugate operator
L̄. Let V̄γ = span{ū(l)

(1), · · · , ū(l)

(χ)} and Vγ = span{u(l)

(1), · · · , u(l)

(χ)} be the eigenspace of L̄ and L,
respectively, which constructs the biorthogonal system〈

u
(l)

(i), ū
(l)

(j)

〉 = δij , i, j = 1, · · · , χ , (27)

with ‖u(l)

(i)‖ = 1, i = 1, · · · , χ . Let γ
(l)

h and Vγh be the eigenvalue and the eigenspace of Lh,
corresponding to γ (l) and Vγ , respectively. There exists dimVγh = χ1 ≤ dim Vγ ≤ χ (see [29]).
Assume that {u(l)

(i)h} and {ū(l)

(i)h} are the approximate eigenvectors of {u(l)

(i)} and {ū(l)

(i)}, i = 1, · · · , χ1,
which satisfy the following normalized conditions

{〈
u

(l)

(i)h, ū(l)

(j)h

〉 = δij , i, j = 1, · · · , χ1,〈
u

(l)

(i)h, ū(l)

(i)

〉 = 1, i = 1, · · · , χ1.
(28)

Theorem 3. Under the hypotheses of Corollary 4, Eqs. (27) and (28), we obtain

{∣∣γ (l)

h − γ (l)
∣∣ = O(‖L(L − Lh)‖),∥∥u(l)

(i) − u
(l)

(i)h

∥∥ = O(‖L(L − Lh)‖). (29)

Proof. As we have the following equation

(γ (l)I − L)
(
u

(l)

(i) − u
(l)

(i)h

) = −γ (l)u
(l)

(i)h + Lu
(l)

(i)h

= (
γ

(l)

h − γ (l)
)
u

(l)

(i)h + (
Lu

(l)

(i)h − Lhu
(l)

(i)h

)
, (30)

taking the inner product by ū
(l)

i on the both sides of the identity and considering the inner product
property of Eqs. (27) and (28), we obtain

0 = 〈
(γ (l)I − L)

(
u

(l)

(i) − u
(l)

(i)h

)
, ū(l)

i

〉
= (

γ
(l)

h − γ (l)
)〈
u

(l)

(i)h, ū(l)

(i)

〉+ 〈
Lu

(l)

(i)h − Lhu
(l)

(i)h, ū(l)

(i)

〉
= (

γ
(l)

h − γ (l)
)+ 〈

L(L − Lh)u
(l)

(i)h, ū(l)

(i)

〉
/γ̄ (l),

that is ∣∣γ (l)

h − γ (l)
∣∣ = O(‖L(L − Lh)‖). (31)

Define the subspace

V ⊥
γ = {

v :
〈
v, ū(l)

(i)

〉 = 0, i = 1, · · · , χ
}
.

Obviously, under the restriction to the subspace V ⊥
γ (l) , (γ (l)I − L)−1 exists. As (u

(l)

(i) − u
(l)

(i)h) ∈
V ⊥

γ (l) , from Eq. (30), we deduce that there exists a constant c > 0 satisfying

c
∥∥u(l)

(i) − u
(l)

(i)h

∥∥ ≤ ∥∥(γ (l)I − L)
(
u

(l)

(i) − u
(l)

(i)h

)∥∥
≤ ∣∣γ (l)

h − γ (l)
∣∣∥∥u(l)

(i)h

∥∥+ ‖(L − Lh)Lh‖∥∥u(l)

(i)h

∥∥/|γ̄ (l)|. (32)
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As we have ‖u(l)

(i)h‖ ≤ ‖u(l)

(i) − u
(l)

(i)h‖ + ‖u(l)

(i)‖ with Eqs. (31) and (32), we complete the proof of
this theorem.

Corollary 5. Suppose {γ (l)

h , u(l)

(i)h} are the eigenvalue and eigenvector of Eq. (21) and u
(l)

(i),

ū
(l)

(i) ∈ V (2), i = 1, · · · , χ1, then

∣∣γ (l)

h − γ (l)
∣∣ = O(h2),

∥∥u(l)

(i) − u
(l)

(i)h

∥∥ = O(h2), (33)

and

∥∥ū(l)

(i) − ū
(l)

(i)h

∥∥ = O(h2). (34)

Proof. The proof of Eq. (33) can be found in [23, 29]. As Eq. (34), we define the subspace

V̄ ⊥
γ

(l)
h

= {
v ∈ L2[0, 2π ] :

〈
v, u(l)

(i)h〉 = 0, i = 1, · · · , χ1

}
.

Note that under the restriction to the subspace V̄ ⊥
γ

(l)
h

, (γ̄ (l)I − L̄h)−1 exists and is uniformly

bounded. Following Eq. (28) and ū
(l)

(i) − ū
(l)

(i)h ∈ V̄ ⊥
γ

(l)
h

, then

(
γ̄

(l)

h I − L̄h
)(

ū
(l)

(i) − ū
(l)

(i)h

) = γ̄
(l)

h ū
(l)

(i) − L̄hū
(l)

(i)

= γ̄
(l)

h

γ̄ (l)
L̄ū

(l)

(i) − L̄hū
(l)

(i) = 1

γ̄ (l)

(
γ̄

(l)

h

γ̄ (l)
L̄ − L̄h

)
L̄ū

(l)

(i)

= 1

γ̄ (l)
(L̄ − L̄h)L̄ū

(l)

(i) + O(h2) = O(h2),

thus, (34) is true.

III. ASYMPTOTIC ERROR EXPANSIONS AND RICHARDSON EXTRAPOLATION

Theorem 4. Under the hypotheses of Corollary 5 and Theorem 3, if {γ (l), u(l)

(i)} and {γ (l)

h , u(l)

(i)h}
are the eigenvalue and eigenvector of Eqs. (20) and (21), respectively, then there exist a constant
d1 and vector functions wi ∈ V (3), i = 1, · · · , χ1, independent of h, such that

γ
(l)

h − γ (l) = d1h
3 + O(h5), (35)

u
(l)

(i)h − u
(l)

(i) = wih
3 + O(h5). (36)

Proof. From Theorem 2, we obtain

Lh
(
u

(l)

(i) + wih
3
)− (γ (l) + d1h

3)
(
u

(l)

(i) + wih
3
)

= (Lh − L)u
(l)

(i) + h3
(
Lhwi − d1u

(l)

(i) − γ (l)wi) − d1wih
6

= h3
(
Lhwi − d1u

(l)

(i) − γ (l)wi + ψ
)+ O(h5). (37)
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Choose the constant d1 and function wi satisfy the following operator equations:

Lhwi − γ (l)wi = d1u
(l)

(i) − ψ ,〈
d1u

(l)

(i) − ψ , φ
〉 = 0, ∀φ ∈ V̄ ⊥

γ (l) . (38)

Obviously, under the restriction condition of Eq. (38), there exists a unique solution wi in Eq.
(38). Taking φ = ū

(l)

(i), we obtain

d1 = 〈ψ , ū(l)

(i)〉.
Thus, Eq. (37) is converted to be

Lh
(
u

(l)

(i) + wih
3
)− (γ (l) + d1h

3)
(
u

(l)

(i) + wih
3
) = O(h5). (39)

As {γ (l)

h , u(l)

(i)h} satisfies

Lhu
(l)

(i)h − γ
(l)

h u
(l)

(i)h = 0, (40)

and from Eqs. (39) and (40), we obtain

Lh
(
u

(l)

(i)h − u
(l)

(i) − wih
3
)− γ

(l)

h

(
u

(l)

(i)h − u
(l)

(i) − wih
3
)

− (
γ

(l)

h − γ (l) − d1h
3
)(

u
(l)

(i) + wih
3
) = O(h5). (41)

We also have 〈
u

(l)

(i), ū
(l)

(i)h

〉 = 〈
u

(l)

(i), ū
(l)

(i)

〉+ 〈
u

(l)

(i), ū
(l)

(i)h − ū
(l)

(i)

〉
= 1 + 〈

u
(l)

(i) − u
(l)

(i)h, ū(l)

(i)h − ū
(l)

(i)

〉 = 1 + O(h5). (42)

Taking the inner product on both sides of Eq. (41) by ū
(l)

(i)h and using Eqs. (28) and (42), we
obtain

γ
(l)

h − γ (l) − d1h
3 = O(h5). (43)

Substituting Eq. (43) into Eq. (41), we have(
Lh − γ

(l)

h I
)(

u
(l)

(i)h − u
(l)

(i) − wih
3
) = O(h5). (44)

Obviously, under the restriction in the invariant subspace

V ⊥
γ

(l)
h

= {
v :
〈
v, ū(l)

(i)h

〉 = 0, i = 1, · · · , χ1

}
,

the operator (Lh − γ
(l)

h I ) is invertible and (Lh − γ
(l)

h I )−1 is uniformly bounded. Generally,
u

(l)

(i)h − u
(l)

(i) − wih
3 = g /∈ V ⊥

γ
(l)
h

, but g − P hg ∈ V ⊥
γ

(l)
h

, where

P hg =
χ1∑
i=1

〈
g, ū(l)

(i)h

〉
u

(l)

(i)h (45)
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is a projection of g on Vγ(l). From Eq. (42), we obtain the estimate

∣∣〈g, ū(l)

(i)h

〉∣∣ = ∣∣〈g, ū(l)

(i)h − ū
(l)

(i)

〉∣∣ ≤ ∣∣〈u(l)

(i)h − u
(l)

(i), ū
(l)

(i)h − ū
(l)

(i)

〉∣∣
+ ∣∣〈wi , ū

(l)

(i)h − ū
(l)

(i)

〉∣∣h3 = O(h5),

which means ‖P hg‖ = O(h5). However, from Eq. (44), we have

O(h5) = ∥∥(Lh − γ
(l)

h I
)
g
∥∥ ≥ ∥∥(Lh − γ

(l)

h I
)
(g − P hg)

∥∥− O(h5)

≥ a‖g − P hg‖ − O(h5),

where a is a constant, that is, ‖g−P hg‖ = O(h5). Therefore, we obtain g = u
(l)

(i)h −u
(l)

(i) −wih
3 =

O(h5), which completes the proof of Theorem 4.

Corollary 6. Under the hypotheses of Theorem 4, there exist constants d1, d2 and vector
functions wi1, wi2 ∈ V (5), i = 1, · · · , χ1, independent of h, such that

λ
(l)

h − λ(l) = d1h
3 + d2h

5 + O(h7), (46)

u
(l)

(i)h − u
(l)

(i) = wi1h
3 + wi2h

5 + O(h7). (47)

By means of the Richardson EAs for the asymptotic expansions, we can obtain the approximate
solutions with a higher order accuracy O(h5) by solving some coarse grid discrete equations in
parallel. The EAs are described as follows.

Step 1. Choose the mesh widths h and h/2 to calculate the solutions of Eq. (16) as (λ
(i)

h , u(i)

h )

and (λ
(i)

h/2, u(i)

h/2).
Step 2. Calculating the h3 -Richardson extrapolations based on the asymptotic expansions

Eqs. (35) and (36), we obtain⎧⎨
⎩

λ
(i)∗
h = (

8λ
(i)

h/2 − λ
(i)

h

)
/7,

u
(i)∗
h (sj ) = (

8u
(i)

h/2(sj ) − u
(i)

h (sj )
)
/7,

(48)

where the error estimates are |λ(i)∗
h −λ(i)| = O(h5) and ‖u(i)∗

h (sj )−u(i)(sj )‖ = O(h5)

with sj = jh, j = 1, · · · , 2n.
Step 3. From the asymptotic expansions Eqs. (35) and (36), we also obtain∣∣λ(i)

h/2 − λ(i)
∣∣ ≤ ∣∣8/7λ

(i)

h/2 − 1/7λ
(i)

h − λ(i)
∣∣

+1/7
∣∣λ(i)

h/2 − λ
(i)

h

∣∣ ≤ 1/7
∣∣λ(i)

h/2 − λ
(i)

h

∣∣+ O(h5), (49)

and ∥∥u(i)

h/2(sj ) − u(i)(sj )
∥∥ ≤ ∥∥8/7u

(i)

h/2(sj ) − 1/7u
(i)

h (sj ) − u(i)(sj )
∥∥

+1/7
∥∥u(i)

h/2(sj ) − u
(i)

h (sj )
∥∥ ≤ 1/7

∥∥u(i)

h/2(sj ) − u
(i)

h (sj )
∥∥+ O(h5). (50)

Note that the inequalities can be used to construct self-adaptive algorithms.
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IV. FOURIER EXPANSION IN EIGENSOLUTIONS

Some applications have been shown in some papers [14–17] for Steklov eigensolutions. Next,
we will obtain the Fourier expansion in eigensolutions and use the expansion to provide the
application for solving elasticity problems.

Theorem 5. [1, 2] (1) The eigenvalues are real,all non-zero eigenvalues are positive, and the
eigenvalues form an increasing sequence to infinity: λ1 ≤ . . . ≤ λn ≤ . . .

(2) The sequence of eigenvectors are boundary orthonormal and complete, that is∫
�

u(m) · u(l)ds = δml , m, l = 1, 2, . . . .

where δml is the Kronecker delta.

We obtain the result that there is a generalized Fourier orthonormal basis and L2-functions can
be expanded as discrete Fourier series. The displacement u on � can be expanded

u =
∞∑
l=1

qlu
(l), on �. (51)

From the gradient of deformation, we obtain

∂u

∂n
=

∞∑
l=1

qlλ
(l)u(l), on �. (52)

Dirichlet problem: Assume the displacement u = f (x) on � is prescribed, where f (x) is a
L2-function. Multiplying the both sides of Eq. (51) by u(l) to integral, and using orthonormality,
we obtain the coefficient ql as

ql =
∫

�

f · u(l)ds. (53)

Substituting ql into Eq. (52), we obtain the traction t = ∂u/∂n on �.
Neumann problem: Assume the traction t = g(x) on � is prescribed, where g(x) is a

L2-function satisfying the compatibility conditions
∫

�
g(x)ds = 0. Using orthonormality and

Eq. (42), we obtain the coefficient ql as

ql = 1

λ(l)

∫
�

g · u(l)ds λ(l) �= 0.

Substituting ql into Eq. (51), we obtain the displacement u on �.
Once eigensolutions are known, we can obtain the solutions u and ∂u/∂n on � of elasticity

problems. So the displacement vector and stress tensor in � can be calculated [5–7] by

⎧⎪⎪⎨
⎪⎪⎩

ui(y) =
∫

�

h∗
ij (y, x)tj (x)dsx −

∫
�

k∗
ij (y, x)uj (x)dsx , ∀y ∈ �,

σij (y) =
∫

�

h∗
ij l(y, x)tl(x)dsx −

∫
�

k∗
ij l(y, x)ul(x)dsx , ∀y ∈ �,

(54)
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where ⎧⎨
⎩

k∗
ij l = [(1 − 2ν)(r.j δli + r.iδlj − r.lδij ) + 2r.i r.j r. l]/[4π(1 − ν)r],

h∗
ij l = μ

2π(1−ν)r2

{
2 ∂r

∂n
[(1 − 2ν)r.lδij + ν(r.j δil + r.iδjl) − 4r.i r.j r.l] + 2ν(ni

·r.j r.l + nj r.i r.l) + (1 − 2ν)(2nlr.j r.i + njδil + niδjl) − (1 − 4ν)nlδij

}
.

From the generalized Fourier expansion, we obtain that‖uh−u‖ = O(h3) and‖th−t‖ = O(h3)

on �. The h3-Richardson extrapolation also can be used for the displacement uh and the traction
th on �,

ũh(y) = (8uh/2(y) − uh(y))/7, t̃h(y) = (8th/2(y) − th(y))/7, y ∈ �, (55)

which have the error estimates: ‖ũh − u‖ = O(h5) and ‖t̃h − t‖ = O(h5), respectively.
So the computational process of the displacement vector u = (u1, u2) and stress tensor σij in

� can be prescribed as follows:

a. Solve u(l) and λ(l) from the singular integral Eq. (16);
b. Compute u and t on � by the generalized Fourier series (51) and (52);
c. Calculate the displacement vector u and stress tensor σij in � following Eq. (54).

Remark 1. The Fourier expansions present an entirely new way to solve the elastic boundary
value problems by the discrete Fourier analysis, which also provides a tool to research the solu-
tions of Stokes equations and problems in vibration theory with Dirichlet, Neumann, and mixed
boundary conditions.

V. NUMERICAL EXAMPLE

Example 1. Consider a circular isotropic elastic body with radius a under plane strain deforma-
tion. Parton and Perlin [16] presented some analytic solutions about eigenvalues for this problem
as follows:

λl = 2μl

a
, l = 1, 2, · · · . (56)

Consider the circular plane strain deformation problem with radius a = 1 and mater-
ial properties μ = 0.25 and ν = 2.5. Let h = π/n(n ∈ N) be the mesh width and
sj = jh(j = 0, 1, · · · , 2n − 1) be the nodes. We have computed numerical eigensolutions
in article [20]. As the first non-zero eigenvalue plays an important role [30–34], we show the
errors in Fig. 1. For the x-axis, we set x = log2 n. We can find that the numerical eigenvalue
rapidly approximate the first non-zero analytic eigenvalue λ1 = 0.5.

Neumann boundary condition 1: As the eigensolutions have been obtained, we use the Fourier
expansion to solve the Neumann problem and to compute the displacement vector u on �.

Set a Neumann boundary condition: t = (t1, t2) with t1 = 2 cos(3θ) + 2 cos(2θ) cos θ and
t2 = 2 sin(3θ) + 2 sin(2θ) cos θ(θ ∈ [0, 2π ]). The displacement u on � can now be calculated.
In Table I, we list the errors of the displacement uh(y) = (u1h, u2h) on � computed following
formulas (51) and (52), where eh

vi(θ) = |uih(θ) − ui(θ)|, i = 1, 2, and ẽh
vi(θ) = |ũih(θ) − ui(θ)|

is the error after using the EAs, and ph
vi(θ) is the a posterior error estimate.
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FIG. 1. The first non-zero numerical eigenvalue λ1 = 0.5.

From Table I, we can numerically estimate eh
vi(θ)/e

h/2
vi (θ) ≈ 23, ẽh

vi(θ)/ẽ
h/2
vi (θ) ≈ 25. So we

obtain the result that the approximate solutions are O(h3) convergent rate. After Richardson
extrapolation, the approximate solutions are O(h5) convergent rate.

Below, we calculate the displacement uh(y) = (u1h, u2h) in � following formulae Eq. (54),
where the inner point is P = (0.25, 0.5). Let eh

vi(P ) = |ui(P ) − uih(P )|, i = 1, 2, and ẽh
vi(P ) be

the error after the EAs, and ph
vi(P ) be the corresponding a posteriori error estimate.

From Table II, we have eh
vi(P )/e

h/2
vi (P ) ≈ 23, ẽh

vi(P )/ẽ
h/2
vi (P ) ≈ 25. So the convergence rates

of the solutions in � are still O(h3) and O(h5), respectively.
Neumann linear boundary condition 2: A class of linear boundary condition ∂u

∂n
= cu + g(x)

is considered after finding the eigensolutions. We set that c = 1 and g(x) = (g1, g2) with
g1 = 2 cos(3θ) + 2 cos(2θ) cos θ and g2 = 2 sin(3θ) + 2 sin(2θ) cos θ(θ ∈ [0, 2π ]) to calculate
the displacement on �. In Table III we list the errors of the displacement uh(y) = (u1h, u2h) on �

computed by formulae (51) and (52), where notations are used as Table I.

TABLE I. The errors analysis of (u1h(θ), u2h(θ)) on �.

n 24 48 96 192 384

eh
v1(0) 8.19E − 04 1.02E − 04 1.27E − 05 1.59E − 06 1.99E − 07

ẽh
v1(0) 6.52E − 07 2.02E − 08 6.30E − 10 1.98E − 11

ph
v1(0) 1.03E − 04 1.27E − 05 1.59E − 06 1.99E − 07

eh
v1(π/4) 5.50E − 04 6.83E − 05 8.53E − 06 1.07E − 06 1.33E − 07

ẽh
v1(π/4) 4.59E − 07 1.42E − 08 4.43E − 10 1.34E − 11

ph
v1(π/4) 6.88E − 05 8.54E − 06 1.07E − 06 1.33E − 07

eh
v2(π/4) 5.79E − 04 7.20E − 05 8.99E − 06 1.12E − 06 1.40E − 07

ẽh
v2(π/4) 4.61E − 07 1.43E − 08 4.46E − 10 1.35E − 11

ph
v2(π/4) 7.25E − 05 9.00E − 06 1.12E − 06 1.40E − 07

eh
v2(3π/4) 7.77E − 04 9.66E − 05 1.21E − 05 1.51E − 06 1.88E − 07

ẽh
v2(3π/4) 6.49E − 07 2.01E − 08 6.27E − 10 1.91E − 11

ph
v2(π/4) 9.73E − 05 1.21E − 05 1.51E − 06 1.88E − 07
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TABLE II. The errors analysis of (u1h, u2h) in � at P = (0.25, 0.5).

n 24 48 96 192 384

eh
v1(P ) 1.07E − 04 1.33E − 05 1.66E − 06 2.07E − 07 2.59E − 08

ẽh
v1(P ) 8.72E − 08 2.70E − 09 8.42E − 11 2.55E − 12

ph
v1(P ) 1.34E − 05 1.66E − 06 2.07E − 07 2.59E − 08

eh
v2(P ) 2.66E − 04 3.30E − 05 4.12E − 06 5.15E − 07 6.44E − 08

ẽh
v2(P ) 2.17E − 07 6.71E − 09 2.09E − 10 6.33E − 12

ph
v2(P ) 3.32E − 05 4.13E − 06 5.15E − 07 6.44E − 08

TABLE III. The errors of (u1h(θ), u2h(θ)) on � when θ1 = 0, θ2 = π/4

n 24 48 96 192 384

eh
v1(0) 1.19E − 03 1.46E − 04 1.81E − 05 2.25E − 06 2.80E − 07

ẽh
v1(0) 3.52E − 06 1.09E − 07 3.39E − 9 1.06E − 10

ph
v1(0) 1.53E − 04 1.91E − 05 2.27E − 06 2.81E − 07

eh
v2(π/4) 3.50E − 03 4.31E − 04 5.30E − 05 6.58E − 06 8.21E − 07

ẽh
v2(π/4) 7.53E − 06 2.32E − 07 7.21E − 9 2.25E − 10

ph
v2(π/4) 4.42E − 04 5.34E − 05 6.59E − 06 8.21E − 07

From Table III, we can see the convergence numerically log2(e
h
vi(θ)/e

h/2
vi (θ)) ≈ 3. It means

that the convergence rates of the solutions are O(h3). Other boundary conditions for elasticity can
be similarly obtained. So the numerical algorithms are very effective for calculating the elasticity.

VI. CONCLUSIONS

The theory of fundamental boundary eigensolutions gives a new point of view for studying the
numerical solution of elastostatic boundary value problems. The following conclusions can be
drawn:

Numerical results show that the methods not only have high accuracy, but also can be applied
with the h3-Richardson EA to reach higher accuracy. According to the numerical results, we find
that the larger the scale of the problems is the more precision the EAs obtains.

The advantages for the methods are as follows: computing entry of discrete matrixes is very sim-
ple and straightforward, without any singular integrals. The methods are high accuracy algorithms
of O(h3) and the EAs are O(h5) convergence rates, respectively.

In this article, the elastic problems are solved indirectly. Harnessing the generalized Fourier
series, only the coefficients of the series need to be calculated.

The authors are grateful to the referees for their constructive comments, which greatly helped
improve the manuscript.
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