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a b s t r a c t

In this paper, we develop a novel, goal-oriented reduced-order modeling methodology.
The approach uses a low-dimensional basis function set that contains both global and lo-
cal, goal-oriented basis functions. Compared to reduced-order models using the standard
proper orthogonal decomposition (POD) basis, these new goal-oriented POD basis func-
tions lead to better approximations of given quantities of interest (QoI) while maintaining
accuracy in the evolution of the state. We demonstrate this approach for two problems
involving Burgers equation. In the first problem, the QoI is the spatial average of the solu-
tion over various regions. The QoI in the second problem is the feedback control based on
a MinMax control design with an extended Kalman filter. In both cases, approximations of
the QoI and the state variables are more accurate using the goal-orientated POD than using
the standard POD basis with comparable online computational costs.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Repeated numerical simulations of large-scale, nonlinear dynamical systems are required in many engineering control
and optimization problems. In addition, control laws based on compensators require the real-time simulation of nonlinear
models that incorporate state measurements. Direct, full-order numerical simulations require large discretized systems for
adequate approximation and are not feasible in many of these applications. Thus, reduced-order models (ROMs) based on
the proper orthogonal decomposition (POD) combined with Galerkin projection [1] have been widely used to provide fast,
accurate simulations of these large nonlinear systems.

Essentially, POD basis functions are solution-adapted basis functions that provide the optimal basis to represent a given
set of simulation data or snapshots. In many cases, a handful of the leading POD modes can represent the most significant
characteristics of the dynamical system, e.g., patterns in turbulent flows dominated by organized (coherent) structures.
However, for highly non-stationary, nonlinear problems, POD-Galerkin models may lose their effectiveness. First of all, like
the Fourier basis, PODmodes are global; thus energy associated with each mode is distributed throughout the domain. As a
result, onemay have to use a large number of POD basis functions to accurately capture the energy transfer betweenmodes,
leading to increased computational cost. Secondly, the discarded POD modes can have a marked impact on the system,
see [2]. Although they only hold a fractional share of the energy, their contribution to the dynamics of the retained modes
can be significant. Therefore, the POD-ROM of complex systems can be unstable even when the POD basis retained in the
ROM retains 99% of energy [3]. To obtain an accurate POD-ROM for complex systems, research has been done in two main
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directions: (i) strategies to construct a more representative basis; (ii) modeling the effects of the discarded POD modes in
the ROM. In this paper, we mainly focus on the first direction. Several methods have been proposed in the literature in
this direction. They aim at improving the POD basis functions: (i) by the choice of locations of snapshots [4]; (ii) by the
adjustment of weights on snapshots [5–7]; (iii) by the choice of inner product [7–9]; (iv) by the enrichment of the POD
basis, e.g., to minimize the residual of the ROM [10–12], to fit certain physical phenomena [13], or to account for parametric
changes [14]; and (v) by the choice of the time windows on which the POD method is performed [15,16]; etc.

In this paper, we develop a new basis selection strategy for the POD-ROM to overcome the degraded efficiency when
applied to complex systems. The new approach is motivated by the following key observations: The POD basis is obtained
by minimizing the time average projection error of the snapshots to the space spanned by the basis on the whole spatial
domain in the entire time range. Therefore the leading POD basis functions represent the global features of the system
well. This basis could fail to approximate the quantity of interest (e.g., the average value of a state variable in a particular
subdomain) well and fails to display the features with small time scales (e.g. the high-frequency modes in fast transient
flows). Therefore, to achieve an accurate representation of the system information, the ROM basis in the proposed approach
consists of global and localmodes. The global modes are the leading POD basis functions, while, the local modes are selected
for subintervals of time in a goal-oriented way.

This novel method for local mode generation synthesizes ideas from the PID method in [15] and the goal-oriented
approach proposed in [5]. By considering residuals of the discrepancies between the snapshots and their projection onto the
subspace spanned by global modes, we seek local modes that maximize the contribution of the residuals to the quantities of
interest over short (time) subintervals. Hence, they are able to capture important small temporal scales and, usually, small
spatial scales that are missed in the standard POD approximation. This new basis selection strategy leads to new physical
insights into the reduced-order basis and yields an efficient, reliable way to achieve ROMs for complex systems.

The remainder of the paper is organized as follows: the POD method is briefly introduced in Section 2; the new goal-
oriented model reduction method is developed in Section 3; the optimization problem is discussed in Section 4; numerical
examples illustrating the effectiveness of the proposed method are presented in Sections 5 and 6. Finally, we provide brief
conclusions and directions of future work.

2. POD-Galerkin reduced-order models

The POD-Galerkin method to produce reduced-order models for nonlinear PDEs has two main steps, computation of
the POD basis and construction of the low-dimensional dynamic model through Galerkin projection. In the first step, one
precomputes simulation data that is representative of the behavior expected for the surrogate model. For the Burgers
equation, e.g. [17], the data consists ofm finite element solutions at uniform timesteps, referred to as simulation snapshots.
The POD method seeks a low-dimensional basis that optimally approximates the snapshot data. Mathematically speaking,
given rank d snapshot data from a Hilbert space H , it chooses {φ1(x), . . . , φr(x)} ⊂ H , for any r ≤ d, to minimize the
averaged projection error

1
m

m
ℓ=1

w(·, tℓ)−

r
j=1


w(·, tℓ), φj(·)


L2
φj(·)


2

H

(2.1)

subject to the conditions (φi, φj)H = δij, 1 ≤ i, j ≤ r , where δij is the Kronecker delta. Note that other inner product spaces
can be readily implemented, but H = L2 is typically used in practice. To solve (2.1), consider the following eigenvalue
problem:

K ψ = λψ, where Kij =
1
m


w(·, ti), w(·, tj)


H

(2.2)

for 1 ≤ i, j ≤ m. The so-called temporal autocorrelation matrix K ∈ Rm×m is symmetric, positive semi-definite with
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd > 0, and corresponding (orthonormal) eigenvectors {ψj}

d
j=1. It can be shown [18–20] that

the solution to (2.1) is given by

φj(·) =
1
λj

m
ℓ=1

(ψj)ℓw(·, tℓ), 1 ≤ j ≤ r, (2.3)

where (ψj)ℓ is the ℓ-th component of the eigenvector ψj. The POD approximation ofw(x, t) is

wr(x, t) ≡

r
j=1

φj(x)aj(t), (2.4)

where {aj(t)}rj=1 are time-varying POD basis coefficient functions that must be determined. In most cases, r is chosen to be
significantly smaller than both d and the number of spatial degrees of freedom (DOF) used to discretize the full-order model
(FOM).
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The second step in the POD-Galerkin method is to develop a dynamical system for the coefficient functions a(t) =

[a1(t), . . . , ar(t)]ᵀ. This is achieved by substituting the POD approximation (2.4) into the full order system (e.g., the weak
formulation of the PDEs), applying Galerkin projection, and using the fact that the POD basis functions are orthonormal. The
POD-ROM of the Burgers equation (wt = νwxx − wwx + f ) has the following form [21]:

ȧ = b + Aa + aᵀBa, (2.5)

where br×1, Ar×r , and Br×r×r correspond to the constant, linear, and quadratic terms in the numerical discretization,
respectively, and the initial conditions are

ai(0) = (w0(·), φi(·))H for i = 1, . . . , r.

Note that the vector, matrix, and tensor terms above can be precomputed from {φ1(x), . . . , φr(x)}, ensuring fast simulations
of the POD-ROM.

While POD-Galerkin ROMs are sufficient for many nonlinear problems, the standard construction above fails in many
applications unless r is chosen to be unreasonably large. Therefore, current research efforts in reduced-order modeling seek
better snapshot selection strategies, improved methodologies to construct basis functions, as well as alternative models for
developing (2.5). In this paper, the objective is to develop POD-based strategies to construct basis functions that improve
the accuracy in computing given quantities of interest (QoI).

3. Systematic goal-oriented reduced-order models

In many engineering applications such as complex flow control problems, one is interested in evaluating certain
quantities in real-time, e.g., the average value of a state variable in a particular subdomain, or the integral of the product
of the state and a functional gain. However, as seen from the definition (2.1), the POD basis minimizes the time average
approximation error on the whole domain in the entire time interval. Therefore, it usually fails to best approximate the
quantity of interest. In addition, it can also fail to display the features associated with small time scales, which play a
marked role in complex systems (e.g., fast transient flows). Recognizing these limitations of the POD basis, we propose a
goal-oriented model reduction methodology that utilizes a mixture of global and local modes. The novelty of this approach
lies in a new design of local modes.

We first regard the dominant POD basis functions, {φ1(·), . . . , φr0(·)}with r0 ≤ d, as global modes. LetQ(·) be a quantity
of interest, which is a bounded, linear functional (see Remark 3.2). The residual of the global mode approximation to the
snapshots is denoted by R,

R(·, tℓ) = w(·, tℓ)−

r0
j=1


w(·, tℓ), φj(·)


H
φj(·). (3.6)

Assume the simulation time is partitioned into non-overlapping time intervals, i.e. [0, T ] = ∪k Ik and for each k, time
instances tk+1, . . . , tk+α are located in the time interval Ik, then the collection of local modes on Ik, {ϕk

1(x), . . . , ϕ
k
s (x)}, solves

the following optimization problem:

min
{ϕk1,...,ϕ

k
s }∈H

1
α

k+α
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Q (R(·, tℓ))− Q


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j=1
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R(·, tℓ), ϕk

j (·)

H
ϕk
j (·)


2

H

(3.7)

subject to the conditions that (ϕk
i , ϕ

k
j )H = δij and (φn, ϕ

k
j )H = 0, for 1 ≤ i, j ≤ s and 1 ≤ n ≤ r0.

In general, the basis obtained from (3.7) is local in both time and space, and optimally approximates the residual
in the quantity of interest over given short time intervals. Therefore, the dominant local modes produce an effective
representation of the small scales that are discarded in the POD truncation to r0 terms. Although this new design of local
modes inheritsmerits from the principal interval decomposition (PID)method [15] and the goal-oriented approach [5], there
are some significant differences that we highlight here. First of all, this generalizes the PID in [15], since the optimization
objective in the new method is oriented by the quantity of interest. It also generalizes the goal-oriented approach
in [5]. The new method does not minimize the difference between the ROM trajectory and full-order model trajectory.
Instead, it minimizes the difference between the residual of snapshots and its projection onto the new basis over given
intervals. Thus the optimization process here does not involve calculating and integrating the ROMs, and is computationally
efficient.

The number of local basis functions in each short time interval can be selected independently such that the residual of
each optimization problem (3.7) is smaller than a user-defined tolerance. Once local modes are determined, we include
the leading local basis functions in the reduced-order model. Our basis generation strategy is summarized in Algorithm
1. Wherein, the global modes are the standard POD basis functions, and thus represent the most significant patterns on
the whole spatial domain and over the entire time interval; and the local modes are determined from (3.7), and capture
the most important patterns that contribute to the quantity of interest over the time interval Ik = [tk+1, tk+α] and
potentially on a subdomain depending on the quantity of interest. Several time interval partition methods are presented in
Section 4.2.
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Algorithm 1: Novel Basis Generation Strategy

Given solution snapshots {w(·, t1), . . . , w(·, tm)} .

(1) Compute (POD) global modes, {φ1, . . . , φr0}, by (2.2)-(2.3).
(2) Calculate the residuals {R(·, tℓ)}mℓ=1 of the global mode approximation

to the snapshots by (3.6).
(3) Partition the simulation time into non-overlapping subintervals {Ik}

Ni
k=1.

(4) Compute goal-oriented local modes, {ϕk
1, . . . , ϕ

k
s }, on each Ik by (3.7). Details are to be presented in Section 4.1.

(5) Collect the new basis on each Ik, i.e.,

φ1, . . . , φr0 , ϕ

k
1, . . . , ϕ

k
s


.

The use of both global modes and local modes in the ROM enables an accurate approximation of state variables as
well as the key quantity. This is particularly useful when a feedback control system is considered, in which the state (or
state estimate), and the control calculation are vital. Thus, using only the goal-oriented basis, the ROM may have a poor
approximation of the state in the areas outside those subdomains essential for the quantity of interest [5].

Remark 3.1. Note that the reduced-order approximation in the new basis can still be written in the same form as that of
the POD approximation, (2.4), on the time interval Ik, i.e., for any r ≤ d,

wr(x, t) ≡

r
j=1

φj(x)aj(t), t ∈ Ik, (3.8)

where

φj =


φj, j ≤ r0
ϕk
j−r0 , otherwise

and aj is the associated time varying basis coefficient function. Therefore, in the sequel, we refer to (3.8) as the goal-oriented
POD approximation (GO-POD), while we refer to (2.4) as the standard POD approximation.

With a basis set specified over each time interval, the reduced-order models (2.5) and associated projection matrices
to hand-off the simulation at the end of the current subinterval to the initial conditions of the next subinterval can all be
precomputed. Thus, there is negligible online computational cost differences between the two approaches.

Remark 3.2. The purpose of computations in most of cases is to determine (output) a relatively small number of key
quantities. For example, when control of the temperature in a warehouse is considered, the average temperature in the
storage area will be the QoI in the air flow simulations. In this case, Q(w) can be defined to be Q(w) =


Ωs
w(x, t) dx,

where w(x, t) is the temperature and Ωs is the portion of the warehouse where temperature must be managed. For this
study, we will consider the quantity of interest, Q(·), to be a bounded, linear functional [22].

4. Optimization formulation

4.1. Optimization problem for local modes

Consider H = L2 and let Pj be the projection onto the space spanned by local basis functions ϕk
1, . . . , ϕ

k
j , that is,

PjRℓ =

j
i=1


R(·, tℓ), ϕk

i (·)

ϕk
i (·).

We reformulate the minimization problem (3.7) as a series of unconstrained optimization problems: Seek ϕk
j ∈ L2, for

j = 1, . . . , s, such that

ϕk
j = argmin

ϕkj

1
α

k+α
ℓ=k+1

Q (Rℓ)− Q

PjRℓ

2 + λ1

1 − ∥ϕk

j ∥
22

+ λ2

j−1
i=1

ϕk
i , ϕ

k
j

2 + λ3

r0
n=1

φn, ϕ
k
j

2 . (4.9)

Since we consider each component (Q)i(·) to be a linear functional, Q has a discrete representation as a matrix acting
on the finite element coefficients. Thus, we write Q(w(·, t)) = CW(t), where C is the coefficient matrix for the QoIs and
W(t) is the vector of finite element coefficients at time t . Motivated by the POD method (2.3), we use the ansatz ϕj = Rψj
to simplify the optimization problem. In other words, we explicitly seek the minimum in (4.9) in the range of the residual
snapshots for the given time interval. Upon discretizing (4.9), we have converted the problem of solving forϕk

j tominimizing
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the following functional for ψj:

J(ψj) =
1
α

k+α
ℓ=k+1


Rᵀ
ℓC

ᵀCRℓ − 2
 j

q=1

(ψᵀ
qR

ᵀMhRℓ)Rψq

ᵀ

CᵀCRℓ

+

 j
q=1

(ψᵀ
qR

ᵀMhRℓ)Rψq

ᵀ

CᵀC
 j

q=1

(ψᵀ
qR

ᵀMhRℓ)Rψq



+ λ1

1 − ψ

ᵀ
j R

ᵀMhRψj
2

+ λ2

j−1
i=1


ψ

ᵀ
i R

ᵀMhRψj
2

+ λ3

r0
n=1


φᵀ
nMhRψj

2
, (4.10)

where Mh is the finite element mass matrix.
Note that the ansatz would automatically satisfy the last constraint (φn, ϕ

k
j ) = 0, but this term is kept for stability.

Approximate satisfaction of the orthogonality conditions on ϕj can later be compensated by a Gram–Schmidt procedure.
Thus, the simple approximation of the constrained optimization problem in (3.7) by the unconstrained optimization problem
in (4.10) does not pose any serious issues and allows us to use a fast, robust optimization algorithm. The term


1 − ∥ϕk

j ∥
2
2

leads to coercivity of the functional J . Thus existence of solutions to this unconstrained optimization problem (4.9) are
guaranteed by the Weierstrass extreme value theorem. However, uniqueness of the local basis is not guaranteed, even for
the α = 3, s = 2 case, though the sequential nature of the algorithm and judicious choices for initializing the optimization
problems can provide effective solutions.

4.2. Partition of the time interval

One limiting factor in using the POD basis is that time averaging can smooth out information that is only expressed over
small intervals of time. Obviously, the quality of local basis functions is related to the length of subintervals Ik. A shorter time
window guarantees that finer time scales are accurately represented by local modes but increases the overall computational
cost. To balance the accuracy and efficiency, we consider several time interval partitioning methods.
Clustering Let Rℓ = R(·, tℓ). A natural way to partition the time domain is to seek a few clusters of the residual
snapshot set {R1, . . . ,Rm}. Such an idea also has been used in centroidal Voronoi tessellation (CVT)-basedmodel reduction
[23].

The clustering can be achieved by the k-means method, which minimizes the sum of squares of distances between
points that belong to a cluster and the mean of the cluster. Let D be a data set, it finds Vk ⊂ D , k = 1, . . . , K , that
solves

min
K

k=1


γ∈Vk

∥γ − zk∥2, (4.11)

where zk is the mean of points in Vk and ∥ · ∥ is the L2 norm. Utilizing Lloyd’s algorithm, we can determine the clusters and
the associated centers iteratively.
Adaptive division. An idea presented in [15] is to compute ROMs of a given size, and adaptively grow time intervals (and
update the ROM) while a prescribed error tolerance is met. Once a certified POD basis is formed over that time interval, the
process moves to the next time interval. While this guaranteed accuracy is an attractive feature, this is a computationally
intensive process and not likely to be a feasible in large problems.
Equally spaced partitions. Although not optimal, it is the most efficient and has been demonstrated to be quite effective for
a number of challenging nonlinear problems [24]. We consider this approach for a number of our test cases and utilize the
clustering idea above for a challenging problem where intervals need to be constructed strategically.

5. Simulation of 1D Burgers equation

5.1. Problem description

The proposed reduced-order modeling method is first tested on a standard benchmark problem—the one-dimensional
(1D) Burgers equation [17]. This model is commonly used as a one-dimensional approximation of the Navier–Stokes
equations (NSE). The dynamical system associated with the NSE becomes complex when the Reynolds number is large,
which corresponds to a small diffusion parameter in the Burgers equation. The Burgers equation is given as

wt + wwx = ν wxx + f inΩ × (0, T ],
w(x, 0) = w0(x) inΩ,
w(x, t) = 0 on ∂Ω × (0, T ],

(5.12)
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Fig. 1. First four global modes.

whereΩ = (0, 1) and T = 1. The initial condition is

w0(x) =


1 if x ∈


0,

1
2


0 if x ∈


1
2
, 1

.

(5.13)

The finite element simulation using backward Euler for time and linear elements for space is first performed to obtain
snapshots. We consider two test problems with different diffusion parameters. In particular, we consider the case ν =

1 × 10−2 from [17] and a slightly more challenging case with ν = 1 × 10−3.
Separate studies with distinct QoI are considered. For some examples, the QoI is local (the functional Q has a kernel with

local support), approximating the average of w(·, t) over a small region in the spatial domain, and for other examples, the
QoI is global, approximating the average ofw(·, t) overΩ .

5.2. Optimization problem

We use a BFGS, trust-region method [25] for the optimization problem (4.10), with the initial guess of ψj, ψ0
j , satisfying

Rψ0
j =

1
α

k+α
ℓ=k+1(Rℓ − Pj−1Rℓ). The stopping criteria are set where either the relative step size or relative gradient are

less than 10−5. In this unconstrained penalty formulation (4.9), we set the penalty parameters as λ1 = λ2 = λ3 = 103.

5.3. Simulation study for ν = 1 × 10−2

In this study, we chose the diffusion parameter as ν = 1× 10−2. For the time step andmesh size, we use1t = 1× 10−3

and1x = 1/32, respectively. Thus a total ofm = 1001 snapshots are collected. One QoI averages the values ofw on a small
region centered at x = 1/32, Q1(t) = 1/3

3
i=1w(xi, t), where 0 ≤ xi ≤ 1/16; the other averages the values of w on a

small region centered at x = 17/32, Q2(t) = 1/3
19

i=17w(xi, t), where 1/2 ≤ xi ≤ 9/16.
The first 4 POD basis functions, as shown in Fig. 1, capture over 99% of the kinetic energy of the snapshot data (the relative

error in the projection is less than 0.01), and are selected as the global modes (r0 = 4). The time range is then divided into 10
uniform subintervals. We compute local basis functions using Algorithm 1 and the number of local basis functions, s, in each
time interval is selected such that the ratio of |Qi(PsRℓ)|/|Qi(Rℓ)| is more than 0.99. It is observed that, in the process, the
maximum number of local modes in each subinterval is 3. We plot the first two local modes from the first time subinterval
for cases Q1 and Q2 in Figs. 2 and 3, respectively. It is observed that the local modes have different shapes for the different
QoI.

Similar to a regular ROM, the GO-POD simulation allows the precomputation of both global and local basis functions and
the ROM mass and stiffness matrices in its offline stage. For the case Q1, it takes 97.53 s to finish the offline computation.
The number of iterations for finding the local basis functions on each subinterval varies from 57 to 154. Then an online
stage solves the reduced-order dynamical system, which only takes about 2.18 s. In the case of Q2, the offline stage takes
114.99 s and the online stage takes 2.28 s. The iteration number in the optimization process varies from 58 to 159 in each
time interval.

To verify the effectiveness of the proposed approach, we first compare solutions of (5.12) computed using the finite
element method (denoted by FEM), the standard POD-ROM (denoted by POD), and our new goal-oriented approach GO-
POD-ROM (denoted by GO-POD). For a fair comparison, we use r = 7 POD basis functions in the standard POD-ROM since
the maximum number of modes in each subinterval of the proposed approach is r0 +max(s) = 7. The time evolution of the
finite element solution and the standard POD-ROM are shown in Fig. 4. The solutions of GO-POD-ROM for the different QoI
are shown in Figs. 5 (left) and 6 (left). It is seen that the proposed approach yields better approximation than the standard
POD-ROM. Indeed, the approximation error (in the L2-norm) of the standard POD is 1.85 × 10−2 (relative error 3.11%).
Using the goal-oriented approach, the approximation errors are improved to be 2.78 × 10−3 (relative error 0.47%) for both
Q1 and Q2 cases.
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Fig. 2. First two local modes in the first time subinterval for Q1: the average value of the points in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. First two local modes in the first time subinterval for Q2: the average value of the points in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 4. ν = 0.01: The finite element approximation, FEM (left) and the standard POD approximation when r = 7 (right).

In the second part of the test we compare the approximation of the quantities of interest. It can be seen that the proposed
approach achieves more accurate outputs than those obtained using the standard POD-ROM. As shown in Figs. 5 (right) and
6 (right), the QoI computed with the proposed GO-POD method closely track those of the FEM. In fact, the standard POD
approximatesQ1 with relative error 12.28% and approximatesQ2 with relative error 1.84%. The new, goal-oriented approach
achieves approximation of relative error 1.18% for Q1 and relative error 0.24% for Q2.

Furthermore, we perform a sensitivity test on the penalty parameters in the optimization problem by changing λi = 105,
i = 1, 2, 3, the GO-POD approximation results stay the same.
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Fig. 5. ν = 0.01: The new GO-POD approximation when r0 = 4 and max(s) = 3 (left) and the comparison of the QoI, Q1(t) (right).

Fig. 6. ν = 0.01: The new GO-POD approximation when r0 = 4 and max(s) = 3 (left) and the comparison of the QoI, Q2(t) (right).

5.4. Simulation study for ν = 1 × 10−3

In this test problem, we consider 1D Burgers equation with a smaller diffusion parameter ν = 1 × 10−3. The same time
step 1t = 1 × 10−3 but finer mesh size 1x = 1/1024 (due to the lower viscosity) are used for the (standard Galerkin)
FEM simulation. As before, a total of m = 1001 snapshots are collected. Two QoI are considered with the first being the
average value ofw on the whole domain, Q3(t) =

1
N

N
i=1w(xi, t). The second is the average value ofw on the subdomain,

Q4(t) =
1
N2

N2
i=1w(xi, t), where 0.79 ≤ xi ≤ 0.81.

The number of global basis functions, r , is selected such that the POD basis set {φ1, . . . , φr} captures over 99% of the
kinetic energy content in the snapshot set. In this test, r0 = 9 POD basis functions represent 99% of the energy and are
chosen to be global modes. The time domain is then partitioned into several subintervals using the k-means clustering
method on the residual snapshot set. The number of local basis functions, s, is chosen so that the ratio of |Q(PsRℓ)|/|Q(Rℓ)|
is more than 0.99. Tests on the GO-POD-ROM associated with the two QoI are implemented separately. It is observed the
maximum number of local modes in every subinterval is 5. In the GO-POD-ROM simulation of case Q3, the offline stage
takes 324.10 s; and the online stage takes 19.42 s to solve the reduced-order dynamical system. The number of iterations for
finding the local basis functions on each subinterval varies from 90 to 261. In the case of Q4, the offline stage takes 330.75 s
and the online stage takes 17.70 s. The iteration number in the optimization process varies from 62 to 272 in each time
interval.

To verify the effectiveness of the proposed approach, we compare solutions of (5.12) using the finite element method
(denoted by FEM), the standard POD-ROM (denoted by POD), and the GO-POD-ROM (denoted by GO-POD). To ensure a fair
comparison, we keep r = 14 POD basis functions in the standard POD-ROM. Fig. 7 shows the time evolution of the POD-ROM
approximation solution (right) and that of the FEM solution (left). Note that the standard POD-ROM does not perform well
in this case. The time evolution of the GO-POD solution associated with Q3 is shown in Fig. 8 (left). The oscillations on the
shock front are much smaller than that of the standard POD-ROM solution which leads one to believe that the newmethod
has a better approximation of the state variable than the standard PODmethod. Indeed, the approximation error forw in the
L2 norm of the standard POD is 1.14 × 10−1 (relative error 17.90%) while the error is improved to be 1.26 × 10−2 (relative
error 1.98%) by using the proposed GO-PODmethod. The time evolution of the GO-POD approximation ofw associated with
Q4 is shown in Fig. 9 (left). For this more challenging simulation the GO-POD-ROM also performs better than the standard
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Fig. 7. ν = 0.001: The finite element approximation, FEM (left); the standard POD approximation when r = 14 (right).

Fig. 8. ν = 0.001: The GO-POD approximation when r0 = 9 and max(s) = 5 (left) and the comparison of the global QoI, Q3(t) (right).

POD method. As in the case associated with Q3, the oscillations around the shock front are much smaller than those of the
standard POD-ROM solution and the approximation error forw in the L2 norm is now reduced to 1.34×10−2 (relative error
2.11%).

Comparisons of the FEM approximation, the standard POD approximation, and the associated GO-POD approximation
of QoI, Q3, are shown in Fig. 8 (right). The GO-POD results are close to that of the FEM solution while the standard POD
approximation does not perform well. In fact, the standard POD approximation of Q3 has a relative error 0.81%, while the
goal-oriented approach approximate Q3 with a smaller relative error 0.06%.

In contrast to Q3, Q4 is local and averages values of w on a small subdomain, 0.79 ≤ x ≤ 0.81. Approximations of
Q4 via the FEM, the standard POD approximation, and the GO-POD approximation associated with Q4 are shown in Fig. 9
(right). The relative error of the Q4 approximation is reduced to 1.97% by using the GO-PODmethod from the 20.77% by the
standard POD method. As in the previous cases, the proposed GO-POD method provides more accurate approximations of
the quantity of interest as it was designed.

6. Compensator-based feedback control for 1D Burgers equation

In this section, we compare reduced-order compensator-based feedback controllers using standard POD and the
proposed goal-orientated POD strategies for 1D Burgers equation (5.12).

6.1. Control design

AMinMax control design utilizes limited state measurements to construct an estimate of the state, which is then used to
define a feedback law for a control purpose. In practice, real-time control is usually desired, which motivates the reduced-
order compensator-based feedback controlmethod.Wepresent a brief outline of the strategy in theAppendix for a nonlinear
system with disturbance. For detailed discussions, the reader is referred to, e.g., [26–29] for the MinMax control design
and [30,31] for reduced-order control design.

Since MinMax control theory is designed for linear systems, we will first linearize the state equation (A.3) about the zero
steady state solution and design the standard linear feedback control law. The control law is obtained by adding a nonlinear
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Fig. 9. ν = 0.001: The GO-POD approximation when r0 = 9 and max(s) = 5 (left) and the comparison of the local QoI, Q4(t) (right).

term to the linear state estimate to produce the extended Kalman filter. This nonlinearity is based on the nonlinearity in the
state equation. The resulting feedback controller is nonlinear. The goal of this section is to develop a low-order controller
(for fast and accurate simulations) and we compare the low-order controllers obtained using either POD or GO-POD.

6.2. Numerical test: distributed control of Burgers equation

The 1D Burgers equation with disturbance is a special case of the initial value problem (A.1), where Aw = νwxx,
G(w) = −wwx. We consider the problem with a diffusion coefficient ν = 10−3 and Dirichlet boundary conditions
w(t)|x=0 = w(t)|x=1 = 0, Bu(t) = u(t, x),Dη(t) = 0.75 cos(10t)1(x). The output y consists of fivemeasurementswhich are
average values of w over the intervals [0, 0.1], [0.2, 0.3], [0.4, 0.5], [0.6, 0.7], and [0.8, 0.9]. Weights in the control design
are R = I , H = 10−5I and Q = q(x)I where

q(x) =


10 if x ∈ [0.7, 0.9]
1 elsewhere. (6.14)

The initial condition is

w0(x) =


1
2
sin(2πx) if x ∈


0,

1
2


0 if x ∈


1
2
, 1

.

(6.15)

Following the strategy presented in the Appendix, we apply the POD or the GO-POD approaches to (A.9), which leads to
a low-order compensator. The GO-POD ROM approach yields a similar system (A.11) as that obtained by the POD approach.
The only difference lies in the different basis functions that are used. As a result, the initial condition ai(0) = (wc0 , φi) for
POD, but ai(0) = (wc0 , φ̄i) for GO-POD. For terms in the closed-loop system, for example, the ith column of K r is K applied
to φi for POD, but is K applied to φ̄i for GO-POD; the ith row of F r is the L2 inner product of φi with F for POD, but the L2
inner product of φ̄i with F for GO-POD, etc. Next, we compare the performances of these two controllers.

For the full-order simulation we choose a mesh size1x = 1/64 and time step1t = 10−3. The open-loop (uncontrolled)
simulation, and the closed-loop state and state estimate, (A.8) with θ = 0 are shown in Fig. 10. The results for the MinMax
controller with 0 < θ ≤ θmax differed very little from the results using the LQG control θ = 0. We will therefore only
present the results for θ = 0.

We first use the standard POD basis with r = 4 in the reduced-order controller approximation, the simulation of the
state variable and state estimation are shown in Fig. 11. The closed-loop state approximation error is 1.01 × 10−3 (relative
error 22.01%) while just 2.09 × 10−4 (relative error 1.20%) for state estimate, and 2.02 × 10−4 (relative error 0.49%) for
control variable. We then test the GO-POD method using r0 = 2 global and s = 2 local modes on ten equally spaced
time subintervals, the state variable and state estimation results are shown in Fig. 12. Here, the approximation error for the
closed-loop state is just 7.15 × 10−5 (relative error 1.56%) with errors of 6.00 × 10−5 (relative error 0.34%) for the state
estimate, and 8.54 × 10−5 (relative error 0.21%) for the control variable. We next only use the local modes and we choose
s = 4 local modes on ten equally spaced time subintervals, the state variable and state estimation results are shown in
Fig. 13. The associated approximation error is 1.80 × 10−5 (relative error 0.39%) for state variable, 3.66 × 10−5 (relative
error 0.21%) for state estimate, and 5.52 × 10−5 (relative error 0.13%) for control variable.

We then increase the reduced dimension to be 8. We first use the r = 8 standard POD basis in the reduced-order
controller approximation, the simulation of the state variable and state estimation are shown in Fig. 14. The approximation
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Fig. 10. State variable w(t) for the full-order open-loop simulation (left); Full-order closed-loop simulation with θ = 0 (middle); State estimate wc(t)
(right).

Fig. 11. Reduced-order LQG (θ = 0) feedback control system with r = 4: state variablew(t) (left), state estimatewc(t) (center), and the control variable
Bu(t) (right).

Fig. 12. Reduced-order LQG (θ = 0) feedback control system with r0 = 2 and s = 2: state variable w(t) (left), state estimate wc(t) (center), and the
control variable Bu(t) (right).

Fig. 13. Reduced-order LQG (θ = 0) feedback control system with s = 4: state variable w(t) (left), state estimate wc(t) (center) and the control variable
Bu(t) (right).

errors are 3.85 × 10−5 (relative error 0.84%) for the state variable, 4.24 × 10−5 (relative error 0.24%) for the state estimate,
and 7.33 × 10−5 (relative error 0.17%) for control variable. We then test the GO-POD method by utilizing r0 = 4 global
and s = 4 local modes on ten equally spaced time subintervals, the state variable and state estimation results are shown in
Fig. 15. The associated approximation errors are 4.49×10−5 (relative error 0.97%) for the state variable, 4.03×10−5 (relative
error 0.23%) for the state estimate, and 6.44 × 10−5 (relative error 0.16%) for the control variable. Finally, we decrease the
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Fig. 14. Reduced-order LQG (θ = 0) feedback control systemwith r = 8: state variablew(t) (left), state estimationwc(t) (middle) and the control variable
Bu(t) (right).

Fig. 15. Reduced-order LQG (θ = 0) feedback control system with r = 4 and s = 4: state variable w(t) (left), state estimation wc(t) (middle) and the
control variable Bu(t) (right).

Fig. 16. Reduced-order LQG (θ = 0) feedback control system with r = 2 and s = 6: state variable w(t) (left), state estimation wc(t) (middle) and the
control variable Bu(t) (right).

number of global modes again and use r0 = 2 and s = 6 local modes on ten equally spaced time subintervals, the state
variable and state estimation results are shown in Fig. 16. Its approximation error is 3.49 × 10−5 (relative error 0.76%)
for state variable, 4.18 × 10−5 (relative error 0.24%) for state estimate, and 5.91 × 10−5 (relative error 0.14%) for control
variable.

7. Conclusions and future work

We presented a goal-oriented reduced-order modeling approach that augments global POD basis functions with local
goal-oriented basis functions. This approach differs from previous goal-oriented approaches in that it combines advantages
of the principle interval decomposition with a more efficient optimization algorithm. The result is an effective algorithm
for computing goal-oriented basis functions that are local in time. Unlike previous goal-oriented approaches, the present
approach is projection based and avoids the need to build ROMs during the basis construction phase.

The GO-POD reduced-order models were demonstrated to be very effective in both simulation and compensator-based
feedback-control applications. Indeed, not onlywere quantities of interest (QoI) computedmore accurately, but the interval-
based local basis functions provide better approximation properties of the dynamic nonlinear equations as well. Moreover,
these advantages can be achieved with minimal additional online computational cost. The formulation of the goal-oriented
basis function problem in terms of residual projection and a linear combination of snapshots significantly improves the
offline computational costs as well.

There are a few natural extensions to this work. First of all, we note that possible extensions to the clustering method
could be developed. For example, to distinguish the importance of some residual snapshots over others, they could be
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weighted (e.g. [7]). Furthermore, snapshot residuals could be dynamically grouped to both reduce the projection error and
minimize the number of ROMs that need to be built.

While the local GO-POD basis functions were local in time, they tend to emphasize structures that have local support.
Finding local basis functions that capture high frequency behavior in local regions in spacemay have applications in complex
fluid flow problems.

For the present study, we tested H = L2 in the construction of the global and local bases. While this proved to be very
effective, alternative approaches that utilizeH = H1 for global bases, leading to smoother global functions, and only require
H = L2 for the local functions may introduce more scale separation in the bases thus providing an interesting testbed for
closure modeling.
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Appendix. Reduced-order compensator-based feedback control

Consider the following initial value problem

ẇ(t) = Aw(t)+ G(w(t))+ Bu(t)+ Dη(t), w(0) = w0, (A.1)

where A is a differential operator, G(·) is a nonlinear function, B is the control input operator, u denotes the control, and
Dη(t) represents the disturbance on the system. We assume a state measurement of the form

y(t) = Cw(t)+ Eη(t). (A.2)

When the MinMax control design is applied, the system is first linearized about a nominal solution. It yields the system

ẇ(t) = Ãw(t)+ Bu(t)+ Dη(t), (A.3)

where Ã contains A and the linearization of the nonlinearity G about a nominal solution. The corresponding linear state
estimate,wc , satisfies the linear equation

ẇc(t) = Acwc(t)+ Fy(t), (A.4)

and the control law is given by

u(t) = −Kwc(t). (A.5)

The operators K , Ac and F , defined by MinMax control theory, require solutions to two algebraic Riccati equations

Ã∗Π +Π Ã −Π[BR−1B∗
− θ2DD∗

]Π + Q = 0, (A.6)

ÃP + PÃ∗
− P[C∗H−1C − θ2Q ]P + DD∗

= 0. (A.7)

The design parameter θ ≥ 0, Q denotes a nonnegative definite, self-adjoint state weighting operator, and R and H
are positive self-adjoint weighting operators. Note that when θ = 0 the Linear Quadratic Gaussian (LQG) controller is
determined.

If the nonnegative, self-adjoint solutions P andΠ exist and (I − θ2PΠ)−1P is non-negative, the operators are defined as

K = R−1B∗Π,

F = (I − θ2PΠ)−1PC∗H−1,

Ac = Ã − BK − FC + θ2DD∗Π .

The largest value of θ for which the desired solutions of (A.6) and (A.7) exist, is denoted by θmax.
To reflect the nonlinearity in the state equation (A.1), a nonlinear state estimate equation is used

ẇc(t) = Acwc(t)+ G̃(wc(t))+ Fy(t) (A.8)

where G̃ is the difference between G and its linearization and G̃ is consequently properly nonlinear in the state. Since we
consider a zero steady state solution, G̃(·) = G(·).

From (A.1), (A.2), (A.5), and (A.8), the resulting closed loop system can be written as the coupled system
ẇ(t)
ẇc(t)


=


A −BK
FC Ac

 
w(t)
wc(t)


+


G(w(t))
G̃(wc(t))


+


D
FE


η(t) (A.9)
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with initial condition
w(0)
wc(0)


=


w0
wc0


. (A.10)

For approximation purposes we consider the finite element method for the spatial discretization. These finite dimen-
sional discretizations of PDE systems often lead to very large systems which results in numerical challenges. For example,
the high dimensional finite dimensional approximations to the operators in (A.8) require solutions to the approximations
of the algebraic Riccati equations of (A.6) and (A.7). Practical implementation also requires a real-time state estimate which
necessitates real-time integration of the high dimensional approximation of (A.8). A low order model for (A.1) is not the
objective here since, in practice, the control will be coupled with a physical system. Instead, a low-order controller can be
obtained by using the POD method.

To construct a low-order compensator one first collects a set of snapshots of the state estimatewc , {wc(t0), wc(t1), . . . ,
wc(tm)} through FEM simulation of the closed-loop system (A.9). This is computationally expensive, but is an off-line
cost. Then applying one of the POD ROM approaches to (A.9) leads to a low-order compensator. The performance of this
compensator can then be measured through finite element simulations of the coupled system

ẇ(t)
ȧ(t)


=


A −BK r

F rC Ar
c

 
w(t)
a(t)


+


G(w(t))
G̃r(a(t))


+


D
F rE


η(t) (A.11)

with initial condition w(0) = w0 and ai(0) = (wc0 , φi), where φi is the ith POD basis function. The superscripts r in (A.11)
refer to new elements that arise due to operators acting on, or a Galerkin projection with a reduced-basis. For example, the
ith column of K r is simply K applied to φi, the ith row of F r is the L2 inner product of φi with F , etc. The important point is
that in practice, one only needs to simulate

ȧ(t) = Ar
c ȧ(t)+ a(t)TBa(t)+ F ry(t)

where y are given measurements. The control to the full-order system is computed as u(t) = −K ra(t). All of the matrices
and tensors in this equation can be pre-computed.
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