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Proper orthogonal decomposition (POD) is one of the most signif-
icant reduced-order modeling (ROM) techniques in fluid mechan-
ics. However, the application of POD based reduced-order
models (POD-ROMs) is primarily limited to laminar flows due to
the decay of physical accuracy. A few nonlinear closure models
have been developed for improving the accuracy and stability of
the POD-ROMs, which are generally computationally expensive.
In this paper we propose a new closure strategy for POD-ROMs
that is both accurate and effective. In the new closure model, the
Frobenius norm of the Jacobian of the POD-ROM is introduced
as the eddy viscosity coefficient. As a first step, the new method
has been tested on a one-dimensional Burgers equation with a
small dissipation coefficient � ¼ 10�3. Numerical results show
that the Jacobian based closure model greatly improves the physi-
cal accuracy of the POD-ROM, while maintaining a low computa-
tional cost. [DOI: 10.1115/1.4005928]

1 Introduction

The proper orthogonal decomposition (POD) is widely used to
derive reduced-order models (ROM) of large and complex sys-
tems. POD has been successfully applied to many scientific and en-
gineering problems, such as fluid flow control [1–6], image
processing [3], and pattern recognition [7]. It was introduced to the
field of turbulence by Lumley [8] to identify coherent structures in
the flow. POD starts with a collection of instantaneous flow field
data from an accurate numerical simulation or physical experiment
(often referred to as snapshots in the literature [21–23]), extracts
the most energetic eigenfunctions (modes), and utilizes a Galerkin
procedure to produce a low-dimensional dynamical system that
models the flow field, known as a POD-ROM.

The accuracy of a POD-ROM crucially depends on how well a
reduced basis represents the state variables. For turbulent flows,
due to the inherent nonlinearity in the system, a large set of POD
basis functions is typically required. However, it would compro-

mise the computational efficiency which is often the prime objec-
tive in reduced-order modeling. To balance the low computational
cost required by a ROM and the complexity of the targeted turbu-
lent flows, appropriate closure modeling strategies need to be
employed.

Relatively few reports on the closure of POD-ROMs for com-
plex flows have been published [11–18]. Most of these closure
models are inspired by large eddy simulation (LES) of turbulent
flows [19,20] (diagrams in Fig. 1 draw a parallel between LES
and POD). Since energy dissipation in turbulent flows takes place
in small eddies that are neglected (correspond to higher POD
modes), the conventional ROM is not able to dissipate enough
energy and leads to erroneous and unstable solutions. It is thus
necessary to model the interaction between retained and neglected
modes. This interaction involves nonlinear terms that pose a chal-
lenge in the POD-ROM framework. In this report we put forth a
novel closure model that achieves the same physical accuracy as
the Smagorinsky closure POD-ROM proposed in [16–18] without
increasing the computation cost. As a first step of investigations,
we address this model in the Burgers equation. While Burgers
equation is being commonly used as a one-dimensional approxi-
mation of the Navier-Stokes equations, it does not model turbu-
lence. However, we use it here for simplicity and clarity of
exposition.

The rest of this paper is organized as follows. In Sec. 2 we give
an overview of the POD and present the conventional POD-ROM.
The new nonlinear closure model is developed in Sec. 3. In Sec. 4
numerical results are presented.

2 Conventional POD-ROM

In this section we briefly describe the proper orthogonal decom-
position method and present POD-ROM for one-dimensional (1D)

Fig. 1 Schematic of energy distribution versus (a) wave num-
ber (LES approach) and (b) number of POD eigenfunctions
(POD-ROM approach)
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Burgers equation. For a detailed presentation, the reader is
referred to [3,7,21].

2.1 Proper Orthogonal Decomposition. Let H be a real
Hilbert space endowed with the inner product ð�; �ÞH, and
uð�; tÞ 2 H; t 2 ½0; T� be the state variable of a dynamical system.
Given the time instances t1;…; tN 2 ½0; T�, we consider the en-
semble of snapshots

V :¼ span uð�; t1Þ;…;uð�; tNÞf g (1)

with dim V ¼ d. In the context of this paper, snapshots are a col-
lection of flow field data obtained by experiments or numerical
simulations at various instants of time. The POD seeks a low-
dimensional basis f/1;…; /Mg, with M� d, which optimally
approximates the input collection. Specifically, the POD basis
satisfies

min
/j

1

N

XN

i¼1

uð�; tiÞ �
XM

j¼1

ðuð�; tiÞ; /jð�ÞÞH/jð�Þ
�����

�����
2

H

(2)

subject to the conditions that ð/i; /jÞH ¼ dij; 1 � i; j � M. In
order to solve Eq. (2) we consider the eigenvalue problem

Kv ¼ kv (3)

where K 2 <N�N , with Kij ¼ 1
Nðuð�; tjÞ; uð�; tiÞÞH is the snapshot

correlation matrix vk; for k ¼ 1;…; N are the eigenvectors, and
k1 � k2 �… � kd > 0 are the positive eigenvalues. It can then
be shown (see [3,21–23]), that the solution of Eq. (2) is given by

/kð�Þ ¼
1ffiffiffiffiffi
kk

p
XN

j¼1

ðvkÞjuð�; tjÞ; 1 � k � M (4)

where ðvkÞj is the jth component of the eigenvector vk. If the snap-
shots comprise the velocity field then kk is a measure of energy
associated with each eigenfunction.

2.2 POD-G ROM: The Burgers Equation. The model
problem we consider is the Burgers equation

ut � �uxx þ uux ¼ f in X

uðx; 0Þ ¼ u0ðxÞ in X

uðx; tÞ ¼ gðx; tÞ on @X

8<
: (5)

where � is the diffusion parameter, f is the forcing term, X 	 < is
the computational domain, t 2 ½0; T�, with T the final time, u0ð�Þ
is the initial condition, and gð�Þ is the boundary conditions. With-
out loss of generality, we assume that g ¼ 0 in the sequel. We
emphasize that Burgers equation (5) does not model turbulence.
However, we use it for simplicity and clarity of exposition.

The standard Galerkin finite element weak formulation is as fol-
lows: Find u 2 H1

0, such that

ðut; uÞ þ �ðux; uxÞ þ ðuux; uÞ ¼ ðf ; uÞ 8u 2 H1
0

ðuð0Þ; vÞ ¼ ðu0; vÞ 8v 2 L2

�
(6)

Let the time step Dt :¼ T=N and the time instances

tk ¼ kDt; k ¼ 0; 1;…; N. A truncated POD basis SM ¼ span
f/1; /2;…; /Mg is obtained from the snapshots fuð�; t1Þ; uð�; t2Þ;
…; uð�; tNÞg based on Eq. (4). A POD-ROM is developed by uti-

lizing a Galerkin projection on the space SM. Specifically, we first

consider the approximation u 

PM

i¼1 qiðtÞ/iðxÞ, then substitute
this approximation in the Burgers equation (5) and employ the
Galerkin method.

Let u0 2 L2 and f 2 Cð0; T; L2Þ. The standard Galerkin POD
(POD-G) ROM of the Burgers equation (5) is to find uð�; tÞ 2 SM,
such that

ðut; /Þ þ �ðux; /xÞ þ ðuux; /Þ ¼ ðf ; /Þ 8/ 2 SM

ðuð0Þ; vÞ ¼ ðu0; vÞ 8v 2 L2

�
(7)

The system can be written componentwise as follows: For all
k ¼ 1; 2;…; M,

_qkðtÞ ¼ bk þ
XM

m¼1

AkmqmðtÞ þ
XM

m¼1

XM

n¼1

BkmnqnðtÞqmðtÞ (8)

where

bk ¼ f ; /kð Þ
Akm ¼ �� /m; x; /k; x

� �
Bkmn ¼ �ð/m/n; x; /kÞ

3 Closure Modeling in ROM

The dynamical system (8) is often accurate for laminar flows.
From the earliest stages of POD for turbulent flows [10], it was
recognized that a simple Galerkin truncation will generally pro-
duce inaccurate results, even if the retained modes capture most
of the system’s energy [25,26]. Thus, closure modeling (i.e., mod-
eling the effect of the discarded POD modes f/Mþ1;…; /dg on
the modes retained in the ROM f/1;…; /Mg ) has always played
a central role in POD reduced-order model strategies.

LES-inspired POD closure modeling generally aims to improve
physical accuracy by employing the concept of an energy cascade.
In [13,16,17] a constant eddy viscosity was introduced in the
POD-ROM. More realistic nonlinear closures for POD-ROM
were developed in [18–20], but introduce significant computa-
tional cost. In this section we propose a novel nonlinear closure
models that is both accurate and efficient.

To illustrate the new POD-ROM closure model approach, we
first present the Smagorinsky POD ROM closure model proposed
in [18–20], which introduces a Smagorinsky-type eddy viscosity
term in the POD-G model (8). The model is named POD-L here
and reads

_qkðtÞ ¼ bk þ
XM

m¼1

AkmqmðtÞ þ
XM

m¼1

XM

n¼1

BkmnqnðtÞqmðtÞ

þ
XM

m¼1

DkmqmðtÞ (9)

where bk; Akm, and Bkmn are same as those in Eq. (8), and

Dkm ¼ ðCs SL
�� ��/m; x; /k; xÞ (10)

In Eq. (11) SLj j ¼ uxj j is the Frobenius norm of ux and Cs is a
constant.

Although physically accurate, the closure model term Dkm sig-
nificantly increases the computational complexity of the ROM.
Indeed, Dkm involves assembling derivatives of ux to compute the
Frobenius norm, and needs to be calculated at every time step.
This is in contrast to the other terms in Eq. (9), which are com-
puted only once at the beginning of the numerical simulation.
Since the POD basis is global, assembling Dkm is time consuming.
To lower the computational cost of the POD-L model, the authors
proposed a two-level discretization algorithm in [18], which com-
puted the closure term on a much coarser grid instead of the same
fine mesh as used in the direct numerical simulation (DNS). Nu-
merical tests showed that the algorithm can reduce the computa-
tional time by an order of magnitude, without compromising the
accuracy. However, the computational time of the proposed algo-
rithm was significantly larger than POD-G.

Our objective in this study is to put forth a new POD-ROM clo-
sure model that possesses the same spirit as the POD-L ROM. It
also employs the concept of energy cascade by introducing
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additional, but measured, eddy viscosity into the POD-ROM,
while it achieves the same accuracy as the POD-L ROM. How-
ever, the computational overhead is negligible.

The new POD-ROM closure model, POD-J ROM reads

_qkðtÞ ¼ bk þ
XM

m¼1

AkmqmðtÞ þ
XM

m¼1

XM

n¼1

BkmnqnðtÞqmðtÞ

þ
XM

m¼1

gDkmqmðtÞ (11)

where bk; Akm, and Bkmn are same as those in Eq. (8), and the new

closure term gDkm is defined as

gDkm ¼ ð eCs SJ
�� ��/m; x; /k; xÞ (12)

where eCs is a constant, SJj j ¼ @ _qk

@ql

��� ���, and
@ _qk

@ql
is the Jacobian of the

POD-G ROM (8), which satisfies

@ _qk

@ql
¼ Akl þ

XM

m¼1

Bklmqm þ
XM

n¼1

Bklnqn (13)

POD-J ROM also requires repeated computations of the nonlinear

closure term. However, since SJj j ¼ @ _qk

@ql

��� ��� can be evaluated at a

negligible computational cost, the new closure model is computa-
tionally efficient. Next, we will test the numerical behavior of the
POD-J ROM.

4 Numerical Results

The POD-J ROM aims at an efficient and accurate simulation
of turbulence. However, as a first step, we test this novel closure
model in the context of the Burgers equation with a small diffu-
sion coefficient � ¼ 10�3 (corresponding to a large Reynolds
number in realistic complex flows). In this case, the conventional
POD-G model yields inaccurate results.

We use a computational setting that is similar to that used by
Kunisch and Volkwein in [23]. The initial condition on domain
X ¼ ½0; 1� is defined as u0ðxÞ ¼ 1 if x 2 ð0; 1=2� and u0ðxÞ ¼ 0
otherwise. The forcing term is f ¼ 0 and the time interval is
½0; T� ¼ ½0; 1�. The boundary conditions are homogeneous zero
Dirichlet.

We utilize the standard Galerkin finite-element approach with
piecewise linear polynomials to discretize the problem in space,
the implicit Euler method for the time integration, and Newton’s

Fig. 2 Numerical simulation of the Burgers equation with
� ¼ 10�3

Fig. 3 Cumulative energy distribution of the POD modes for
the Burgers equation with � ¼ 10�3

Fig. 4 POD-G ROM simulation of the Burgers equation with
� ¼ 10�3. Note that the results are inaccurate.

Fig. 5 POD-L ROM simulation of the Burgers equation with
� ¼ 10�3. Note that the results have great improvement compar-
ing with those of POD-G ROM.
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method to solve the nonlinear system. We implement the simula-
tion on a fine mesh with Dx ¼ 1=8192 and a time step Dt ¼ 10�3.
We regard the results as the benchmark solution, and denote it by
“DNS.” The CPU time for DNS is 4304 s. The time evolution of
the state variable u is plotted in Fig. 2.

To obtain POD modes, we collect S ¼ 1001 snapshots from the
DNS and employ the procedure mentioned in Sec. 2. The cumula-

tive energy EM ¼
PM

i¼1
kiPS

i¼1
ki

is shown in Fig. 3, which represents the

percent energy captured by the first M POD modes in the system.
It is seen that, due to the optimality of the POD modes, the first
few modes contain the most energy.

We compare the following POD-ROMs: (i) the POD-G model
(8); (ii) the POD-L model (9); and (iii) the POD-J model [15]. As
an efficiency criterion, we use the CPU time required to perform
the simulation. To measure the accuracy we define a relative error
as

error ¼

1

N

PN
k¼1

uPOD�ROMðx; tkÞ � uDNSðx; tkÞ
�� ��2

0

1

N

PN
k¼1

uDNSðx; tkÞk k2
0

(14)

Fig. 6 POD-J ROM simulation of the Burgers equation with
� ¼ 10�3. Note that the results have great improvement compar-
ing with those of POD-G ROM.

Fig. 7 A comparison among DNS (blue), POD-G (green dash),
POD-L (red triangle), and POD-J (cyan square) at t ¼ 1. Note
that POD-J and POD-L are much closer to DNS than POD-G
ROM. However, POD-J is computationally more efficient than
POD-L.

Fig. 8. Time evolution of POD basis coefficient qi ; i ¼ 1; 2;…; 10 for DNS projection (blue), POD-G (green dash), POD-L (red
triangle), and POD-J (cyan square). Note that the POD-L and POD-J models have close behaviors to DNS, and perform much
better than the POD-G model.
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where uPOD�ROM is a POD-ROM solution, uDNS is the benchmark
solution, and N ¼ 1000 in this particular case.

We first use M ¼ 10 POD modes to generate all three POD-
ROMs. Although the first 10 POD modes capture 99.44% of the
system’s energy, the standard POD-G ROM generates inaccurate
results as shown in Fig. 4, which implies the necessity of closure
models. We then employ POD-L ROM and POD-J ROM, respec-
tively. Note that the artificial viscosity coefficients in POD-L and
POD-J ROMs, Cs and eCs, respectively, should be determined in
advance. But, to our knowledge, there is no exact formula or rela-
tion that describes how to choose them. Therefore, in our imple-
mentations, we use � as the initial guess and seek an appropriate
value of CS by running the corresponding ROM on a short interval
[0, 0.1] and minimizing the error over this time interval.

We obtained Cs ¼ 3� 10�4 for the POD-L ROM andeCs ¼ 1:05� 10�4 for the POD-J ROM. The time evolution of
POD-L ROM solutions is shown in Fig. 5 and that of POD-J
ROM solutions is shown in Fig. 6. For a clarity of comparison, we
also include POD-ROMs results with the DNS at the final time
t ¼ 1 in Fig. 7. It is clear that the closure models POD-J and
POD-L are quantitatively close to the DNS and much more stable
than the standard POD-G model.

In Fig. 8 we plot the time evolution of the POD basis coeffi-
cients qi (i ¼ 1; 2;…; 10) for DNS projections, POD-G, POD-L,
and POD-J models. Among the ROMs, POD-L and POD-J models
perform much better than the POD-G model, especially for the
higher modes.

To quantify the computational efficiency of the POD-ROMs,
we compare their relative errors defined in (14) in Table 1. The
relative error of the POD-L and POD-J models is significantly
lower than the that of the POD-G model.

The key advantage of the POD-J model over the POD-L model
lies in the low computational cost. In Table 2 we list the CPU
time of the three POD-ROMs. Despite its inappropriate behavior,
the POD-G model has the minimum CPU time. This is natural
since the POD-G model does not employ any turbulence model-
ing, wherein all matrices can be precomputed. The CPU time of
the POD-J model, however, is only less than twice the CPU time
of the POD-G model but 36 times less than that of the POD-L
model. The reason is that the closure term in the POD-J model
only requires the computation of the Jacobian of the reduced-
order model at each time step, which is dramatically more effi-
cient than the computation of the Frobenius norm of ux in the
POD-L model.

Thus, for this test problem, the POD-J model outperforms the
POD-G and the POD-L models in both relative error and CPU
time.

We then increase the number of POD modes to M ¼ 30
(99.91% of the snapshot energy has been captured in this basis),
and observe the same phenomena as in the M ¼ 10 case. Here,
Cs ¼ 1� 10�5 and eCs ¼ 1:15� 10�6 are used in the POD-L and
POD-J ROMs, respectively. The relative error of the POD-G
model decreases, yet the POD-L and POD-J models still perform

better than the POD-G model. We also notice that the relative
error of the POD-J model is less than that of the POD-L model.
The CPU time of the POD-L model is 23 times larger for M ¼ 30.

5 Conclusions

This report has put forth a new closure model for POD-ROMs.
This new strategy is similar in spirit to the LES closure models
previously investigated in a POD context. But using the norm of
the Jacobian as the eddy viscosity coefficient in the closure term
produces a more computationally efficient model.

As a first step, the new POD-J model has been developed and
tested numerically in the 1D Burgers equation, which is consid-
ered as a simplified model of the Navier-Stokes equations. By
comparing the results of the new POD-J with those of the POD-L
ROM and the conventional POD-G ROM, we conclude that the
novel POD-J model achieves the same accuracy as POD-L ROM
and outperforms the POD-G ROM. The POD-J achieves this accu-
racy at a low computational cost. Indeed, the CPU time for the
POD-J ROM near the computational complexity of POD-G.

Although in its infancy, this new POD-ROM closure model has
shown promising results. We plan to apply this closure modeling
strategy to more complex dynamical systems, such as the Navier-
Stokes equations.
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