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The logistic equation

The logistic equation is a modification of the exponential model
which takes into account the limitations of the environment. In the
exponential model with r > 0 we saw that unlimited growth occurs.
There is no equilibrium value other than zero (which is unstable for
r > 0). In practice, unlimited growth is not usually possible, since the
environment in which the population grows can only support a certain
number of invividuals. This number is called the carrying capacity

of this environment, and it will be a stable equilibrium value for the
logistic equation. The implication of having a stable equilibrium is that
the size of the population will always approach the carrying capacity
(regardless of whether the initial value is above or below).

The logistic equation is

dP

dt
= rP

(

1 −

P

K

)

.

where r > 0 is the intrinsic per capita growth rate (the rate at which the
population would keep growing in an unlimited environment) and K
is the carrying capacity (i.e. the maximum number of individuals that
the given environment can support). This is called a density dependent
growth rate. If we view the per captia growth rate in this equation to
be r(1− P

K
) we see that this close to r when P is small, but it becomes

smaller as P grows, and it becomes negative when P > K. Biologically,
the explanation is that overcrowding inhibits growth.

Let us find the equilibrium values and analyze them as stable or
unstable. To find equilibrium set

rP

(

1 −
P

K

)

= 0

and solve for P . A product is equal to zero if and only if one of the

factors is zero. So the equation above implies P = 0 or 1 −

P

K
= 0.

Thus the solutions are P = 0 and P = K.
In order to analyze whether the equilibrium values are stable or

unstable, we study the following chart:

P 0 K
dP

dt
0 + 0 −

The explanation for the signs in the chart is as follows: When the value

of P is between 0 and K, we have
P

K
< 1 so 1 −

P

K
> 0. Since P is

also positive and multiplying positive quantities gives a positive result,
1
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we conclude that
dP

dt
= rP (1−

P

K
) > 0 and this gives us the + in the

chart. On the other hand, when P > K,
P

K
> 1 and so 1 −

P

K
< 0.

Also, P is positive, and multiplying a positive with a negative gives a
negative result. This explains the − in the chart. The signs in the char
indicate that zero is an unstable equilibrium (that is if P starts out
larger than zero it will increase – but this time it is not an unbounded
increase, just until it reaches the next equilibrium value of K) and
K is a stable equilibrium. The long term outcome for a population
with growth modeled by a logistic equilibrium is that the population
will approach the carrying capacity K (which is the stable equilibrium
value).

We will also study a modification of the logistic equation, which we
will refer to as the logistic equation with Allee effect. The Allee ef-
fect is the principle that individuals within a population require the
presence of other individuals in order to survive and reproduce suc-
cessfully. Thus when the population size is too small, it will not be
able to maintain a positive growth rate.

The logistic equation with Allee effect has the form:

dP

dt
= rP

(

P

A
− 1

)(

1 −

P

K

)

where r is the intrinsic per capita growth rate, K is the carrying capac-
ity, and A is the minimal size of the population required to survive. We
are assuming that A < K. We will see that the long term outcome of
a population modeled by this equation depends on whether the initial
value is above or below the value of A. For this equation one can find
three equilibrium values: P = 0, P = A and P = K. A chart similar
to the one shown above shows that P = 0 and P = K are stable equi-
librium values, and P = A is unstable. If P0 < A then the population
will eventually become extinct. If P0 > A then the population will
approach K in the long run.

We will not be concerned with finding the explicit solution for the
logistic equation (the calculation could be carried out using the method
of separation of variables, but we will omit it). Instead, we will focus
on a qualitative analysis of the solution.

The main questions we will focus on will be: is the size of the pop-
ulation increasing or decreasing, and if so, how fast is it increasing or
decreasing (in other words, is the graph of P concave up or concave
down?).
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If one graphs
dP

dt
as a function of P (using the equation

dP

dt
=

rP (1 −

P

K
)), the graph is an upside down parabola with the vertex

at P = K/2. This shows that
dP

dt
is increasing when P <

K

2
and

decreasing when

P >
K

2
. In terms of P : the graph of P is increasing and concave up when

P <
K

2
and increasing and concave down when P >

K

2
. If P0 < K

2
,

then the graph will have a concave up portion followed by a concave
down portion, with the inflection point when P = K

2
. If P0 > K

2
, the

whole graph is increasing and concave down.
In order to analyze the behavior of P if P0 > K consider the portion

of the parabola described above which corresponds to values of P that
are greater than K. The parabola will then be below the horizontal
axis (indicating negative values for dP

dt
) and it will be getting lower

and lower as P gets bigger. But we know that as time goes on P will
be getting smaller, not bigger (due to dP

dt
being negative), which means

that the values of dP

dt
will be getting closer and closer to zero. Thus P is

decreasing at a slower and slower rate and the graph of P is decreasing
and concave up.


