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Our research has been directed towards three main topics: tight
closure and related operations, linkage and linkage-related properties,
and homological properties of ideals and modules over commutative
Noetherian rings.

1. Tight closure and related operations

1.1. The localization problem and annihilation of local co-

homology. We recall the definition of tight closure, introduced by
Hochster and Huneke in [HH]:

Definition 1.1. Let (R, m) be a Noetherian local ring of prime char-
acteristic p > 0. We denote positive powers of p by q, and the set of
elements of R which are not contained in any minimal prime ideal by
Ro.

a. For any ideal I ⊂ R, I [q] is the ideal generated by the qth powers
of elements in I. We say an element x ∈ R is in the tight closure, I∗,
of I if there exists a c ∈ Ro, such that cxq ∈ I [q] for all large q.

b. We say that the ring R is weakly F-regular if every ideal I of R is
tightly closed, i.e. I∗ = I. We say that the ring R is F-regular if every
localization of R is weakly F-regular.

The question of whether tight closure commutes with localization has
been open since the inception of the theory, until the recent negative
answer given by Brenner and Monsky in [BM]. As pointed out in [BM],
the following are still open:

• whether the weakly F-regular and F-regular properties are equiv-
alent (known in the Gorenstein case, in the graded case (Smith),
and over an uncountable field (Murthy))

• whether tight closure commutes with localization at a single
element

• whether tight closure is plus closure for algebras of finite type
over a finite field (the plus closure of an ideal I is I+ = IR+∩R,
where R+ is the integral closure of R in an algebraic closure of
the fraction field of R).
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Our contribution in [V1] was a step toward the equivalence of weak
F-regularity and F-regularity for graded rings. This question can be
approached via finding uniform annihilators for local cohomology of
Frobenius powers. More precisely, Hochster and Huneke have raised
the following question:

Question 1. If (R, m) is a local Noetherian ring of positive character-
istic p and Krull dimension d, and I is an ideal primary to a prime P
with ht(P ) = d − 1, then does there exist a constant b > 0 such that

H0
m

(

R

I [q]

)

=
I [q] : m

∞

I [q]

is annihilated by m
bq for all q = pe?

An affirmative answer to this question would imply that weak F-
regularity is equivalent to F-regularity. In [V1], we provide an affir-
mative answer for the case when R is a finitely generated positively
graded algebra over a field, and I is a homogeneous ideal.

1.2. ∗-independence, special tight closure, and ∗-spread. In [V2],
we introduce two notions that play an important role in most of our
further work: special tight closure and ∗-independence.

Definition 1.2. Let R be a local Noetherian ring of positive character-
istic. We say that a set of elements {f1, . . . , fn} ⊂ R is ∗-independent
if

fi /∈ (f1, . . . , fi−1, fi+1, . . . , fn)∗ ∀ i = 1, . . . , n.

We say that an ideal I ⊂ R is ∗-independent if it has a ∗-independent
system of generators.

We note that if R is an analytically irreducible excellent local ring,
then the ∗-independent property is independent of a choice of a min-
imal system of generators of a given ideal I. In other words, if I
is ∗-independent, then every minimal system of generators of I is ∗-
independent (or, in Epstein’s terminology, I is strongly ∗-independent).

The notion of ∗-independence is further pursued by Epstein in [Ep],
where he shows that it bears strong connections to a tight closure
analogue of the notion of minimal reduction:

Definition 1.3. Let J ⊂ I be ideals in a Noetherian ring of positive
characteristic.

We say that J is a ∗-reduction of I if we have I ⊂ J∗. We say that J
is a minimal ∗-reduction of I if it is minimal (with respect to inclusion)
among the ∗-reductions of I.
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Epstein shows that if J ⊆ I is a ∗-reduction of I, then J is a min-
imal ∗-reduction of I if and only if it is ∗-independent. Epstein goes
on to prove that all the minimal ∗-reductions of a given ideal I have
the same number of generators, which he calls the ∗-spread of I (by
analogy with the analytic spread). A key ingredient in Epstein’s proof
is the notion of special tight closure, introduced in [V2]. In joint work
with Epstein, [EV], we pursue the notion of ∗-spread and provide an
asymptotic formula for ∗-spread in terms of length, without reference
to ∗-reductions.

The definition of special tight closure is given below:

Definition 1.4. Let (R, m) be a Noetherian local ring of positive char-
acteristic p. We say that x is in the special tight closure of an ideal I,
I∗sp, if there exists a fixed q0 = pe0 and c ∈ R such that cxq ∈ m

q/q0I [q]

for all q = pe (equivalently, xq1 ∈ (mI [q1])∗ for some q1 = pe1).

The definition of special tight closure is a first instance of a version
of tight closure involving coefficients. Later instances are the a-tight
closure of Hara and Yoshida ([HY]), and the author’s a-closure in [V6]
(which will be discussed later in detail).

We consider special tight closure to be our main contribution to
tight closure theory. Our results with Huneke on the special tight
closure decomposition ([HV1]) greatly generalize earlier results of K.
E. Smith([S1]) in the graded case. Roughly speaking, the special tight
closure (which would perhaps be more aptly named the special part
of tight closure, since it is not a closure operation in its own right)
consists of those elements of the tight closure which are more deeply
embedded in the ring than the generators of the original ideal. In a
graded set-up, this amounts to having larger degrees.

The main result of [HV1] (an earlier, weaker version of which has
been obtained in [V2]) states that, with certain assumptions on the
ring, the tight closure of any ideal can be obtained from the ideal
itself, plus the special tight closure.

Theorem 1.5 (Theorem 2.1, [HV1]). Let (R, m) be an excellent normal
ring of positive characteristic, with perfect residue field. Then we have
I∗ = I∗sp + I.

The assumptions that the ring is normal and has perfect residue
field cannot be removed from the statement above. However, Epstein
proves the following more general version in [Ep]. Here, the notation
J1/q, where J is an ideal of R, stands for the ideal of elements of R
whose qth powers belong to J .
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Theorem 1.6 ([Ep]). Let (R, m, k) be an excellent analytically irre-
ducible local domain of characteristic p > 0. Assume that the normal-
ization R of R has the same residue field k as R. Then for every ideal
I ⊂ R, there exists q′ = pe′ such that

I∗ = (I [q′] + (I [q′])∗sp)1/q.

1.3. Applications of special tight closure. Special tight closure
has lead us to the main results in [V5], [EV], and [FVV], and has
played an important role in [VV].

We now expand on those results which we view as applications of
special tight closure.

In [V5], our goal is to prove tight closure analogues of results of
Watanabe about chains and families of integrally closed ideals. The
main results are:

Theorem 1.7. Let (R, m) be a Noetherian local excellent normal ring
with perfect residue field, and let J ⊂ I be tightly closed ideals.

Let F(J, I) be the set of ideals I ′ such that J ⊆ I ′ ⊆ I, λ(I/I ′) = 1,
and I ′ is tightly closed.

Then F(J, I) is non-empty. In particular, if I and J are m-primary,
here exists a sequence J = I0 ⊂ I1 ⊂ . . . ⊂ In = I consisting of tightly
closed ideals, with λ(Ii+1/Ii) = 1 for all i = 1, . . . , n − 1.

In the following result, l denotes the ∗-spread of I with respect to J ,
i.e. the minimal number of generators for an ideal K/J ⊂ R/J , with
J ⊂ K ⊂ I, such that K is a minimal ∗-reduction of I.

Theorem 1.8. Let R, J, I be as above.
The ideals in F(J, I) are in one-to-one correspondence with points

on the grassmanian variety of (l − 1)-dimensional subspaces in the l-
dimensional vector space V = I/(J + I∗sp).

Along the way, we obtain a useful characterization of minimal ∗-
reductions in terms of special tight closure.

Theorem 1.9. Let (R, m) be a Noetherian local excellent normal ring
with perfect residue field, and let I be a tightly closed ideal. Then K ⊂ I
is a minimal ∗-reduction of I if and only if the images of a minimal
set of generators for K form a basis in I/I∗sp.

This result is used in ongoing work (with Fouli and Vassilev) on
finding a formula for the *-core of an ideal. By analogy with the corre-
sponding notion for integral closure, we have the following definition:

Definition 1.10. Let R be a Noetherian ring of positive characteristic,
and I ⊂ R an ideal. The ∗-core of I is defined to be the intersection of
all the minimal ∗-reductions of I.
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Fouli and Vassilev prove that the ∗-core and core of an ideal I coin-
cide when the ∗-spread and the spread coincide (such is the case when I
is contained in the tight closure of an ideal generated by a system of pa-
rameters, and the ring has infinite residue field). In general, the ∗-core
contains the core, since there are more reductions that ∗-reductions.

The main result we obtain in [FVV] is given below.

Theorem 1.11. Let R be a Noetherian local excellent normal ring with
perfect residue field.

Let J = (f1, . . . , fn) ⊆ I = J + (u1, . . . , us), with u1, . . . , us ∈ J∗sp.
a. Assume that (f1, . . . , fi−1, fi+1, . . . , fn) : fi ⊆ J : I for all i ∈

{1, . . . , n}, and uj(J : uj) ⊆ J(J : I) for all j ∈ {1, . . . , s}. Then
∗ − core(I) ⊆ J(J : I).

b. Assume that uj(J : I) ⊆ mJ(J : I) for all j ∈ {1, . . . , s}. Then
∗ − core(I) ⊇ J(J : I).

The assumptions of both a. and b. above hold in the following two
cases:

• R is a Cohen-Macaulay ring, and J = (xt
1, . . . , x

t
d), where x1, . . . , xd

is a system of parameters with x1, x2 ∈ τ (τ denotes the test
ideal of R), and t ≥ 3;

• R has m-primary test ideal, J = J
[q]
0 , I = I

[q]
0 for some ideals

J0 ⊂ I0 with J0 a minimal ∗-reduction of I0, and q sufficiently
large.

Thus, in both of these situations we have ∗ − core(I) = J(J : I).

Special tight closure has also played a major role in joint work with
Vassilev in [VV], where we determine the only normal rings with perfect
residue field for which I∗ = I : τ holds for all ideals I ⊂ R (where τ
denotes the test ideal of R) are the weakly F-regular rings (for which
I∗ = I, and τ = R). Further discussion of this result is deferred for the
next subsection, which deals with the test ideal in more detail.

1.4. The test ideal. The notion of test ideal plays an important role
in the theory of tight closure. It is the basis of the strong connection be-
tween tight closure and birational geometry. The work of Smith ([S2])
and Hara ([Ha]) establishes the correspondence between test ideals and
multiplier ideals that arise in vanishing theorems. More recently, a new
version of tight closure has been introduced in [HY], giving rise to a no-
tion of generalized test ideals which correspond to the multiplier ideals
of pairs. The definition of the “classical” test ideal is given below.
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Definition 1.12. Let R be a Noetherian ring of positive characteristic.
The test ideal of R is the ideal

τR =
⋂

(I :R I∗),

where the intersection runs over all ideals I ⊂ R.

Huneke introduced the notion of strong test ideal in [Hu], with the
goal of bounding the degrees of the equations of integral dependence
satisfied by the elements of I∗ (which are therefore also in I) over I.

Definition 1.13. An ideal T ⊂ R is called a strong test ideal if TI∗ =
TI for all ideals I ⊂ R.

The number of generators of such a strong test ideal provides a bound
for the degrees of the above-mentioned equations. The main result of
[V3] is the following:

Theorem 1.14. Let (R, m) be a Noetherian local reduced ring of pos-
itive characteristic, in which the test ideal commutes with completion
(for instance, if R is Q-Gorenstein, or the localization of an N-graded
ring at the maximal homogeneous ideal). Then the test ideal τR is a
strong test ideal.

A generalization of this result is pursued by Enescu in [En].
The proof of Theorem 1.14 actually yields the stronger statement

that I : τ is tightly closed for every ideal I ⊂ R. Thus, we observe that
the number of generators of the test ideal provides an upper bound for
two numerical invariants defined in [V5]:

t(R) := inf{k | there exists a sequence of tightly closed ideals of type k

that are cofinal with the powers of m}, and

c(R) := inf{k | (I∗)k ⊆ I for every ideal I ⊆ R}

The relationship between these two invariants is studied in [V5].
Theorem 1.14 also constitutes one of the main motivations for our

joint work with Vassilev in [VV]. Starting with the observation that
I∗ ⊆ τI : τ whenever the assumptions in Theorem 1.14 hold, we ask
when does equality take place? In [V4], it was observed that the equal-
ity takes place for every ideal of finite projective dimension in a Goren-
stein ring. The equality also holds for every ideal I ⊂ R, if R is a one-
dimensional complete local ring with infinite residue field. However, if
we assume that R is normal Cohen-Macaulay with perfect residue field,
the main result in [VV] shows that the equality I∗ = τI : τ cannot hold
for every ideal I ⊂ R unless R is weakly F-regular.
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1.5. Variations of tight closure. In [HY], Hara and Yoshida intro-
duce the a-tight closure, an operation which generalizes the usual tight
closure (which is obtained for a = R). Their definition is as follows:

Definition 1.15 ([HY]). Let R be a Noetherian ring of positive char-
acteristic p, and let a, I ⊂ R be ideals. We say that x ∈ I∗a, the a-tight
closure of I, if there exists a c ∈ Ro such that cxq

a
q ⊆ I [q] for all q = pe.

Their main motivation is the fact that the generalized test ideals
obtained from these operations, τ(a) =

⋂

I⊂R(I :R I∗a) correspond in
a geometric set-up to multiplier ideals for pairs, thus generalizing the
results of [S2] and [Ha].

One drawback of the Hara-Yoshida a-tight closure is the fact that it
is not a closure operation, in the sense that (I∗a)∗a 6= I∗a. This can be
seen for example when (R, m) is local, I is m-primary, and a = (f) is a
principal ideal, with f ∈ m\ I∗.

In [V6], we introduce a new version of a-tight closure, which we shall
henceforth refer to as a-closure.

Definition 1.16 ([V6]). Let R be a Noetherian ring of positive charac-
teristic p, and let a, I ⊂ R be ideals. We say that x ∈ aI∗, the a-closure
of I, if there exists a c ∈ Ro such that cxq

a
q ⊆ a

qI [q] for all q = pe.

This definition incorporates both the idea of Hara and Yoshida of
allowing a power of an ideal to play the role of multiplier, and the
idea of considering coefficients in a high power of some ideal for the
generators of I [q] (which was previously used in the definition of the
special tight closure).

There are two advantages to a-closure: first, it is a true closure op-
eration (a(aI∗)∗ = aI∗ for every ideal I); second, there is a multiplicity
that allows us to determine membership in the a-closure, in the case
when both a and I are m-primary. This phenomenon is analogous to
the way in which membership in the integral closure of an ideal can be
determined using the Hilbert-Samuel multiplicity, and membership in
the tight closure can be determined using the Hilbert-Kunz multiplic-
ity.

We call this new multiplicity the joint Hilbert-Kunz multiplicity of
the pair (a, I).

Definition 1.17 ([V6]). Let a, I ⊂ R be m-primary ideals in a Noe-
therian local ring of positive characteristic p. The joint Hilbert-Kunz
multiplicity of the pair (a, I) is

eHK(a, I) = lim
q→∞

1

qd
λ

(

R

aqI [q]

)

,
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where d is the Krull dimension of R, and q denotes a power of p.

Similar to the Hilbert-Samuel and Hilbert-Kunz multiplicities, this
multiplicity plays the role of leading coefficient for the length function
appearing in the definition:

Theorem 1.18 ([V6]). Let (R, m) be a local Noetherian ring of positive
characteristic and Krull dimension d, and let a, I ⊂ R be m-primary
ideals. Then

λ

(

R

aqI [q]

)

= eHK(a, I)qd + O(qd−1).

As mentioned above, this multiplicity can be used to test for mem-
bership in a-closure:

Proposition 1.19 ([V6]). Assume that R is analytically unramified
and formally equidimensional, and has test elements for the usual tight
closure. Let a, I, J ⊂ R be m-primary ideals, with I ⊆ J . Then J ⊆ aI∗

if and only if eHK(a, I) = eHK(a, J).

One of the main results in [V6] connects the a-tight closure with the
Hara-Yoshida a-tight closure, at the level of test ideals:

Theorem 1.20 ([V6]). Let R be a Gorenstein finitely generated graded
algebra over a field of positive characteristic. Assume that R has Krull
dimension at least two, and let a be a homogeneous R+-primary ideal.
Then we have τ(a) = Ta, where

τ(a) =
⋂

I⊂R

(I : I∗a), and Ta =
⋂

I⊂R

(I : aI∗).

Both variants of a-tight closure, as well as the joint Hilbert-Kunz
multiplicity, have a version in which the power a

q appearing in the
definition is replaces by a

⌈tq⌉, where t > 0 is a fixed real number. We
will refer to the resulting operations as I∗at

for the Hara-Yoshida version
and at

I∗ for the new version of [V6], and we will denote the resulting
multiplicity eHK(at, I). The study of how these notions depend on t is
started in [V6] and continued in [V7]. In [V6], we prove that eHK(at, I)
is continuous as a function of t, and for sufficiently small values of t
it can be expressed in terms of the Hilbert-Kunz multiplicity of I and
the Hilbert-Samuel multiplicity of a. More precisely, we have

eHK(at, I) ≤ eHK(I) +
ℓe(a)td

d!
for all t > 0, and if R is excellent and analytically irreducible, then
there exists a t0 > 0 such that equality holds for all t ≤ t0. Here ℓ
denotes the ∗-spread of I, and d is the Krull dimension of R.
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We also address the following question:

Question 2. Given ideals a, I ⊂ R, and a fixed t0 ≥ 0, does there exist
an ǫ > 0 such that I∗at

= I∗at0 , and at

I∗ = at0I∗ for all t ∈ [t0, t0 + ǫ]?

A positive answer implies that I∗at

, at

I∗ are constant on intervals of
the form [t0, t1). The end-points of such an interval are called jump-
ing numbers, by analogy with the corresponding notions for multiplier
ideals and generalized test ideals. In [V6], we give positive answers
to this question in several cases, and show that this question is also
related to the existence of test exponents for the usual tight closure.

In a different direction, we ask what happens to I∗at

, at

I∗ when
t → ∞? For the Hara-Yoshida version, the answer is trivial when I
is m-primary, since we have a

tq ⊆ I [q] if t ≫ 0, and thus I∗at

= R for
all t ≫ 0. The situation for the a-closure turns out to be much more
subtle.

We will denote the union of all at

I∗ when a, I are fixed and t > 0
varies by a∞I∗. It is not hard to see that we always have a∞I∗ ⊆ I,
where I denotes the integral closure of I. In [V7], we see that equal-
ity holds if a, I are projectively equivalent, i.e. if there exist positive
integers k, l such that ak = I l.

The general question we address in [V7] is:

Question 3. If a, I ⊂ R are m-primary ideals, and x /∈ I, what can be
said about the behavior of D(at; I; x) := eHK(at, I) − eHK(at, (I, x)) as
a function of t?

D(at; I; x) can be thought of as a measure of the failure of x to belong
to a

t

I∗. In particular, x ∈ a
∞

I∗ if and only if D(at; I; x) = 0 for t ≫ 0.
Quite generally, it turns out that D(at; I; x) is bounded by Ctd−1,

where d is the Krull dimension of the ring, and C > 0 is a constant.
We define the level ideals of I with respect to a to be

Ia,j := {x ∈ R | ∃C > 0 such that D(at; I; x) ≤ Ctd−1−j}.

We prove that Ia,j are indeed ideals, and the assignment I → Ia,j is a
closure operation.

Our main results in [V7] give an algorithm for computing D(at; I; x)
when t ≫ 0, and a, I ⊂ P := k[x1, . . . , xd] are monomial ideals in a
polynomial ring. This algorithm relies on the geometry of the Newton
polyhedron of a. As a corollary, we obtain a characterization of when
two monomial ideals a, b determine the same level ideals, i.e. when
Ia,j = Ib,j for all ideals I ⊂ P , and for all j = 1, . . . , d. This charac-
terization depends on the Rees valuations associated to a, b, and the
geometry of the corresponding Newton polyhedra.
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2. Linkage and related properties

Linkage is a relationship between ideals in a Gorenstein ring. We
say that I and J are linked (or directly linked) if there exists an ideal
(x) ⊂ I ∩ J generated by part of a system of parameters, such that
I = (x) : J , and J = (x) : I (the second condition follows automatically
from the first under the additional assumption that J is unmixed). As
seen in [PS2], ideals that are linked share many important properties.

Linkage has been used as an important tool in many of our results.
The following are illustrations of our earlier results that use linkage:

Proposition 2.1 ([V3]). Let (R, m) be a Gorenstein local ring, and
let x be a system of parameters. Assume that J ⊂ R is an m-primary
ideal with the following properties:

• (x) ⊆ mJ
• K = (x) : J is tightly closed.

Then J is a strong test ideal, i.e. JI∗ = JI for every ideal I ⊂ R.

This result can be read as saying that the property of being tightly
closed is in some sense dual to the property of being a strong test
ideal. Another property that is dual to being tightly closed is seen in
the following:

Proposition 2.2 ([V5]). Let (R, m) be a Noetherian local ring, let a be
an m-primary irreducible ideal, and J ⊇ a a tightly closed ideal. Write
a : J = a + (f1, . . . , fn). Then the ideal K = (a, f1, . . . , fn−1) : fn is
big, i.e. every ideal containing K is tightly closed.

2.1. Tight closure and linkage classes. The connections between
tight closure and linkage in Gorenstein rings are explored in more depth
in [V4]. This investigation is motivated by the question of the relation-
ship between the tight closure I∗ and the ideal I : τ , where τ is the
test ideal of T . Since the latter ideal is in general larger, we seek to
characterize the elements that multiply I : τ into I∗. The main result
of [V4] states that if R is a Gorenstein ring, and I is an unmixed ideal,
then (Ĩ)∗(I : τ) ⊆ I∗, where Ĩ stands for the sum of all the ideals in
the linkage class of I (i.e. all ideals that can be obtained as iterated
links of I).

2.2. The almost Gorenstein property. A different aspect of the
role of linkage in our work is seen in [HV2]. In joint work with Huneke,
we introduce classes of rings that are close to being Gorenstein. We
take the defining property of Gorenstein rings to be the fact that they
are Cohen-Macaulay, and for every system of parameters x, and every
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ideal I ⊇ (x), we have (x) : ((x) : I) = I. In view of the fact that R/(x)
is its own injective hull, this is an incarnation of Matlis duality. The
sense in which the rings studied in [HV2] are close to being Gorenstein
is that they are Cohen-Macaulay, and for every system of parameters x,
and every ideal I ⊇ (x), we have (x) : ((x) : I) ⊆ I : m, where m is the
maximal ideal. We prove that rings with this property arise naturally
as specializations of rings of countable Cohen-Macaulay type.

A stronger property that could also be termed “almost Gorenstein”
deals with a property of the canonical module ωR. Namely, we require
that for every x ∈ mR, there exists a linear functional f : ωR → R
such that x ∈ Im(f). Rings that can be written as the quotient of
an Artinian Gorenstein ring by the socle element satisfy this property.
These rings were studied by Teter in [Te], and we term them Teter
rings. Teter proved an implicit characterization of such rings (without
reference to an outside Gorenstein rings) in terms of the existence of
an isomorphism between m and m

v = HomR(m, ER(R/m)), with an
additional technical condition. We strengthen Teter’s result by show-
ing that the above-mentioned technical condition is superfluous. An
extension of our result is pursued by Ananthnarayanin [An], where he
gives a characterization of rings that can be obtained as quotients of
Artinian Gorenstein rings by ideals of colength two.

We give a complete description of the Artinian rings with the almost
Gorenstein property that can be written as quotients of a polynomial
ring by a monomial ideal of type at most three, and we prove that
in this case the two versions of the almost Gorenstein property are
equivalent (but this equivalence does not hold in general).

The homological properties of rings with the almost Gorenstein prop-
erties are considered in on-going joint work with Striuli discussed in
Section 3.3 below.

3. Homological algebra

The homological component of our work is contained in [HSV], [KV],
and [SV].

3.1. Vanishing of Ext and Tor. In [HSV] (joint work with Huneke
and Şega), we discuss the vanishing of cohomology of finitely generated
modules over Cohen-Macaulay local rings (R, m) with m

3 = 0. This
work is motivated in part by the Auslander-Reiten conjecture, which
states that if (R, m) is a commutative Noetherian local ring, and M a
finitely generated module with Exti

R(M, M) = 0, and Exti
R(M, R) = 0

for all i > 0, then M is free. Assuming that m
3 = 0, we prove that the

conjecture is true, and moreover it suffices to have Exti
R(M, M⊕R) = 0
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for any four consecutive values of i > 2 (if, in addition, R is Gorenstein,
a single value of i > 0 suffices). A more general assumption is obtained
if the assumption m

3 = 0 is replaced by m
2M = 0.

Based on our examination of the vanishing of Tor and Ext, we pro-
pose the following conjecture:

Question 4. Let (R, m) be an Artinian local ring, and M, N finitely
generated R-modules with m

2M = m
2N = 0. If TorR

i (M, N) = 0 for
all i > 0, does it follow that m

3 = 0?

The vanishing assumption above imposes strong restrictions on the
Poincaré series of the reside field of R; based on these restrictions, we
see that the conjecture holds for many classes of rings (complete inter-
sections of codimension at least three, Golod rings, Koszul rings, rings
with irrational Poincaré series, etc.) We also prove that the conjecture
holds for standard graded rings.

3.2. Finite projective dimension and socle degrees of Frobe-

nius powers. A different homological direction of our work (joint with
Kustin, in [KV]) is centered on determining whether a homogeneous
ideal J in a Gorenstein graded ring has finite projective dimension,
based on numerical properties relating the socle degrees of J and of
its Frobenius powers, J [q]. The idea of giving conditions for J to have
finite projective dimension in term of the behavior of J [q], or more gen-
erally the behavior of J with respect to the Frobenius endomorphism,
has been previously considered in work of Herzog, Avramov-Miller,
etc. (where the finite projective dimension is shown to follow from
the vanishing of certain Tor modules), and Kunz (where it is shown
that the regularity of the ring is equivalent to a certain behavior of the
Hilbert-Kunz function of the maximal ideal).

It was previously known that if J has finite projective dimensions,
then the socles (J : m)/J and (J [q] : m)/J [q] have the same dimension,
that if the generators of (J : m)/J have degrees d1, ..., dl, then the
degrees of the generators of (J [q] : m)/J [q] are given by qdi−(q−1)a(R),
where a(R) is the a-invariant of R. This is based on the fact that the
socle degrees can be read off from the tail of the resolution, and the
resolution of R/J [q] can be obtained by raising the resolution of R/J
to the qth power (by [PS1]).

Our main result in [KV] is the fact that if we assume R to be a
complete intersection, then the converse of the above-mentioned result
holds (i.e. the relationship between socle degrees of J and J [q] stated
above implies that J has finite projective dimension). The complete
intersection hypothesis is used in a technical calculation of certain Tor
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modules, and also in order to apply the result of Avramov and Miller in
[AM], which shows that the vanishing of certain Tor modules implies
finite projective dimension. We do not know whether our theorem
still holds when the complete intersection hypothesis is replaced by
Gorenstein, but give partial results in the Gorenstein F-pure case.

A different direction in which our work in [KV] has been extended is
by considering numerical relationships between the degrees of the socle
generators for J and for J [q] that ensure that the resolutions of the two
ideals are related (the case of finite projective dimension is a particular
case of this, since in this case the resolution of J [q] is obtained by simply
raising all the entries in matrices appearing in the resolution of J to
the qth power). This question has been pursued in work of Kustin-
Ulrich, and Kustin-Rahmati, where partial results in this direction are
obtained.

3.3. The resolution of the canonical module of almost Goren-

stein rings and totally reflexive modules. In on-going work with
Striuli, we focus on homological properties of rings with the almost
Gorenstein property (see Section 2.2 above for the definition of almost
Gorenstein). The homological property we focus on is the existence of
non-free totally reflexive modules. We recall the definition:

Definition 3.1. Let (R, m) be a Noetherian local ring. An R-module G
is totally reflexive if there exists an exact complex of finitely generated
free R-modules

F : . . . −→ Fn+1 −→ Fn −→ Fn−1 −→ . . .

such that G is the cokernel of d0, and Hom(F, R) is exact.

The totally reflexive modules serve as building blocks for Gorenstein
homological algebra, similar to the way in which the free modules are
the building blocks for the usual homological algebra. When the ring R
is Gorenstein, the totally reflexive R-modules are exactly the maximal
Cohen-Macaulay modules.

The question we would like to answer is:

Question 5. If R is an almost Gorenstein ring, does R admit any
non-free totally reflexive modules?

This is a step toward a more ambitious project, namely:

Question 6. 1. Give necessary and sufficient conditions in certain
families of rings for non-free totally reflexive modules to exist.

2. If we know that non-free totally reflexive modules exist, find a
construction to build one, and if the ring is not Gorenstein, to build
infinitely many.
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The latter question is prompted by the results of [CPST], where the
following dichotomy is shown:

Theorem 3.2 ([CPST]). Let R be a commutative Noetherian ring.
Assume that the set of isomorphism classes of indecomposable totally
reflexive R-modules is finite. Then either this set has exactly one ele-
ment, represented by R, or R is Gorenstein (and an isolated singularity,
or, if R is complete, even a simple hypersurface singularity).

Our approach to the problem of showing that a ring R does not
admit non-free totally reflexive modules is via studying the resolution
of the canonical module ωR. We are able to prove, for a certain class of
Artinian almost Gorenstein rings (which includes the Teter rings as a
particular case), that a copy of the residue field splits out of the second
syzygy of ωR. Consequently, such rings do not admit any non-free
totally reflexive modules (since one of the requirements for a module
to be totally reflexive is that Tori(M, ωR) = 0 for all i > 0).

On the other hand, there are examples of almost Gorenstein rings
that admit non-free totally reflexive modules. These are provided by a
result in [HV2], where we show that any quotient of a ring of finite (or
countable) Cohen-Macaulay type by a “sufficiently general” system of
parameters is almost Gorenstein. If the sufficiently general system of
parameters can be chosen inside the square of the maximal ideal, so
that the resulting quotient ring is an embedded deformation, then a
result of [AGP] asserting that such rings have non-free totally reflexive
modules can be applied. We are able to explicitly construct such an
example.

A different class of rings that we attempt to study is the class of
rings of small Gorenstein colength (in the sense of [An], the Gorenstein
colength of an Artinian ring R is the smallest value of λ(S) − λ(R),
where S is a Gorenstein ring mapping onto R). We point out that
the rings of Gorenstein co-length one are exactly the Teter rings. We
have found examples of rings of Gorenstein colength two that admit
non-free totally reflexive modules. These examples arise as embedded
deformations. We ask:

Question 7. Let R be an Artinian ring of Gorenstein colength two. If
R admits non-free totally reflexive modules, is R isomorphic to S[X]/(X2),
for some Gorenstein ring S?
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