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Synopsis

We simulate the spatial and temporal evolution of inhomogeneous flow fields in viscometric
devices such as cylindrical Couette cells. The computations focus on a class of two species elastic
network models which are prototypes for a model which can capture, in a self-consistent manner,
the creation and destruction of elastically active network segments as well as diffusive coupling
between the microstructural conformations and the local state of stress in regions with large spatial
gradients of local deformation. For each of these models, the “flow curve” of stress and apparent
shear rate resulting from an assumption of homogeneous deformation is nonmonotonic and linear
stability analysis shows that the region of nonmonotonic response is unstable. Steady state
calculations of the full inhomogeneous flow field lead to localized shear bands that grow linearly in
extent across the gap as the apparent shear rate is incremented. Time-dependent calculations in step
strain experiments and in start up of steady shear flow show that the velocity profile in the gap and
the total stress measured at the bounding surfaces are coupled and evolve in a complex
nonmonotonic manner as the shear bands develop. These spatio-temporal dynamics are consistent
with time-resolved particle imaging velocimetry measurements in both concentrated solutions of
monodisperse entangled polymers and in wormlike micellar solutions. The computational results
have a number of implications for experimental observations of “apparent” or “gap-averaged”
quantities in nearly viscometric devices, and lead to plateaus or “yield-like” transitions in the
steady flow curve and deviations from the Lodge–Meissner relation in nonideal step shearing
deformations. © 2008 The Society of Rheology. "DOI: 10.1122/1.2829769#

I. INTRODUCTION

A central assumption behind rheometry is that the velocity field generated in a rhe-
ometer remains viscometric at all deformation rates. By judicious choice of geometric
parameters such as the cone angle or gap separation characterizing the test fixtures, any
spatial inhomogeneities are expected to remain small. However, many complex fluids
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including concentrated solutions of wormlike micelles and highly monodisperse en-
tangled polymer solutions undergo a more dramatic rheological response beyond a criti-
cal stress and develop pronounced inhomogeneities or “shear bands” even in apparently
simple shearing deformations such as start-up of steady shear flow or large amplitude step
strains. To capture the onset and evolution of these shear-banding transitions it is neces-
sary to develop and solve appropriate constitutive models that couple the spatial and
temporal evolution of both microstructural information $such as the number density and
conformation of active species! as well as the resulting macroscopic stress resulting from
the deformation of the microstructure.

In this work we are specially interested in the viscoelastic systems formed by worm-
like micellar surfactants in a Newtonian solvent. In solution these “worms” can entangle,
like polymers, and thus add elasticity to the fluid flow, but in addition they introduce an
extra relaxation mechanism into the system due to their ability to break and reform
continuously. These solutions have been the center of numerous theoretical and experi-
mental studies as discussed in the work by Cates and Candau $1990!, by Olmsted $1999!,
by Cates and Fielding $2006! and by Anderson et al. $2006!. Applications of wormlike
micellar solutions can be found in diverse industries: in the cosmetics industry they are
used as gelation and shear thinning agents in products like shampoos and body gels; in
the petroleum industry they are used in fracturing operations and enhanced oil recovery.

Of particular interest is the fact that flows of wormlike micellar solutions can become
spatially inhomogeneous under simple loading conditions. Experiments have shown that
under certain conditions of concentration and temperature, these solutions exhibit local
shear banding events, leading to the formation of domains with distinct localized shear
rates. In particular, in steady state shear flow experiments using a circular Couette geom-
etry there is a range of apparent shear rates, !̇1"!̇"!̇2, for which the steady-state
velocity profile across the gap shows a greatly enhanced velocity gradient towards the
inner or moving cylinder and a much lower velocity gradient towards the outer or fixed
cylinder "Mair and Callaghan $1997!; Britton et al. $1999!; Salmon et al. $2003!; Hu and
Lips $2005!; Lee et al. $2005!; Liberatore et al. $2006!; Miller and Rothstein $2007!#. The
kinematics of this shear banding behavior has been studied experimentally by a number
of groups using a range of localized probes such as flow induced birefringence "Lee et al.
$2005!; Miller and Rothstein $2007!#, particle image velocimetry "Salmon et al. $2003!;
Hu and Lips $2005!; Miller and Rothstein $2007!#, light scattering and small angle neu-
tron scattering "Liberatore et al. $2006!#, ultrasound "Bécu et al. $2004!#, and nuclear
magnetic resonance "Mair and Callaghan $1997!; Britton et al. $1999!#. For such systems
the corresponding steady state flow curves are measured in a rheometer.

In the steady state flow curve, for shear rates less than !̇1, or larger than !̇2, the
variation in the velocity profile is almost linear across the gap as expected for a visco-
metric flow of a Newtonian fluid for which the velocity profile is given exactly by

v$r! = vi
ri

r % ro
2 − r2

ro
2 − ri

2& = ' viriro
2

ro
2 − ri

2(1
r

− ' viri

ro
2 − ri

2(r , $1!

where vi is the velocity of the inner cylinder, vo the velocity of the outer cylinder is zero,
and ri, ro are the inner and outer radius, respectively. If y)$r−ri! / $ro−ri! is the local
distance across the gap, then for p= $ro−ri! /ri#1, the equation above can be linearized
as
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v$r! = vi$1 − y!$1 + O$p!! * vi$1 − y! , $2!

in which p is the curvature parameter. For shear rates in the intermediate regime,
!̇1"!̇"!̇2, the velocity profile exhibits banded-like variations which are substantially
larger than O$p!. The steady state flow curve measured in a rheometer for many micellar
solutions exhibits a plateau. Measurements with monodisperse entangled polymer solu-
tions also show a pronounced plateau "Tapadia and Wang $2003!#. It has been pointed out
by Porte et al. $1997! and Berret $1997! that such a flow curve could result from an
underlying nonmonotonic shear stress versus shear rate curve such as the one shown in
Fig. 1.

Homogeneous solutions to the underlying constitutive equation in the region of the
negative slope of the flow curve can be shown to be unstable "Yerushalmi et al. $1970!#.
Thus for shear rates/stresses in this region, the system is expected to select a stable
composite solution which consists of two or more domains with shear rates on the rising
portion of the curve that exist at the same shear stress values, as dictated by the momen-
tum equation, in such a way as to satisfy the external boundary conditions. This results in
“shear banding,” or the development of multiple localized bands with different shear
rates. In this case, since the actual flow is inhomogeneous, there is a marked difference
between the apparent value of any variable observed in a rheometer and its local value.
For example, the apparent shear rate !̇app can be defined, as in the book by Macosko
$1994!,

!̇app =
ri

ro − ri
+

ro

ri !̇$r!
r

dr , $3!

where the expression on the right hand side comes from the proper curvilinear definition
of the local shear rate in circular Couette flow

FIG. 1. Steady state shear stress versus shear rate in viscometric flow. The stress region $m"$"$M is a
multi-valued section of the viscometric flow curve, shown here with the solid line. Experiments show that in
this region shear banding occurs causing the formation of a stress plateau similar to the dashed curve.
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!̇$r! = r
!

!r
'v$r!

r
( . $4!

Recent particle image velocity $PIV! measurements have shown that similar band-like
transitions with strongly inhomogeneous local velocity gradients can also develop and
evolve in highly monodisperse entangled polymer solutions undergoing both steady "Ta-
padia and Wang $2003, 2006!# and transient shearing flows "Tapadia et al. $2006!; Hu et
al. $2007!#. Constitutive modeling of complex fluids that undergo shear banding defor-
mations can be subdivided into two categories: $i! phenomenological models that de-
scribe global features such as the plateau in the flow curve but provide no information on
local kinematic features such as shear bands "see, for example, Bautista et al. $2000!# and
$ii! more complex models that result in a nonmonotonic flow curve under the assump-
tions of viscometric deformation "Olmsted et al. $2000!#. For further details and discus-
sion of these approaches, see, for example, the recent reviews by Anderson et al. $2006!,
and by Cates and Fielding $2006!. In the latter class of models it is necessary to solve the
coupled differential equations for stress and conservation of momentum in order to de-
termine the local velocity field and the resulting apparent flow curve. In the present paper
we compare our results with those predicted by the Johnson–Segalman $JS! model
"Johnson and Segalman $1977!#, which has been extensively studied in inhomogeneous
steady shear flows "Español et al. $1996!; Greco and Ball $1997!; Lu et al. $2000!;
Olmsted et al. $2000!; Rossi et al. $2006!#. Although motivated by physical processes
such as nonaffine chain deformation, the JS model is strictly more appropriate for dilute
solutions of rigid polymers than for entangled solutions, since the form of the nonaffine
terms can most clearly be connected to tumbling motions. Although the JS model can be
used to explore general features of shear-banding transitions, it cannot be connected
directly to microstructural features of the flow such as the breaking and reforming pro-
cesses which are important in developing a quantitative and predictive understanding of
shear banding in wormlike micellar solutions. These processes lead to experimental ob-
servations of variations in the alignment and the number density of wormlike micelles in
space and time "Britton and Callaghan $1997!; Liberatore et al. $2006!#. In addition, in
step strain calculations, the shear stress and normal stress differences predicted by the
Johnson–Segalman model can become nonphysical and lead to oscillatory functions of
strain $see discussion below and Fig. 2!. Furthermore, the predictions of the Johnson–
Segalman model do not obey the Lodge–Meissner relationship "Larson $1988!# and in
elongational flows, the axial component of the stress predicted by the JS model grows
without bound in time "Larson $1988!# leading to divergence in the extensional viscosity.
Thus viscoelastic constitutive models which capture the coupled evolution in local mi-
crostructure and stress, and which can be related to physical scission/reforming processes
need to be formulated and investigated.

In Vasquez et al. $2007! a network model focusing on two interacting species was
formulated to describe the rheological behavior of wormlike micellar solutions. In this
model, referred to hereafter as the VCM model, the micelles were modeled as elastic
segments comprised of Hookean springs connected to form an elastic network. The
breaking and reforming dynamics of the chains provide a “simplified” version of the
reaction kinetics proposed by Cates $1987!. The VCM model considers only two species
of chains, but the chain breakage rates are allowed to depend on both the local shear rate
and stress. Shorter chains, of length L /2 units, can join one another at their ends to form
into one long chain of length L units. Analogously, a long chain can break in its center to
form two short chains. This discrete two species model is greatly simplified as compared
to the continuous Cates theory in which chains break with equal probability at any point
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along their length, and in which chains of any length can join to form a longer chain.
However, the simplified formulation is amenable to studying nonlinear inhomogeneous
and time-dependent deformations. In the work of Vasquez et al. $2007! this two species
VCM model was analyzed in the linear viscoelastic regime as well as in steady shear
flow, step strain deformation and uniaxial extensional flow, but always under the assump-
tion of viscometric flow conditions. Representative values of the five parameters of the
model were also determined by comparison with rheological measurements in a well-
studied wormlike micellar solution. However, quantitative comparison between the
model predictions and observations are limited to small/moderate Weissenberg numbers
$Wi"1! because the flow curve measured in steady shearing experiments exhibits the
familiar plateau behavior sketched in Fig. 1 $the broken line!, whereas if a homogeneous
flow is assumed a priori, the VCM model predicts the nonmonotonic curve shown by the
solid line in Fig. 1.

In this paper we study computationally the onset and temporal evolution of inhomo-
geneous states in steady and transient shearing flows. The analysis and computations are
carried out in a circular Couette geometry in which the global variation in the state of
stress across the gap can be varied by controlling the ratio ri /ro. Because of the com-
plexity of the coupled differential equations governing the evolution in microstructure
and the local stress in the VCM class of network models, we first consider two special
limiting cases: The first case is referred to as the partially extended convective $PEC!
model since it focuses on a single viscoelastic species in which the functional form of the
breakage rate of the long chains is described by a nonlinear function that leads to the
Partially Extending Convective strand constitutive equation proposed by Larson $1984!.
The Larson-PEC model was first introduced as a generalized differential analogue of the
Doi–Edwards reptation theory for entangled polymer melts "Larson $1988!#. The second
limiting case, referred to here as PEC+M, is a model with two noninteracting viscoelastic
species in which the first species $species “A,” consisting of longer and more elastic
chains! evolves in a form consistent with the Larson-PEC model and the second species
$species “B,” consisting of shorter and less elastic chains! is described by the upper
convected Maxwell model. Such a model may be expected to accurately capture the key

FIG. 2. Viscometric calculations of the damping function from the PEC model with nonlinear parameter %
=0.52 and the Johnson–Segalman model with nonlinear parameter a=0.52.
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features of the rheological response observed in recent experiments with solutions of
monodisperse entangled chains $species A! in a sea of shorter chains $species B! "Tapadia
and Wang $2006!; Hu et al. $2007!#.

As we discussed earlier, an alternate single species model, the Johnson–Segalman
model, has been studied in shear by Olmsted et al. for example, in the paper by Lu et al.
$2000! and Olmsted et al. $2000!. We also recomputed those results, both as a base line
for verification of our numerical methods and in order to consistently compare the pre-
dictions from that model with the predictions from the two new models studied in the
present work. All the models considered in this paper predict shear banding behaviors
that qualitatively agree with experimental observations in steady shear flow. However, as
noted above, the Johnson–Segalman model can predict unphysical responses in both step
strain and extensional flow experiments "Larson $1988!#, in contrast to the PEC and
PEC+M models. To demonstrate this, in Fig. 2 we compare the damping function pre-
dicted by the PEC model and the Johnson–Segalman model in step strain. Although both
models show strain softening at strains of magnitude !&1, the PEC model shows a
smooth monotonic strain softening consistent with equivalent experimental observations
in micellar solutions "Vasquez et al. $2007!# and entangled polymer solutions "Larson
$1988!#.

The structure of this paper is as follows. The formulation of the VCM model "Vasquez,
et al. $2007!#, which includes spatial variations as well as scission and reforming reac-
tions of two interacting species, is reviewed briefly in Sec. II. In Sec. III the simplified
PEC and PEC+M model forms are introduced, including the appropriate diffusion terms
and additional Newtonian solvent contributions, and in Sec. III A the governing partial
differential equations are written out for time-dependent circular Couette flow. In Sec.
III B we summarize the boundary and initial conditions used in the numerical calcula-
tions. In Secs. III C–III E we give explicit solutions in shear and step strain for the PEC
and PEC+M model assuming a homogeneous viscometric flow. A temporal stability
analysis of the solutions along the flow curve and the effects of varying the different
constitutive parameters appearing in the model on the stability of these solutions are also
presented. Section IV is a discussion of “apparent” gap-averaged $i.e., rheometrically
observable quantities! versus “local” variations of the stress. Finally, in Sec. V, steady
state as well as time-dependent computational results are presented for the PEC and
PEC+M models in start up of steady shear flow and in step strain. These are the first
computations we are aware of that describe the evolution of shear bands following a
sudden step strain using a viscoelastic constitutive model with an underlying nonmono-
tonic viscometric flow curve. The computational predictions for the structure and evolu-
tion of the shear bands in start up of steady shear flow capture many of the features
observed in recent PIV measurements with entangled polymer solutions "Tapadia and
Wang $2006!; Hu et al. $2007!# as well as observations of shear banding in strong flows
of wormlike micellar solutions.

II. GOVERNING EQUATIONS FOR THE TWO SPECIES SCISSION
NETWORK MODEL

In the VCM model we consider chains of length L, labeled species A, and chains of
length L /2, labeled species B. Using the tools of kinetic theory, as in the work by Bird et
al. $1987!, Bhave et al. $1991!, Beris and Mavrantzas $1994!, one can derive the evolu-
tion equations for the number density probability distribution functions of species A and
B, 'A$r ,Q , t! and 'B$r ,Q , t!, respectively, considering variations in space, configuration
space, and time. The details can be found in the paper by Vasquez et al. $2007!. Here Q
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is the connector vector between elastically active nodes of the network. Integrating these
equations over the configuration space, dQ, and nondimensionalizing "Vasquez et al.
$2007!#, gives the equations for the number density of the two species defined as

nA =+ 'AdQ , $5a!

nB =+ 'BdQ . $5b!

Similarly, multiplying by QQ and then integrating over configuration space gives equa-
tions for the nondimensional stress contributions from species A and B as

A =+ QQ'AdQ = ,QQ-A, $6a!

B =+ QQ'BdQ = ,QQ-B. $6b!

Combining these expressions with the Smoluchowski equation gives the governing equa-
tions for the dimensionless number densities

(
DnA

Dt
= 2)A"2nA − )A " ":A +

cB

2
nB

2 − cAnA $7a!

(
DnB

Dt
= 2)B"2nB − 2)B " ":B − cBnB

2 + 2cAnA $7b!

and for the dimensionless stress contributions

(A$1! + A − nAI − )A"2A = cBnBB − cAA $8a!

*(B$1! + B −
1
2

nBI − *)B"2B = *$− 2cBnBB + 2cAA! , $8b!

where $·!$1! indicates the upper convected derivative

$·!$1! =
!$·!
!t

+ v · "$·! − "$"v!T · $·! + $·! · "v# . $9!

The nondimensional total micellar stress is given by

! = A + 2B . $10!

The parameter (=+A /+eff is the ratio of the relaxation time of species A in the absence
of scission and reforming $reptation time! to the effective relaxation time of the solution
when scission and reforming dynamics are included. The parameter *=+B /+A is the ratio
of the relaxation time of the shorter species B to that of the longer species A. The
breaking and reforming rates, cA and cB remain to be specified. In the paper by Vasquez
et al. $2007! we consider expressions of the form:

cA = cAeq +
1
3

%'"̇:
A
nA
( $11!
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cB = cBeq = constant, $12!

where "̇ is the strain rate tensor, cAeq and cBeq are the equilibrium breaking and reforming
rates and % is a parameter. The nondimensional diffusion constants are defined as )A
=+ADA /h2 and )B=)A /2, where h is the dimensional gap width and DA is the diffusivity
of species A "see Vasquez et al. $2007!#. These parameters are important in the analysis
of inhomogeneous flows and lead to the development of boundary/internal layers in such
flows "Bhave et al. $1991!#. They also result in smoothing of sharp discontinuities that
can otherwise arise between neighboring shear bands. These diffusion terms, introduced
by Bhave et al. $1991!, require specification of boundary conditions on the stress at the
walls. In the paper by Bhave et al. $1991! Dirichlet conditions were imposed resulting in
boundary layers at the walls. Alternate Neumann boundary conditions are considered by
Rossi et al. $2006!. For further discussion on the variations in the rheological predications
as the model parameters are varied see the work by Vasquez et al. $2007!.

The constitutive Eqs. $8! for the total viscoelastic stress and the evolution equations
for the number densities of the two species $7! are coupled with conservation equations
for mass and momentum, which can be written in dimensionless form as

• Conservation of Mass

# · v = 0 $13!

• Conservation of Momentum

E−1!v
!t

= − # · $PI − ,"̇ + $p! , $14!

where E=+eff-0 /.h2 is the elasticity number which measures the relative importance of
unsteady elastic and inertial effects in the flow "Vasquez et al. $2007!#. The solvent
viscosity ratio is given by ,=-s /-0 and is typically very small for micellar fluids or
concentrated polymer solutions. The total polymeric contribution to the stress is com-
prised of the contributions from species A and B plus an additional isotropic contribu-
tion from each species

$p = − A − 2B + $nA + nB!I .

III. THE PEC AND PEC+M MODELS

The first nonlinear network model examined in this paper is a single species model
that is identical in homogeneous shear flow to the differential constitutive equation pro-
posed by Larson $1984! for entangled polymer melts undergoing reptation. The partial
retraction of the chains inside the convecting and deforming tubes is described by the
partially extended convected derivative and is referred to henceforth as the PEC model.
The second model, denoted for brevity as PEC+M, considers two noninteracting vis-
coelastic species, in which the first species is modeled by the Larson-PEC model and the
second species by the upper convected Maxwell model. Analyses of these two models in
inhomogeneous flows, either with or without diffusion, have not been considered previ-
ously, and are a first step to considering our full scission/reforming network model for
entangled wormlike micellar fluids. These two models are also relevant to understanding
the shear banding observed in strong shear flows of monodisperse polymer melts "Tapa-
dia and Wang $2006!; Hu et al. $2007!#. The rheological predictions of the two models in
homogeneous flow are summarized in Fig. 3. In the PEC model the presence of a viscous
Newtonian solvent contribution is crucial to assuring that there is an upturn in the steady
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state viscometric flow curve at high shear rates. In the two mode PEC+M model, the
shorter and less elastic Maxwell species takes the place of this solvent, and thus physi-
cally realistic values for the additional Newtonian solvent can be used, as shown in Fig.
3$b!. Note that for a wormlike micellar solution with a zero shear rate viscosity -0
=14.5 Pa s, the nondimensional solvent viscosity ,=-s /-0=6.78/10−5 corresponds to a
solvent viscosity -s=0.001 Pa s which is the viscosity of water. In principle, the PEC
+M model is well posed and can also be studied in the limit ,→0, however the presence
of a small but finite solvent viscosity is important in the numerical algorithm employed
for solving inhomogeneous flow profiles; we thus retain this term in our analysis below.
Finally, the insets in Fig. 3 show the dimensionless first normal stress difference N1 as a
function of shear rate. In the single mode PEC model, N1 approaches a plateau at high
shear rates due to increasing chain disentanglement and retraction. By contrast, in the two
species PEC+M model the second viscoelastic mode $describing the shorter disentangled
chains! contributes additional elasticity to the fluid response at high shear rates.

• PEC model with conformation-dependent diffusion

The PEC form of the VCM model, with the addition of the diffusion terms that arise
in the formulation when gradients of local conformations are considered "Larson $1988!#,
is

A$1! + A − I − )A"2A = −
%

3
$"̇:A!A , $15!

where the micellar stress is given by !=A "Eq. $10! with B=0#.
This model can be obtained as a limiting case of the VCM model, when nA=1, nB

=0 and *=cAeq=cBeq=0, that is, there is no equilibrium breakage or reforming of the
longer species A chains. In this limit (=1 $or +eff=+A! so that the effective relaxation
time of the mixture, +eff, is equal to the reptation time, +A, of species A and there is no
rescaling of the effective relaxation time of the elastic network from the breakage of
chains. The PEC model without diffusion terms was formulated by Larson as a differen-
tial form of the Doi–Edwards model for entangled polymer melts undergoing reptation
"Larson $1988!#. The polymer chains, in this case, are allowed partial, versus full, retrac-
tion within their tubes. This process is governed by the nonlinear term on the right hand

FIG. 3. $a! Viscometric steady state shear stress for the PEC model with %=0.3 and ,=0.005; in this model
$r0=−Ar0−,!̇. $b! Viscometric steady state shear stress for the PEC+M model with %=0.3, *nB=0.005, and
,=6.78/10−5; in this model $r0=−Ar0−2Br0−,!̇. Insets: First normal stress differences.
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side of Eq. $15! and controlled by the magnitude of the parameter %. In the PEC model
such a term represents partial tube loss following chain retraction as opposed to micelle
breakage as in the VCM model. In the latter case, an evolution equation for number
density is also required for mathematical consistency but otherwise the resulting consti-
tutive formulation is identical. Hence the PEC model should be a good differential model
for fast flows of monodisperse and entangled polymeric solutions where there is no chain
breakage "Tapadia and Wang $2006!; Hu et al. $2007!#.

• The PEC+M model with conformation-dependent diffusion

The PEC+M model is introduced as a precursor to consideration of the full VCM
interacting species model. The constitutive equations for the contributions to the total
stress from the two active species in the elastic network are

A$1! + A − I − )A"2A = −
%

3
$"̇:A!A , $16a!

*B$1! + B −
nB

2
I − *)B"2B = 0 , $16b!

where the total viscoelastic stress is !=A+2B. Here we expect )A, )B, and *=+B /+A to
be much smaller than unity. These three parameters are defined as in Sec. II. As in the
single species case, (=1 since this model considers no breaking or reforming of the
chains.

There is no specific limiting procedure on the VCM model that will generate the
PEC+M model since conservation of species in the VCM model requires a term of the
form $2% /3! $"̇ :A!A on the right hand side of Eq. $16b!. However, there are a number of
similarities between this model and the VCM model that are worth investigating. The
model $16! can be understood as combining the stresses from two noninteracting vis-
coelastic species, the longer chains “A” undergo reptative like motion $with reptation
time +A! and the shorter unentangled chains “B” $with relaxation time +B#+A! which
give rise to Rouse-like viscoelasticity. This formulation should be a good model to de-
scribe the experiments which consider solutions of long polybutadiene chains $MW
.106 g /mol, c.10%! in a sea of short chains $MW.103 g /mol! "Tapadia and Wang
$2006!; Hu et al. $2007!#.

A. Shear flow equations in circular Couette geometry

In the circular Couette geometry we assume a unidirectional shearing flow of the form

v = $0,v$r!,0!

so that

$v · #!$·! = 0, $17!

"̇ = !̇%r%0 + !̇%0%r, $18!

!̇$r! = r
!

!r
'v

r
( , $19!

"̇:A = 2!̇Ar0, $20!
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"":$·! =
1
r

!2

!r2 $r$·!rr! −
1
r

!

!r
$·!00, $21!

where !̇$r! is the local shear rate. With these assumptions conservation of mass is auto-
matically satisfied, and the two relevant conservation of momentum equations are

E−1!v
!t

=
1
r2

!

!r
$r2$− $pr0 + ,!̇!! $22a!

and

E−1v2

r
= '1

r

!

!r
$r$prr! −

$p00

r
( +

!P

!r
, $22b!

where

$prr = − Arr − 2Brr + $1 + nB! , $23a!

$pr0 = − Ar0 − 2Br0, $23b!

$p00 = − A00 − 2B00 + $1 + nB! . $23c!

For the PEC model nB=0 and B=0. As pointed out at the beginning of this section, the
values of , are of different orders of magnitude for the PEC and the PEC+M models. In
the PEC model the stress contributions at large shear rates come solely from the solvent
viscosity. To fit the measured upturn in the shear stress in wormlike micellar systems, for
this range of shear rates, an unphysically large value of the solvent viscosity is assumed
",=O$10−3!#. On the other hand, in the PEC+M model such contributions to the stress
are given by the viscoelastic species B and the solvent viscosity takes a more realistic
value so that ,=-s /-0=O$10−5!.

• PEC model with conformation-dependent diffusion: Circular Couette
equations

From Eq. $15! and Eqs. $17!–$21!, we obtain the governing equations for the stress
components in the cylindrical Couette geometry as follows:

!Arr

!t
+ Arr − 1 − )A%1

r

!

!r
'r

!

!r
Arr( −

2
r2 $Arr − A00!& = −

2
3

%!̇Ar0Arr, $24a!

!Ar0

!t
− !̇Arr + Ar0 − )A%1

r

!

!r
'r

!

!r
Ar0( −

4
r2Ar0& = −

2
3

%!̇Ar0Ar0, $24b!

!A00

!t
− 2!̇Ar0 + A00 − 1 − )A%1

r

!

!r
'r

!

!r
A00( +

2
r2 $Arr − A00!& = −

2
3

%!̇Ar0A00,

$24c!

!Azz

!t
+ Azz − 1 − )A%1

r

!

!r
'r

!

!r
Azz(& = −

2
3

%!̇Ar0Azz. $24d!
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• PEC+M model with conformation-dependent diffusion: Circular Couette
equations

In the PEC+M model, the contributions of the longer chain species are modeled by
the PEC model and the stress components of species A are again given by Eqs. $24!.
These equations are coupled, through the momentum equations, with the equations for
the contributions to the stress from the shorter chain species B obtained from Eq. $16b!

*
!Brr

!t
+ Brr −

nB

2
− *)B%1

r

!

!r
'r

!

!r
Brr( −

2
r2 $Brr − B00!& = 0, $25a!

*
!Br0

!t
− *!̇Brr + Br0 − *)B%1

r

!

!r
'r

!

!r
Br0( −

4
r2Br0& = 0, $25b!

*
!B00

!t
− 2*!̇Br0 + B00 −

nB

2
− *)B%1

r

!

!r
'r

!

!r
B00( +

2
r2 $Brr − B00!& = 0, $25c!

*
!Bzz

!t
+ Bzz −

nB

2
− *)B%1

r

!

!r
'r

!

!r
Bzz(& = 0. $25d!

We seek to describe systems in which the shorter species B follow unentangled Rouse-
like dynamics so that +B.$L /2!2, and the A species relaxes through reptation so that
+A.L3 /LE, where LE is the entanglement length "Vasquez et al. $2007!#, and hence *
=+B /+A.LE /4L#1. In the limit *→0, species B behaves like a Newtonian fluid with a
purely Newtonian contribution to the stress which in dimensional terms is -B=nBkT+B
"Vasquez et al. $2007!#.

B. Boundary and initial conditions

In this paper we consider two types of deformations: start up of steady simple shear
flow and stress relaxation after a step shear strain. In the first case we impose the apparent
shear rate or velocity across the gap "see Eq. $3!#, in the second case we control the
apparent strain across the gap by imposing a displacement at the inner wall.

• Imposed shear at the walls

For controlled shear rate experiments, ideally the boundary conditions are

vi$t = 0−! = 0, vi$t = 0+! = vi = De , $26a!

vo = 0. $26b!

Here De=+AVi /h, where Vi is the dimensional velocity at the inner cylinder "Vasquez et
al. $2007!#. Note that we do not consider the possible effects of slip at the wall, although
this is observed in some experiments "Hu et al. $2007!#. We assume the walls are suitably
roughened to eliminate any slip effects. Because it is impossible in practice to achieve an
instantaneous step jump in the wall velocity, we consider two different possible ap-
proaches to imposing shear at the inner cylinder; the first a “quick” ramp, or jump up, in
shear rate, the second a slow ramp in shear rate. Similar cases are considered by Olmsted
et al. $2000!. For both conditions the velocity at the inner wall, for t10, is modeled by
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vi$t! = De tanh$at! , $27!

where time is scaled with +A. This velocity corresponds to an eventual nondimensional
apparent shear rate across the gap at steady state of !̇app=De. In the first, “jump up” case,
we select the dimensionless coefficient a such that the ramp is complete well before the
relaxation time of species A. We chose a=2 for which the time to half height for the tanh
function is roughly a quarter of one relaxation time. In the second, “ramp up” case, we
use a ramp that is not complete until after several relaxation times. We chose a=0.1,
hence it takes roughly 5–6 relaxation times to get to half height. The effect that these two
functions have on the predictions of the models, as well as the effect of even faster jumps,
will be studied in Sec. V.

If the diffusion parameters )A ,)B are not zero, boundary conditions on the stress must
be imposed at the walls. There has been some discussion in the literature as to the
appropriate boundary conditions to impose "Mavrantzas and Beris $1992!#. In the present
computations, we use no flux of conformation as used by Bhave et al. $1991!, Olmsted et
al. $2000!, Black and Graham $2001! and Rossi et al. $2006!. The Neumann boundary
conditions for the stress at the walls are then

/ !A
!r
/

i
=/ !A

!r
/

o
= 0, $28a!

/ !B
!r
/

i
=/ !B

!r
/

o
= 0. $28b!

Some analysis of imposing Dirichlet as opposed to Neumann boundary conditions on the
stress can be found in the paper by Cook and Rossi $2004!.

• Imposed step strain at the wall

In step strain experiments, the response of the fluid to an instantaneous imposed strain
is considered. However, in practice because of the finite moment of inertia for any
rheometric fixture, the displacement of the inner cylinder cannot be completed in zero
time, and hence in our computations we use a ramp in strain thus specifying the inner
wall displacement as

di$t! = !0$1 − $1 + bt!exp$− bt!! . $29!

The displacement of the outer cylinder is fixed, so that

do$t! = 0. $30!

Equation $29! corresponds to an applied velocity at the inner cylinder of

vi$t! = !0b2t exp$− bt! . $31!

Here we explore the effect of different values of the parameter b, where b is a dimen-
sionless measure of the motor response rate. The velocity of the cylindrical bob starts at
zero, rises rapidly and then decays to a final rest state after the desired angular strain
displacement is attained. Calculations of ideal steps in strain are given as limiting cases
when b→2.
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• Initial conditions

All computations in this paper are carried out in time to capture the history depen-
dence of the viscoelastic stress fields. Conditions at t=0− for both ramp-up and jump up
tests are that the network is at resting equilibrium, so that the stress satisfies

Ar0$r,0! = Br0$r,0! = 0, $32a!

Arr$r,0! = A00$r,0! = 1, $32b!

Brr$r,0! = B00$r,0! =
nB

2
. $32c!

C. PEC/PEC+M in viscometric shear flow

In steady state shearing flow, the solution to the PEC model can be found explicitly as
a function of the shear rate if spatial dependence in the shear rate is ignored $viscometric
flow!. From Eqs. $24! setting !̇ to be a constant, the normal components of the confor-
mation as a function of the shear stress and shear rate are "Larson $1984!#:

Arr =
1

1 +
2
3

%!̇Ar0

, A00 =
1 + 2!̇Ar0

1 +
2
3

%!̇Ar0

$33!

so that

N1 = A00 − Arr =
6!̇Ar0

3 + 2%!̇Ar0

, $34!

where N1 is the dimensionless first normal stress difference scaled with nAkT, and the
shear rate is scaled with +A. Substituting these expressions into Eq. $24b! gives

4
9

%2!̇2Ar0
3 +

4
3

%!̇Ar0
2 + Ar0 − !̇ = 0. $35!

The only real solution to this cubic equation is

Ar0 =
1

2%!̇

$J − 1!2

J
, $36!

where

J = $1 + 9%!̇2 + 3%!̇J0!1/3 and J0 =02 + 9%!̇2

%
.

The curve described by Eq. $36! is nonmonotonic, with a maximum at

!̇max =06
%

and Ar0 max =
1
4
06

%
. $37!

Furthermore, asymptotically for !̇#1, we obtain the expected forms

Ar0 . !̇ and N1 . 2!̇2, $38!

whereas for !̇31,
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Ar0 . ' 3
2%
(2/3

!̇−1/3 −
1
3

!̇−1 and N1 .
3
%

− 2' 3
2%
(4/3

!̇−2/3. $39!

Therefore, when the solvent viscosity ,!̇ is added to the micellar contribution to the
shear stress, Ar0, with the right choices of , and %, the total shear stress first increases
with shear rate, then decreases, as Ar0 decreases, and finally increases again as Ar0 decays
away and the solvent shear stress ,!̇ dominates "see Fig. 3$a!#. Similarly, the first normal
stress difference first increases quadratically in shear rate, then levels off to a constant
value 3 /% "see the inset in Fig. 3$a!#.

For the PEC+M model the micellar contribution to the stress is !=A+2B, where we
expect *=+B /+A#1. When !̇ is small, the total stresses come primarily from species A.
When *!̇&1 $so !̇31!,

4r0 . 2Br0 = *nB!̇ , $40!

N1 . 2$B00 − Brr! = $*!̇!2nB. $41!

Thus, in the limit of !̇31, the contribution from species B dominates the total viscoelas-
tic response of the network "see Fig. 3$b!#. The stress contribution from the solvent is
negligible due to the small value of ,. Note that in the PEC model N1 approaches a
constant value at large shear rates, since the Newtonian solvent provides no contribution
to the first normal stress difference. Whereas for the PEC+M the curve for N1 has an
upturn when *!̇&1 $so !̇31!; this comes from the contribution from the viscoelastic
species B. In contrast to the predictions of many empirical models, measurements in
entangled micellar fluids do not typically show a plateau in N1 "Anderson et al. $2006!#
and the PEC+M model is thus expected to be a better description of the rheology of such
fluids at high shear rates.

D. Stability analysis of the PEC model

To examine the stability of Eqs. $24! with )A=0, we follow the results obtained by
Yerushalmi et al. $1970! and evaluate the dependence of the stability of the PEC model
on its parameters, namely ,, %. With the solutions as given in Eqs. $33! and $36! as the
base state, we perturb A and !̇ as

Ar0 = Ar0
0 + Ar0

1 e−5t,

Arr = Arr
0 + Arr

1 e−5t,

A00 = A00
0 + A00

1 e−5t,

!̇ = !̇0 + !̇1e−5t.

Figure 4 shows the base state steady flow curve, shear stress as a function of shear
rate, for several values of % and ,. Also drawn in this figure is the curve of the smallest
eigenvalue, 5, of the perturbed system. The system is unstable $5"0! in precisely those
places where the flow curve has a negative slope. In general, the maximum and minimum
points in the curve of shear stress versus shear rate, or equivalently, the bifurcation points
of the curve as given by the change in sign of the real part of 5, are given by
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1!̇1max = f$,!0 3
2%

, 1!̇1min = g$,!0 3
2%

. $42!

Values of f$,! and g$,! for the values of , used in this study are given in the caption of
Fig. 4. In the thesis by Vasquez $2007!, a general equation that gives the dependence of
5 on ,, %, and !̇ is given. The results in Fig. 4$a! show that increasing the parameter %
results in a shift of the unstable region to smaller shear rates along the shear rate axis, in
agreement with the predictions above for the location of the local maximum and local
minimum of the curve. On the other hand, as seen in Fig. 4$b!, increasing , lifts the
eigenvalue curve so that for ,=0.016 there is no longer a negative eigenvalue, while at
the same time the flow curve has become monotonic.

E. PEC/PEC+M in viscometric step strain

In a viscometric step strain, if the strain is applied as an ideal step function "Larson
$1984!#, the relaxation function given by the PEC model is separable and can be given by

$r0

!0
= G$t,!0! = exp$− t!h$!0! , $43!

where the damping function h$!! is given by Larson $1988!

h$!0! =
1

1 + %!0
2/3

. $44!

In the PEC+M model, for an ideal step in strain, the relaxation of the second shorter
species gives an additional contribution and the response is

$r0

!0
= G$t,!0! = exp$− t!h$!0! + nB exp$− t/*! , $45!

where we expect *=+B /+A#1. Therefore,

FIG. 4. $a! Steady state shear stress curve $blue! and the the smallest eigenvalue $in black! for two different
values of the nonlinear constitutive parameter %. In this figure ,=0.005, f$0.005!=2.19, g$0.005!=18.32. $b!
Steady state shear stress curve and the largest eigenvalue for different values of the solvent viscosity ,. In this
figure %=0.3 and f$0.001!=2.03, g$0.001!=71.21.

606 ZHOU et al.

 2
5
 O

c
to

b
e
r 2

0
2
3
 0

1
:4

8
:2

2



G$t,!0!
exp$− t!

= h$!0! + nB exp$t − t/*! . h$!0! for t = O$1! . $46!

Note that for the quasilinear species B we can solve analytically for the relaxation func-
tion for a ramp in strain given by Eq. $29! to obtain

Br0 = !0nB
b2

$b − 1!2 "e−t/* − e−bt/* − $b − 1!te−bt/*# . $47!

Thus, for “ideal” steps with b→2, the effect of this species can only be observed at times
t.O$*!. Typical motor response times may be in the range 10–100 ms and measuring
the relaxation of the second species is thus expected to be convoluted with the motor
response function.

IV. MEASURED VERSUS CALCULATED MATERIAL FUNCTIONS

As noted in the introduction, because the flow is inhomogeneous there is a difference
between the apparent value of any variable and its local value. As defined in Eqs. $3! and
$26!, the apparent shear rate in dimensionless form is

!̇app =
vi

ro − ri
= De , $48!

because we selected the gap width as the characteristic length scale "Vasquez et al.
$2007!#. In computing normal stress differences the distinction between apparent and
local values becomes even more pronounced since experimental values are not actually
measured, but rather derived from the total thrust on the wall. For a circular Couette cell
this needs some clarification "Macosko $1994!#.

The r, 0 components of the momentum equation in cylindrical coordinates are

r: E−1v2

r
= %1

r

!

!r
$r$rr! −

$00

r
& +

!p

!r
, $49!

0: E−1!v
!t

= −
1
r2

!

!r
$r2$r0! , $50!

where

$ = $s + $p = − ,"̇ + ,− A − 2B + $1 + n2!I- . $51!

Equation $49! can be rewritten as

E−1v2

r
=

!p

!r
+

!$rr

!r
−

$$00 − $rr!
r

$52!

and, ignoring inertial terms $E31!, we obtain

0 =
!6rr

!r
−

N1

r
, $53!

where 6rr= $p+$rr! is the experimentally measured normal stress or thrust per unit area
on the wall of the Couette cell. Hence to compare our calculations with the experimental
data we need to find 6rr in terms of N1. Integrating Eq. $53! yields
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6rr$ri! − 6rr$ro! = +
ro

ri N1

r
dr . $54!

This allows calculation, from an inhomogeneous distribution N1$r!, of the difference in
the thrusts at the inner and outer walls. Note that alternatively we could have calculated
6rr directly but we would then have had to calculate the unknown pressure P to obtain
total stress.

In the limit of small gap size, $ro−ri! /ri#1, the variation in the shear rate becomes
small. In this viscometric limit, N1 also varies slowly across the gap and Eq. $53! can be
used to define the average first normal stress difference, N1, as

N1

r̄
)

6rr$ri! − 6rr$ro!
ri − ro

. $55!

Here r̄ is the average gap radius, r̄= $ro+ri! /2. Thus,

N1 =
r̄

ri − ro
"6rr$ri! − 6rr$ro!# , $56!

and N1 can be determined in a circular Couette device by measuring the difference in the
thrusts at the inner and outer walls "Macosko $1994!#. As the magnitude of the gap
increases, the flow becomes increasingly inhomogeneous and the shear stress, shear rate
and the first normal stress difference all vary across the gap. We denote the first normal
stress difference computed through Eq. $56! as N1app since it is evaluated assuming that
stresses vary smoothly and slowly across the gap. On the other hand our calculated N1$r!
depends on the local radial position and cannot be taken out of the integral in Eq. $54!.
Thus in order to compare potential experimental results with those obtained through
numerical calculations we calculate the expression

N1app =
r̄

ri − ro
"6rr$ri! − 6rr$ro!# =

r̄

ri − ro
+

ro

ri N1$r!
r

dr . $57!

V. RESULTS IN INHOMOGENEOUS FLOW. PEC AND PEC+M MODELS

In viscometric flow the equations to be solved form a coupled system of nonlinear
ordinary differential equations in time. For inhomogeneous flow, spatial variations in the
velocity gradient result in a nonlinear coupled system of partial differential equations.
The inhomogeneous system was solved using the Crank–Nicolson scheme coupled with
iterations at each time step on the nonlinear part. The momentum equation is coupled to
the stress equations by the presence of the viscous stress ,!̇$r!, and the momentum
equation is used to update the velocity at each time step. When the elasticity number, E,
is finite, that is for flows with finite fluid inertia, the momentum equation is solved
together with the stress equations using the Crank–Nicolson scheme which then itself
updates the velocity.

The parameter values chosen in this study for the PEC model are %=0.3 and ,
=0.005. The choice of % was taken to be close to the best fit to experimental curves for
the full VCM two interacting species model in viscometric studies "Vasquez et al.
$2007!#. The value of , was chosen to assure that the steady state flow curve for this
model is nonmonotonic. This value of , is smaller than that chosen by Olmsted for the
Johnson–Segalman calculations "Olmsted et al. $2000!#, ,=0.05, but still larger than
would be anticipated by the experimental results for wormlike micellar solutions, albeit
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neither model is constructed to agree directly with experiments. For the PEC+M model
we continue with %=0.3 and use *=+B /+A=4.35/10−3, nB=1.1331 so that *nB=0.005,
to mimic the solvent viscosity effect in the PEC model. In addition, these values are
roughly consistent with experimentally fitted parameters from the full VCM model. In the
PEC+M model we use a more “realistic” value for the nondimensional solvent viscosity,
,=6.78/10−5. The shear stress predictions from the PEC+M model are anticipated to
behave very much like the PEC model at moderate shear rates or step strains since the
second species has a relatively short relaxation time, hence its elasticity only becomes
important in relatively strong or sudden events. Indeed, numerical solution of the system,
for the set of parameters chosen here, shows that in steady simple shear flow the flow
curves, i.e., the steady shear stress versus shear rate, for the two models are similar
although curves for the first normal stress difference differ $see Fig. 3!.

A. Start up of steady shear flow

As noted above, in shear flow, the behavior of the shear stress as predicted by both the
PEC and PEC+M models is similar; furthermore, the time evolution to steady state under
shear without diffusion for both models shows dependence on the applied flow history.
Figure 5 shows the history-dependent steady state shear stress for the inertialess PEC
model as a function of the apparent shear rate, !̇app defined in Eq. $48!. The different
curves correspond to the different flow histories noted in Sec. III B, namely jump up,
jump down, ramp up and ramp down. Olmsted et al. $2000! demonstrated, for the
Johnson–Segalman model, that the geometric curvature p also influenced the flow curves
predicted by the model; therefore we carried out a study of the effect of curvature in this
paper for the PEC and PEC+M models. Figure 5$a! shows calculations for a curvature of
p=0.1, Fig. 5$b! shows similar results but for a smaller curvature namely p=0.01, where
the curvature is defined as

FIG. 5. Steady state flow curves for the PEC model $which are similar to those for the PEC+M model!, $a!
p=0.1 $b! p=0.01. The figures show the history dependence for ramp up: vi$t!=De tanh$0.1t!; ramp down:
vi$t!=300$1− tanh$0.1t!!+De tanh$0.1t!; jump up: vi$t!=De tanh$2t!; and jump down: vi$t!=300$1− tanh$2t!!
+De tanh$2t!. Here the model parameters are )A=0, %=0.3, ,=0.005. When configuration-dependent diffusion
is added we obtain a unique plateau, shown as the solid line in the figures. In this case )A=0.005. In figure $b!,
the dashed line is the nonmonotonic viscometric predictions.
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p =
ro − ri

ri
=

1
ri

. $58!

Typical values for the curvature of circular Couette rheometers are p=O$0.1! "Miller and
Rothstein $2007!#. For comparison, calculations with faster start up, for example,
tanh$7t!, were also computed. The differences for the tanh$2t! and tanh$7t! for jump
down conditions were negligible. For jump up protocols, in the plateau region, the stress
curve from the faster jump lies slightly lower at higher shear rates than the slower jump
up test. In both cases all curves lie within the envelope of the ramp up and ramp down
curves.

When diffusion is added to the PEC, or PEC+M model, the system selects a unique
plateau-like apparent flow curve; that is, the solution is independent of the flow history as
shown in Fig. 5 by the solid line. The selected “plateau” is fairly flat for p=0.01, but has
a small positive slope for the larger curvature, p=0.1. This general behavior is similar to
that of the base line $Johnson–Segalman! model "Olmsted et al. $2000!#. Changes in the
conformational diffusion constant from )A=0.005 to )A=0.01, do not effectively change
the plateau of the steady state shear stress, but do slightly decrease the overshoot in the
steady state flow curve at the start of the plateau. The presence of a small overshoot in the
apparent equilibrium flow curve as well as path-dependent equilibrium flow curves are
features commonly observed in experiments with micellar solutions "Fischer and Rehage
$1997!; Grand et al. $1997!; Méndez-Sánchez et al. $2003!# and in calculations using the
Johnson–Segalman model "Olmsted et al. $2000!# as well as another “toy” nonlinear
model "Spenley et al. $1996!#.

In Fig. 6 we show in greater detail the evolution in the local stress and shear rate
within the Couette fixture. In this figure hollow symbols represent the values at the inner
walls and filled symbols represent the values at the outer wall. The solid curve is the
nonmonotonic viscometric prediction as in Fig. 1. When the imposed shear rate is within
the multivalued region of this curve there is one point on the left portion of the curve,

FIG. 6. Viscometric flow curve and local values of the shear rate and shear stress for the PEC model. The
inserts show the resulting normalized velocity profiles for each apparent shear rate. The values of De are: 6 $!:
inner wall, !: outer wall!, 10 $": inner wall, #: outer wall!, and 200 $$: inner wall, %: outer wall!. In this
figure ,=0.005, %=0.3, )A=0.005, p=0.1, and E−1=0.
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corresponding to the shear rate at the outer wall, and one at the right side of the curve
corresponding to the shear rate at the inner wall. These points represent the final velocity
profiles chosen within the gap, and show “shear banding,” with the high shear rate at the
inner or moving wall and low shear rate at the outer or fixed wall. The banded structure
of the resulting velocity field at De=10 is clearly seen in the inset figure. The two regions
represent very different local chain conformation and are connected by a narrow match-
ing region of width 0)A in which conformation-driven diffusion is important. We also
note that the values of the local stress at the inner and outer walls differ slightly in each
profile $at De=6, 10 or 200! due to the curvature of the geometry. From the momentum
equation "Eq. $50!# in inertialess flow, $r0=c /r2 where the constant c=$wri

2 and $w is the
wall shear stress at the inner cylinder.

Because the shear stress decays monotonically across the gap "by an amount O$p! for
narrow gaps#, any attempt to reconstruct the underlying nonmonotonic flow curve from
local measurements is doomed to failure. To illustrate this, in Fig. 7$a! we show the
“reconstructed” flow curve that is formed by taking the exact local value of the shear
stress and the local value of the shear rate "using the definition in Eq. $4!# from the
computed velocity profiles. The velocity profiles from these individual numerical experi-
ments are shown in Fig. 7$b! in dimensionless form. As the imposed wall velocity ex-
ceeds De=2, an increasingly banded profile is established. It is clear that the recon-
structed flow curve in Fig. 7$a! is monotonic; fitting a power law $r0=k!̇m to the data
between 27!̇7100 gives a small positive slope of m=0.016. This is in clear contrast to
the underlying flow curve obtained from an ideal homogeneous flow assumption. In
recent experiments with entangled polymer solutions, Hu et al. $2007! argue that observ-
ing a locally monotonic “reconstructed flow curve” is evidence of an underlying mono-
tonic constitutive relation. The present example indicates that such observation of mono-
tonicity cannot be used to make inferences about the underlying homogeneous curve.
Even in the limit of p→0 the homogeneous solution shown by the solid line in Fig. 7$a!
is linearly unstable to perturbations in the nonmonotonic region and will evolve into a
globally monotonic solution consistent with the boundary conditions on velocity and
chain conformation at r=ri, ro.

Figure 8$a! shows the steady state velocity profiles across the gap for various apparent
shear rates. The evolution of the shear bands with respect to apparent shear rate and the

FIG. 7. $a! Reconstructed local shear stress flow curve as a function of local shear rate for the PEC model. $b!
Steady state velocity profiles across the gap for the PEC model. In both figures ,=0.005, %=0.3, )A=0.005,
p=0.1, and E−1=0.
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gap position is shown in Fig. 8$b!. While this behavior is similar to that observed by
Olmsted et al. $2000!, it differs in one aspect: in the Johnson–Segalman results, under
jump up conditions with p=0.01, an inverted band and a two interface band are observed
in the plateau region. However, neither the inverted band patterns nor the multiple band-
ing patterns were seen in our computation of the PEC or PEC+M models. A single
banded structure with the highest deformation rate at the inner $moving! wall is always
obtained.

The inset in Fig. 8$a! shows the percentage of the gap occupied by the high shear rate
band, i.e., the distance from the inner cylinder to the “kink” in the spatial velocity profile
as a function of De. Note that the position yk$De! varies linearly for Deborah numbers
within the plateau region in agreement with experimental observations "Salmon et al.
$2003!#. A linear regression gives very roughly yk$De!*De /140. A contour plot repre-
sentation of the extent of the shear band is shown in Fig. 8$b!. At low De"2 the velocity
varies smoothly across the gap. At higher De, the rapid variation in velocity over a small
spatial region is the hallmark of the onset of shear banding. The sharpness of the kink is
controlled by the diffusivity parameter )A, that is there is a smoothing layer of width 0)A
at the kink. Precise experimental values for the conformation-driven diffusivity are not
available, but dimensional scaling suggests they should be small. The calculations in
Figs. 7$a! and 7$b! are for )A=0.005 and show a smooth velocity transition between
bands. In Figs. 8$a! and 8$b! the sharp transitions result from considering the limiting
case )A→0.

The steady state first normal stress difference at the inner wall as well as the apparent
first normal stress difference obtained using the formula in Eq. $57! for the PEC model,
and for the PEC+M model, are shown in Fig. 9. As anticipated from the viscometric
results in Sec. III C, at small De before the onset of banding, the curve is quadratic,
N1. !̇2. Since !̇app* !̇inner in this region, there is little difference between N1app and
N1inner as expected for an almost homogeneous flow. For the range of gap velocities that
delineate the shear stress plateau region, the first normal stress difference also shows a
banded structure as a consequence of the shear rate bands. Thus to calculate N1app "Eq.
$57!# for these values of De, the integral must be broken into two pieces

FIG. 8. $a! Steady state velocity profiles across the gap for the PEC model. The inset is the position of the kink
as a function of the Deborah number. $b! Evolution of the dimensionless velocity v$De! /vi as a function of
dimensionless position y for different values of apparent shear rate !̇app, regions where there is a gradual change
in color from dark to light correspond to homogeneous velocity profiles, sudden changes in color indicate shear
banding. In both figures ,=0.005, %=0.3, )A=0, p=0.1, and E−1=0. Jump up means tanh 2t.
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N1app = r̄ '+
ri

ri+yk

N1$r;De!
1
r

dr + +
ri+yk

ro

N1$r;De!
1
r

dr( , $59!

where ri+yk$De! is the spatial location of the kink in the velocity profile and is, for the
parameter values we have used, yk$De!*De /140. In the PEC model the normal stress at
the inner wall reaches an asymptotic plateau of value 3 /% given by Eq. $39! because the
solvent provides no contribution to the normal stress difference. By contrast, the two
species PEC+M model shows an upper quadratic response due to the elastic response of
the shorter “B” chains. Profiles of the local distribution in N1$r ;De! across the gap are

FIG. 9. First normal stress difference as a function of the apparent shear rate for $a! the PEC model, $b! the
PEC+M model. In the PEC model, the parameters are )A=0, %=0.3, p=0.1 and E−1=0. In the PEC+M model,
the parameters are )A=)B=0, %=0.3, nB=1.1331, *=4.35/10−3, p=0.1 and E−1=0.02. The inset in $a! shows
the variation in the apparent first normal stress difference N1app on a linear scale as a function of the apparent
shear rate in the PEC model.
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shown in Fig. 10. For r"ri+yk, the normal stress difference asymptotically approaches
3 /%, since the local shear rate is large. For r&ri+yk, Fig. 10 shows that N1 decreases
weakly with r and increases roughly linearly with De. For a first estimate of the behavior
of N1app, we assume that N1 in this latter region is independent of r. Thus, the integrals in
Eq. $59! can be evaluated. By exploiting the small value of yk /ri, the computed integral
can be expressed as a quadratic function of De. Our fits to N1app in the shear stress plateau
region show that

N1app . 7.5 / 10−2De − 2.0 / 10−4De2 + 2.6 $60!

in which the numerical coefficients depend on the specific values of %, p and ,. Thus in
the plateau region of shear stress, the apparent first normal stress difference is a linearly
increasing function of De with a small quadratic correction. As the shear rate continues to
climb beyond the shear rates defining the shear stress plateau, N1app becomes constant for
the PEC model, again as anticipated from the viscometric solution discussed in Sec. III C.
The graphs for the PEC+M model differ from those of the PEC model in that for large
shear rates the curve returns to quadratic growth as a function of shear rate. This is the
result of adding the second non-Newtonian species. Figure 10 shows that there can be a
rapid spatial variation in the first normal stress difference N1 across the gap when the
shear band develops. A number of theoretical studies have shown that shearing flows of
two layered fluids with matching viscosity but sharp changes in elasticity at the interface
can be linearly unstable "Renardy $1988!; Wilson and Rallison $1999!; Miller and Ralli-
son $2007!#. Recent studies by Fielding $2005! and Wilson and Fielding $2006! have
investigated the linear and nonlinear stability of such interfaces using the Johnson–
Segalman model both with and without stress-conformation diffusivity. These analyses
show that shear-banded structures of the form we compute here may not remain steady
and one dimensional but may develop additional time-dependent features $such as a
propagating wavy interface! "Fielding and Olmsted $2006!#. The VCM model captures

FIG. 10. The first normal stress difference of the PEC model across the gap for various De in the steady state
shear stress plateau region after a jump up condition. In this figure ,=0.005, %=0.3, )A=0, p=0.1.
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many of the same features as the JS model with diffusion, and the coupled equations for
number density and micellar conformation may also admit traveling-wave banded solu-
tions. We hope to investigate this possibility in future work.

Figure 11$a! shows the development in time of the shear stress at the inner wall
following start up of steady shear flow at a nondimensional apparent shear rate, De=6.
Similarly, Fig. 11$b! shows the transient first normal stress difference at the inner wall for
the same apparent shear rate. The dashed lines show the equivalent model response if a
homogeneous flow is assumed a priori.

In these figures we have identified specific points along the curve for comparison
purposes with Figs. 11$c! and 12. Figure 11$c! shows the velocity profiles across the gap
at each of these points and this allows us to compare the evolution of the shear bands in
time corresponding to the different regimes observed in both the transient shear stress and
first normal stress difference.

In conjunction with the evolution in the kinematics observed in Fig. 11$c!, we also
show in Fig. 12 the spatial and temporal development of the contribution to the shear
stress and first normal stress difference from the longer A species. In the linear regime at
short times t /+A#1, point A, the velocity variation and stress distribution across the gap
are approximately homogeneous with variation of O$p!. At point B, corresponding to the

FIG. 11. PEC model predictions in start up of steady shear flow. $a! Shear stress at the inner wall as a function
of time. $b! First normal stress difference at the inner wall as a function of time. The solid line is the inhomo-
geneous prediction, the dashed line is the equivalent model response if a homogeneous flow is assumed a priori.
$c! Velocity profiles across the gap as function of time. In these figures ,=0.005, %=0.3, )A=0.005, p=0.1,
E−1=0, and vi$t!=6 tanh$100t!.
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first overshoot of the shear stress and the onset of nonlinearities, a more pronounced
deviation from the Newtonian velocity profile is observed. From points C to D, which
correspond to the maximum in the curve of the transient first normal stress difference, the
maximum deviation of the velocity from the expected linear profile is observed. In this
region the velocity curve actually has a small spatial region of negative velocity $al-
though the total integrated displacement of Lagrangian material points is always positive!
indicating that the response has overshot and is now settling back. Negative or “recoil”
velocities of this type followed by slow approach to an ultimate steady banded state have
been recently observed in local PIV measurements across the gap in monodisperse po-
lybutadiene solutions "Tapadia and Wang $2006!#. From E to F the system is stabilizing
towards its steady state and by point G at t3+A steady state has been achieved. The
steady state velocity profile at this point in Fig. 11$c! corresponds to the profile obtained
from Fig. 8$b! when a line is drawn horizontally for a Deborah number De=6. Note that
as observed experimentally, the high shear rate band region is near the moving wall while
the lower shear rate band is at the fixed wall. In conjunction with these bands in the
velocity profiles there are corresponding “bands” in the elastic contributions to the total
stress as shown in Fig. 12. Interestingly the viscoelastic contribution to the shear stress
"Fig. 12$a!# decreases near the moving wall, although the monotonic variation in the total
stress $r0=c /r2 required by conservation of momentum is still satisfied by the presence of
a large viscous contribution to the shear stress in this high shear rate band. The decrease
in the elastic contribution to the shear stress in the plateau region following onset of
banding is consistent with the entanglement-disentanglement transition hypothesized by
Tapadia and Wang $2003, 2006!. The normal stress varies monotonically across the gap
but shows a very sudden saturation in time unlike the normal viscoelastic response
predicted by the homogeneous model. This is also consistent with measurements in a
monodisperse entangled solution undergoing shear banding "Tapadia and Wang $2004!#.

B. Step strain

The stress relaxation predicted by the PEC $or indeed PEC+M! model at the inner
cylinder, after a step strain of amplitude !0 is shown on a log-log scale in Fig. 13. The
inset in this figure shows the same computational results but on a semilog scale. The

FIG. 12. Shear stress and first normal stress difference across the gap as they develop in time for the PEC
model. Note: the different colors in the legend correspond to the times of the points selected in Fig. 11$a!. In
these figures ,=0.005, %=0.3, )A=0.005, p=0.1, E−1=0, and vi$t!=6 tanh$100t!.
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curves in the inset are parallel to each other but vertically shifted, and the inhomogeneous
solution for this model shows time-strain separability with a dimensionless decay rate of
−1 corresponding to the $dimensional! relaxation time +A.

Figure 14 shows the numerically evaluated damping function h$!0! for the PEC $or
PEC+M! model for two different values of the parameter b "defined in Eq. $29!# com-
pared with the analytic solution in an “ideal” step strain $b→2!. Close examination of
Fig. 13 suggests that at high applied strains there is an additional relaxation process at
short times, but we know that the PEC model as formulated only has a single relaxation

FIG. 13. Relaxation moduli of the PEC model here %=0.3, ,=0.005, p=0.1, )A=0 and E−1=0. Inset: semilog
plot.

FIG. 14. Damping function as a function of !0 after one relaxation time for the PEC model. Here, %=0.3, ,
=0.005, p=0.1, )A=0 and E−1=0.
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mode $with time constant +A!. Detailed computational investigation shows that this ad-
ditional relaxation in fact arises from convolution of the viscoelastic relaxation and the
finite motor response time required to achieve large strains of !0*5–10. As the motor
response rate b is increased the curve approaches the theoretical response given by Eq.
$44!. However, for any finite b the damping function appears to show two distinct re-
gions. This is consistent with experimental observations in some polymeric entangled
systems necessitating a double exponential fit to agree with data "Larson $1988!#.

In Fig. 15$a! the local strain predicted by the PEC $or PEC+M! model is plotted
across the gap after one relaxation time for different !0. For small !0 the flow is homog-
enous and the strain is roughly homogeneous with variations of order !0p across the gap.
At a critical strain of !0*2.5, strain localization occurs with a large gradient of strain
developing near the inner cylinder which levels off towards the outer cylinder. The spatial
extent of this large strain gradient grows across the gap as the apparent strain increases,
although the steepness of the gradient itself decreases. At larger strains, !0120, the
gradient in the strain returns to varying approximately linearly across the gap, so the
banding structure occurs only for strains !0 of roughly 2.5–20. Figure 15$b! shows the
normalized shear rate at the inner wall as a function of time. Note that for strains in the
banding region a second local maximum occurs in the response. The first overshoot
comes from the ramp in strain, Eq. $29!, used to mimic the motor response in step strain
experiments, and occurs at t=1 /b. Faster ramps would move the overshoot to smaller
times, so that if an ideal step is applied such an overshoot becomes “infinitely” large at
infinitely small times. This behavior is an indication that early flow histories imposed by
a motor with finite response time cannot be ignored in the analysis of these complex
inhomogeneous deformations. The second overshoot, on the other hand, is a signature of
the banding phenomenon, since it is only observed at strains which correspond to inho-
mogeneous profiles across the gap.

Figure 16 shows the strain at the inner cylinder versus the imposed strain !0. The onset
of the banding behavior corresponds to the sharp rise of this curve, thereafter the region
showing the high gradient in the local strain expands across the gap $and decreases in
steepness! with increasing imposed strain. The strain rate at the inner cylinder stabilizes

FIG. 15. $a! Magnitude of the local strain ! after one effective relaxation time as a function of r following
displacement at the inner cylinder, !0, for the PEC model. $b! Normalized shear rate at the inner wall as a
function of time for the PEC model. In both figures, %=0.3, ,=0.005, p=0.1, )A=0 and E−1=0.

618 ZHOU et al.

 2
5
 O

c
to

b
e
r 2

0
2
3
 0

1
:4

8
:2

2



and, once banding is complete, the two strains become identical. Figure 16 also shows the
direct effect of curvature on the banding. As p decreases, the severity of the shear
banding diminishes.

In Fig. 17$a! we show the ratio of the first normal stress difference to the shear stress
versus the imposed strain after one relaxation time as predicted by the PEC $or PEC
+M! model. The different curves correspond to $1! the Lodge–Meissner viscometric
expectation, namely N1 /$r0=!0; $2! the stress ratio at the inner cylinder resulting from an
inhomogeneous flow calculation; and $3! the apparent stress ratio resulting from “appar-
ent” or “gap-averaged” quantities. The Lodge–Meissner rule is uniformly valid up to
!0.2.5. The stress ratio at the inner cylinder jumps up at !0.2.5 as anticipated from the
banding profiles observed in Fig. 15. Thereafter it levels off until !0&20 at which point

FIG. 16. Magnitude of the local strain $at the inner cylinder! versus imposed strain after one effective relax-
ation time following displacement at the inner cylinder, !0. Here, %=0.3, ,=0.005, b=100, )A=0 and E−1=0.

FIG. 17. The stress ratio N1 /$r0 as a function of !0. $a! For different value of the motor response rate b. $b! For
different geometric curvature p. In these two figures, %=0.3, ,=0.005, )A=0 and E−1=0.
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it merges with the predicted value of the strain $this marks the end of the banding region!.
The apparent stress curve roughly follows the Lodge–Meissner relation to strains of !0
.20 for b=100, thereafter it falls off below the curve.

Figure 17$a! also shows the effect of the motor response rate b on the stress ratio
measured in a step strain experiment. For larger b the apparent stress ratios $and those at
the inner cylinder after banding! follow the Lodge-Meissner relation to larger strains $for
b=1000 they extend to !0=60!. Figure 17$a! shows that the value of b does not affect the
banding region, it only affects the agreement with the Lodge–Meissner relation resulting
from the ideal homogeneous/affine deformation or the value of the Lodge–Meissner ratio
evaluated using apparent gap-averaged quantities. Figure 17$b! shows that the curvature
parameter p only affects the banding region $as in Fig. 16! and not the agreement with the
Lodge–Meissner relation. The deviation from the Lodge–Meissner relation observed in
Fig. 17$b! for large !0 is due solely to the imperfect motor response; as b increases, the
Lodge–Meissner relation is satisfied to larger and larger applied strains.

VI. CONCLUSION

In this work we have examined the spatial and temporal evolution of inhomogeneous
flow fields in viscometric devices such as cylindrical Couette cells. The basic formulation
is that of a two species elastic network model which can capture, in a self-consistent
manner, the creation and destruction of elastically active chains as well as the effects of
conformational-driven diffusion which arise in areas with large spatial gradients of the
local stress or deformation. In the limit of no creation or destruction in the number of
each species, the constitutive equations reduce to a two mode noninteracting model that
is consistent with the partially extending and convecting $PEC! strand framework pro-
posed by Larson. Computations with this model provide a good qualitative description of
recent experimental measurements of inhomogeneous flow development in concentrated
solutions of monodisperse entangled polymer chains "Tapadia and Wang $2004, 2006!;
Hu et al. $2007!#. It also sets the stage for future study of nonhomogeneous flows of the
full $interacting! two species scission/reforming model for wormlike micellar solutions
"Vasquez et al. $2007!#.

Our calculations with the single-mode and two-mode PEC-type models show that the
underlying nonmonotonic relationship between shear stress and deformation rate in ho-
mogeneous flow leads to the development of shear bands in inhomogeneous flow. The
precise shape of the resulting flow curve that is obtained macroscopically depends on the
specifics of the experimental procedure $e.g., rapid step increases versus slow ramps! and
test fixture $e.g., the relative magnitude of the gap p= $ro−ri! /ri! as well as the relative
magnitude of the local conformation-driven diffusivity parameter $)A!. These steady state
computational observations are consistent with results from an alternate single species
model that has been investigated by Olmsted et al. $2000! in inhomogeneous flow. In
particular when )A#0, a unique flow curve results independent of start-up conditions.
Time-dependent calculations in “step strain” experiments and in start up of steady shear
flow show that the velocity profile across the gap and the total stress measured at the solid
surfaces are coupled and evolve in a complex $and nonmonotonic! manner as the shear
bands develop. This is consistent with recent time-resolved particle imaging velocimetry
measurements in both concentrated polymer solutions "Tapadia and Wang $2006!# and in
wormlike micellar solutions "Miller and Rothstein $2007!#. The computational approach
developed here can also be extended to more complex deformation histories such as large
amplitude oscillatory shear which have recently been investigated experimentally "Tapa-
dia et al. $2006!#.
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These computational results have a number of important implications for experimental
viscometric observations of apparent or “gap-averaged” quantities. First, it can be noted
that—in contrast to models of Johnson–Segalman type—the present model does not lead
to unphysical oscillations in the damping function h$!0!. Experimental measurements of
the damping function can thus be used to obtain values of the nonlinear model parameter
$%! which controls the nonlinear enhancement in the destruction rate of elastically active
components. Second, in our computational “step strain” experiments, the coupling be-
tween the imposed deformation history and the spatio-temporal development of the shear
bands results in an apparent departure from the Lodge–Meissner rule at large strains;
however, the extent of this departure is also convolved with the specifics of the response
function of the motor driving the wall displacement. Finally, in steady shear flow, the
small but finite spatial inhomogeneity of the global stress field realized in the device
$controlled by the magnitude of p! cannot be neglected.

Our calculations with the both one-species $PEC! and two-species $PEC8M! models
show that at steady state for our parameter range the system always selects uniquely a
banded structure with the higher deformation rate region near the inner, moving cylinder.
This is in contrast to calculations with a Johnson–Segalman-type model "Olmsted et al.
$2000!# which can show reversal in the band ordering, but it is consistent with many
experimental observations of local velocity fields in Couette cells. However, this also
implies that point-wise reconstruction of the flow curve from local measurements of the
velocity gradient and the known stress distribution in the device $see Figs. 6 and 7! will
always lead to a monotonic curve, albeit of very small slope $depending on the value of
p!, even though the underlying constitutive relationship is nonmonotonic. Considering
the inverse problem, it thus does not seem feasible to use local kinematic observations of
a monotonic relationship between shear stress and deformation rate to rule out the pos-
sibility of a nonmonotonic homogeneous flow curve "Hu et al. $2007!#. As we show in
Sec. III D, such homogeneous flow curves will be locally unstable to perturbations and
the system will evolve to select a new inhomogeneous profile that is consistent with
conservation of mass and linear momentum, the appropriate boundary conditions and the
details of the viscoelastic constitutive equation. It is thus critical to develop and explore
the rheological predictions of realistic constitutive models that self-consistently couple
the nonlocal evolution of the local microstructure and the global state of stress in the
fluid.
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