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Fully nonlinear flow-constitutive model simulations are employed to investigate constructive and 
destructive interference of counter-propagat ing shear waves and their associated stress profiles within 
a viscoelastic layer of ‘‘intermediate depth’’. Linear unidirection al shear waves in sufficiently thick visco- 
elastic layers, the viscoelastic analog of Stokes’ second problem, were exploited as a rheological tool by 
Ferry et al. [1,2]. The extension to intermediate gap heights for linear and nonlinear driving amplitudes 
was studied by our group [3–5], and by Balmforth et al. [6] for viscoplastic fluids. Here we explore the 
nonlinear quasi-stationary response of the entire viscoelastic layer to an oscilla ting boundary, greater 
than the gap-loading limit of typical shear rheometers but less than the depth of effective attenuation.
We illustrate how to tune the degree and partitioning of nonlinearity versus driving amplitude and fre- 
quency, gap height, and fluid viscoelasti city.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction 

The motivation for this study arises from laboratory evidence of 
heterogeneous standing waves induced by coordinated epithelial 
cilia in lung cell cultures together with the fundamenta l question 
of whether mucus transport in the cell culture (and indeed in lung 
airways) is governed by linear or nonlinear viscoelastici ty. Mucus 
layers line the airways to protect the lungs against inhaled partic- 
ulates, bacteria, viruses, and other harmful substances. The effec- 
tiveness of mucus clearance to rid the lung of airborne matter is 
based on the interplay between cilia, air drag, mucus, and the peri- 
ciliary fluid that surrounds the cilia. Both coordinated cilia and 
phasic air drag continuously provide oscillator y shear driving con- 
ditions on the mucus layer. Very little evidence is available on the 
details of mucus response in vivo . In recent years, developmen t of 
human bronchial epithelial (HBE) cultures [7] has afforded detailed 
laboratory observations, illustrated in Fig. 1, with coordinated cilia 
driving the flow. Position time series of passive microbead tracers 
are captured at several heights between the cilia tips and the air- 
mucus interface. Oscillatory shear is seen to dominate the mucus 
flow field, since the neutrally buoyant beads remain at the same 
height within experimental resolution and duration. Furthermore,
the height-depend ent bead displacemen ts show a dynamic heter- 
ogeneous shear strain characteri zed by an attenuati on in the shear 
wave amplitude with height above the cilia.
ll rights reserved.

Vasquez).
These laboratory observations raise the question as to whether 
height-d ependent bead time series carry information about the 
viscoelasti c propertie s of the mucus layer; e.g., could the distrib- 
uted time series data be used to infer linear dynamic moduli as a
generaliz ation of the Ferry–Adler–Sawyer [1,2] protocol? Speculat- 
ing further, is it possible to infer that specific heights exhibit non- 
linear response whereas others exhibit linear response, and to infer 
the nature of that response akin to LAOS in rheometric shear con- 
ditions [8–10]?

In this work we extend our previous studies [3–5] of viscoelas- 
tic layers under oscillator y driving condition s in a planar shear cell 
geometry to probe these questions. We use the parallel plate 
geometry instead of the cell culture or airway geometries because 
the analysis and simulatio ns reduce to one spatial dimension, a sig- 
nificant reduction in numerical complexity and cost. These condi- 
tions require plate gap heights between the gap loading and 
Ferry–Adler–Sawyer limits.

The advantage of simulated data with linear and nonlinear con- 
stitutive relations coupled to the momentum equations is that one 
can explore signatures of nonlinearity beyond the measura ble data.
The most recent approach es in lung biology recognize that linear 
viscoelasti city of mucus is important, but nonlinearity is assumed 
to be confined to a small boundary layer where the cilia engage.
We are interested in whether nonlinearity is localized at the driven 
interface, or if it penetrates successively into the layer with in- 
creased forcing, or whether the shear waves generated at the dri- 
ven boundary set up interference patterns that could divide the 
layer into sub-layers of linear and nonlinear response. It is possible,
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Fig. 1. Analysis of mucociliary transport in HBE cultures. (a) Bead velocity data above the mucociliary interface. (b) Height-dependent bead displacement time series showing 
amplitude attenuation and evidence of bi-directional shear waves.
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although we confide up front that we have not succeeded, that 
modeling studies may point to new experimental probes for infer- 
ence of nonlinear properties analogou s to recent advances in LAOS 
[8–10]. We are intereste d in all aspects of the heterogeneous layer,
including shear and normal stresses, strains and strain rates, and in 
their correlations both temporal and spatial. It is not a priori obvi-
ous or known which of these features provides the most easily de- 
tected signature of nonlinear ity, nor whether the critical yield 
criterion is a stress, strain or strain rate threshold.

These cell culture observati ons are reminiscent of Stokes’ sec- 
ond problem concerning quasi-steady shear waves in an un- 
bounded domain above a plane oscillating at a fixed frequenc y.
Ferry, Adler, and Sawyer [1,2] extended Stokes’ second problem 
to linear viscoelastic materials and devised a shear wave rheome- 
ter based on explicit solutions of the equations of linear viscoelas- 
ticity in a semi-infinite domain. Solutions of the resulting system of 
equations, for each frequency of plate oscillatio n, give a one-to-one 
relation between the attenuation and oscillation length scales of 
the shear wave and the dynamic moduli of the material; see Eq.
(6) below. The method relies on polymeric liquids that are both 
semi-transpar ent and strain-birefri ngent.

In contrast to this ‘‘shear wave rheometer’’, modern commerc ial 
rheometers operate at sufficiently small gap heights that heteroge- 
neous features cannot form, i.e., gaps are smaller than the attenu- 
ation and oscillation length scales of the material [2,11]. In this so- 
called gap-loading limit, the hydrodyn amics is controlled as a lin- 
ear shear wave, and the viscoelastic response (linear and nonlin- 
ear) is dictated by the frequenc y and amplitud e of the imposed 
plate motion. Most importantly , there is no feedback between vis- 
coelastic stresses and hydrodynamic s, the spatial dependence is 
completely known, and time-depend ent ordinary differential 
equations (ODEs) govern stress response for imposed strain. This 
decoupling of the viscoelastic response from the momentum bal- 
ance equations has afforded significant progress in the study of 
large-amplitud e oscillatory shear (LAOS) restricted to the gap- 
loading limit, including recently introduce d metrics for nonlinear- 
ity [8–10], and evaluation of constitutive equation s and their 
parameters [12,13].

However, conditions in cell cultures or in millimeter -scale par- 
allel plate shear cells preclude the use of these studies to interpret 
the observational data: the primary flow is an arbitrary shear and 
the stresses are heterogeneous. In the gap-loadi ng limit, the strain 
rate, strain, and driving frequency are controlled at every gap 
height and completely correlated, so that the amplitude of the 
shear stress is constant across the gap. However, in the intermedi- 
ate-gap regime all controls on stress and strain are lost except at the 
plates; heterogenei ty couples stress and strain fields, so that non- 
linearity propagates from the uncontrolled stress at the plates into 
the gap. Because shear and stress waves reflect off each boundary ,
there is no a priori guarantee how these features will constructively 
or destructivel y interfere, and therefore the layer heights of nonlin- 
ear and linear response are unpredictab le. The quasi-stationar y re- 
sponse, after transients have passed, is easily and explicitly derived 
in the linear viscoelastic regime. However, the nonlinear response 
is nontrivial, and specific to the material in question or the pre- 
sumed nonlinear constitutive law. In lung biology, it is easy to 
imagine how focusing of nonlinear response might promote mucus 
transport: a shear-thinned layer near the cilia interface could pro- 
vide a lubrication layer, allowing the ‘‘un-thinned’’ fluid above to 
translate as a plug. An internal thinned layer might allow a fraction 
of the mucus layer to translate relative to the rest of the layer. The 
existence of such scenarios, and the conditions under which they 
arise, motivate this study; again, we use a different geometry to 
probe these questions in order to reduce space dimensio nality 
and computational complexity.

We consider gap heights on the order of millimeter s, which 
support heterogeneous bi-directional shear waves. An example of 
experime nts in a similar geometry is the work of Winet et al.
[14], who studied mucociliary flow over frog palates with mucus 
layers up to 0.9 mm. Our focus here is to characterize the diverse 
behavior from weakly to strongly nonlinear viscoelastic fluids
and constituti ve laws in this geometry . The phenomena we explore 
are natural consequences of heterogeneous standing waves of 
deformat ion and stress in this intermedi ate gap height regime.
The study is carried out using one of the canonical nonlinear con- 
stitutive laws of continuum viscoelasticity, the Giesekus model,
with tunable parameters to explore effects of nonlinearity.

The main challenge in choosing an appropriate constitutive 
equation for biologica l fluids in general, and mucus in particular,
is the multiple modes necessary to capture even the linear visco- 
elastic data. Data obtained in the Hill lab shows that to accurately 
match mucus dynamic moduli in small amplitude oscillator y
shear, over a physiologica l frequency range, it is necessary to 
superimpose approximat ely 10 discrete linear viscoelastic modes.
Rather than perform simulations of 10 coupled Giesekus tensorial 
constituti ve equations together with the hydrodynamic equations,
we instead model the linear and nonlinear behavior of a single 
nonlinear viscoelastic mode. For this, we consider model parame- 
ters within the range of those measured in mucus across physio- 
logically relevant concentratio ns: 1.5–5 wt.%; i.e., a modulus of 
10 Pa and a relaxation time of 1 s.

In the rest of the paper, we first describe the theoretical model- 
ing and numerical tools used in our protocol. We then summarize 
nonlinear ity metrics that have been developed for gap-loading 
experime nts on viscoelastic materials, and explain their limitations 
with regard to the proposed heterogeneous oscillatory shear 
experime nts. We perform numerica l studies and apply nonlinear- 
ity metrics to illustrate the phenomeno n of interest for this paper:
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partial penetration of nonlinear ity, distributed non-unifor mly 
within the gap, in finite depth viscoelastic layers in oscillator y
shear.

2. Model formulation 

The system consists of a layer of incompres sible viscoelastic 
fluid of height, H, trapped between two plates. The dimensions of 
the plates are assumed much greater than the plate gap so that 
those boundary conditions are negligible over the course of the 
experiment. The fluid is set into motion by an oscillating lower 
plate with imposed translationa l velocity along a fixed axis,
U = U(t). It is assumed that the upper plate remains flat and parallel 
to the lower plate. For completeness, here we briefly discuss the 
formulation developed in previous work [3–5]. In this work v0(x, t),
p0(x, t) and s0pðx; tÞ denote, respectively , the velocity, pressure and 
extra stress fields, and the primes denote dimensional variables.

2.1. Governing equations 

� Conservation of mass and momentum 
By symmetr y, the one dimensio nal wave propagat ion problem 
leads to the following reductions: p = p(y, t), vx = vx(y, t), vy = 0,
vz = 0, sp = sp(y, t) with sp xz = sp yz = 0. With these, the equation 
for the conservation of mass is automatically satisfied and the 
conservation of momentum reduces to a scalar equation,
q
@v 0x
@t0
¼
@s0pxy

@y0
þ gs

@2v 0x
@y02

;

where q is the fluid density and gs is the solvent viscosity. To 
close this system, a constitut ive equation for the extra stress ten- 
sor, s0p, is necessary. We are interested in differe ntial constitut ive 
models where the extra stress is calculated through some aver- 
age of the history-de pendent conformat ion of interacting poly- 
mer chains, such as the Giesekus model [15].
� Giesekus model 

The Giesekus model is based on the concept of anisotropic drag 
between the solvent and polymer molecule s. The latter is repre- 
sented by Hookean dumbbells immerse d in a Newtonian sol- 
vent [15,16]. The constitutive equation for the extra stress 
tensor, following the sign convention from Larson [17], is 
@s0p
@t0
þ ðv0 � $0Þs0p � ð$

0v0ÞT � s0p � s0p � ð$
0v0Þ þ

s0p
k
þ ag

gp
s0p � s0p

¼
gp

k
½ð$0v0ÞT þ ð$0v0Þ�;

where ag is a so-called mobilit y param eter; k is the fluid relaxa- 
tion time; and gp = g0 � gs is the polymer viscosity, with g0 the
material’s zero shear viscosity. In this manner, the Upper Con- 
vected Maxwell (UCM) model correspon ds to the limit ag = 0.
Note, here we use the subscript g in the nonlinea r paramete r
of the Giesekus model (ag), to differentia te it from the reciprocal 
of the attenuation length of a viscoelas tic shear wave defined by 
Eq. (6) below.

2.2. Non-dimensi onal equations 

The following characteri stic scales are used in the non-dimen- 
sionalization of the resulting system of equation s,

t ¼ t0

k
; x ¼ x0

H
; v ¼ v0

H=k
; sp ¼

s0p
G0
; p ¼ p0

G0
:

With this scaling the conserva tion of momentum becomes,

@vx

@t
¼ 1

El
@spxy

@y
þ bs

@2vx

@y2

" #
; ð1Þ
where the Elasticity number, El = qH2/(g0k) = Re/We, is the ratio of 
elastic to inertial forces. With our scaling, the Weissenb erg number 
corresp onds to the non-dimens ional amplitud e of the bottom plate 
velocity , We = kU0/H, and the Reynolds number is Re = qU0H/g0. In 
additio n, we assume bs = gs/g0� 1, so that the solvent viscosity is 
negligib le relative to the polymeric viscosity.

In the same manner, the non-dimensional Giesekus constitutive 
equation becomes 

@sp

@t
� ð$vÞT � sp � sp � ð$vÞ þ sp þ

ag

1� bs
sp � sp

¼ ð1� bsÞ½ð$vÞT þ ð$vÞ�: ð2Þ

Note that with our scaling the Deborah number is the non- 
dimensio nal driving frequency, De = kx, so that the non-dimen- 
sional velocity at the moving boundary is given by,

vxð0; tÞ ¼We cosðDe tÞ: ð3Þ

From Eq. (3) we see that the limit De ? 0 corresponds to steady 
viscomet ric flow, while We ? 0 is the linear viscoelastic limit, of- 
ten called small amplitud e oscillatory shear (SAOS). Note also that 
the bulk strain is c0 = A/H = We/De, where the maximum amplitude 
of the plate is A = U0/x. In this work, we will analyze departures 
from linear behavior in terms of these dimensio nless groups, which 
in the gap loading limit are classically compiled in phase diagrams 
in the (We,De) paramete r space, known as Pipkin diagrams [18].
The heterogeneous extension of the Pipkin diagram is presented 
in Section 5.3.

To solve the PDE system Eqs. (1) and (2) we impleme nt a wave 
propagat ion algorithm as in [3]. There it was shown that the 
boundary condition s can only be imposed on either the stress 
or the velocity at each boundary, while the remaining variables 
are dictated by characterist ic data. In this work we impose 
boundary conditions on fluid velocity, unless otherwise noted.
At the top plate the velocity is set to zero, vx(t,H) = 0, and a
simple harmonic motion is imposed on the bottom plate. In the 
latter, instead of an instantaneous jump in the velocity, we use 
a ‘ramp’ of the form,

vxðt;0Þ ¼We tanhðbtÞ cosðDe tÞ: ð4Þ

The choice of the parameter b only affects the transient part of 
the time series and not the quasi-steady state, as shown in Fig. 2.
We use b = 10 s�1 for all our simulations.

3. Gap height bounds for the gap-loading and surface-loadi ng 
regimes

Consider a viscoelasti c fluid placed between two parallel planar 
boundari es, one fixed and the other undergoing sinusoidal dis- 
placemen ts. Under these condition s shear waves are launched 
from the moving boundary , and if the effects of side walls and 
non-para llelism of the plates are negligible, they propagate as 
one-dimens ional disturbance s toward the opposing boundary. This 
propagat ion depends both on the properties of the fluid and on the 
size of the gap. Based on the interplay between these two condi- 
tions, we can different iate three cases. First, in the gap-loading limit 
the gap between the plates is sufficiently narrow, so that waves are 
unable to form, inertial effects can be neglected, and the sample 
moves in phase with the driving surface. In this case, a uniform 
shear rate profile evolves within the gap. These condition s are 
exploited in essentiall y all commercial shear rheometer s. Second,
if the wave attenuati on scale is larger than the gap height,
reflection occurs and bidirectional waves lead to distinct standing 
shear wave patterns. In this intermedi ate gap height regime, we 
will show that a wide range of behaviors arise depending on the 
waveleng th of the oscillation relative to the gap height and of 
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course the amplitude of the imposed boundary motion. The 
extension to intermedi ate gap heights for linear and nonlinear 
driving amplitudes was studied previously in [3–5]. Casanellas 
and Ortín [19] also recently studied this limit investigating the 
flow of an upper convected Maxwell fluid between two plates 
oscillating synchronous ly. Third, if the shear waves have sufficient
room to develop and yet decay nearly to zero before reaching 
the top plate, the experime nt conforms to Stokes’ second problem,
as exploited by Ferry et al. [1,2]. This case is known as the surface-
loading limit .

Here it is important to point out that the heterogenous behav- 
ior investiga ted in this work is not to be confused with the highly 
studied phenomeno n of shear banding that arises, at critical shear 
rates, from flow instabilit ies in the gap-loading limit. For this case 
inhomogeno us strain rate profiles are observed within the gap 
and inhomogene ities gradually disappear at high frequenc ies. This 
occurs because the system does not have enough time to relax 
and shear bands cannot form completely within a cycle [20,21].
On the contrary, the nonlinear behavior we study here has its 
origins in the constructive and destructive interference of 
counter-pro pagating shear waves and associated stress profiles.
In this case, the strain rate varies continuously throughout the 
gap for all material parameters and driving condition s. We note 
that the nonlinear behavior is also attenuated as the frequency 
increases.

Before we investiga te the heterogenous limit, we pause to ana- 
lyze a priori bounds on the gap-loading, intermediate-gap , and sur- 
face-loading regimes. This can be done analytically in the case of 
linear viscoelastic materials . Here we follow Schrag [11] who char- 
acterized the gap-loading limit in terms of the velocity gradient.
We translate this argument into an upper bound on the gap height,
H, in terms of linear dynamic moduli. In this section we use dimen- 
sional variables, since we want to keep H explicitly in the equa- 
tions, but we omit the prime notation.

In the linear viscoelastic limit, for a stationary top plate, and gi- 
ven the following driving condition at the bottom plate,

vxð0; tÞ ¼ U0eixt ;

the velocity profile at any point within the gap is given by,

vxðt;YÞ ¼ U0
sinhðdYÞ
sinhðdHÞ e

ixt ; ð5aÞ

d ¼ aþ ib: ð5bÞ

with Y = H � y, and we use complex notation for convenience , a and
b are, respectively, the reciprocal attenua tion and oscillation length 
scales of unidirectio nal waves. For a detailed derivatio n of Eq. (5a)
see [3]. For the UCM model, and therefore linearized Giesekus mod- 
el, these reciprocal lengths are given by [2,3],
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2

2
1
jG�j �

G0

jG�j2

 !vuut ; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx2

2
1
jG�j þ

G0

jG�j2

 !vuut ; ð6Þ

where the complex modulus is G⁄ = G0 + iG00. Here the storage mod- 
ulus, G0, captures the elastic effects, while the loss modulus , G00, cap- 
tures the viscous effects. It can be shown that for viscous fluids a/
b = 1, whereas for elastic solids a/b = 0. Viscoelast ic fluids span 
these two limiting cases. We again caution the reader to not confuse 
the wave paramete r a with the Giesekus nonlinea rity paramete r ag.

From Eq. (5a) the velocity gradient is,

@vx

@Y
¼ vx;Y ¼ U0d

coshðdYÞ
sinhðdHÞ eixt: ð7Þ

In the gap-loading limit, stress and strain should be approxi- 
mately uniform in the gap, the instantaneo us velocity profiles
across the gap are linear, and the shear rate is independent of posi- 
tion [2,11]. That is, in this limit the velocity gradient is given, to 
first order, by 

vGL 
x;Y ¼

U0

H
eixt þ OðHÞ:

This behavior is insured if jdHj � 1, which renders cosh(dY) � 1.
Likewise, Eq. (7) can be manipulate d to show 

jvx;Y j ¼ U0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ðaYÞ þ cos2ðbYÞ � 1

cosh 2ðaHÞ � cos2ðbHÞ

vuut :

As a conseque nce of vGL 
x;Y

��� ��� being constant in space, and following 
Schrag [11], we look for conditions where jvx;Y j= vGL 

x;Y

��� ��� exhibits spatial 
variation as the signature for departures from the gap-loading limit .
The formulas above yield a separable form of this ratio:

jvx;Y j
vGL 

x;Y

��� ��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaHÞ2 þ ðbHÞ2

cosh2ðaHÞ � cos2ðbHÞ

s" #

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2ðaYÞ þ cos2ðbYÞ � 1

q� �
: ð8Þ

The second factor in Eq. (8) captures all spatial depende nces,
and so we normalize the velocity gradient one step further to iso- 
late this dependence. We define a normalized velocity gradient,
~rv , by,

~rv ¼ N
jvx;Y j
jvGL 

x;Y j
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 a

b
bY

� �
þ cos2ðbYÞ � 1

s
; ð9Þ

where N is the reciprocal of the first factor in Eq. (8). Since ~rv de-
pends only on bY and a/b (which lies betwee n 0 and 1), the master 
plot shown in Fig. 3 captures the spatial variations of ~rv for any 
viscoela stic material whose properties are given by a and b, or 
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equivalen tly by its dynamic moduli, see Eq. (6). Note that whenever 
bY [ 0.1, differences between the velocity gradient for all a, b, and 
Y, is less than 5% (see inset in Fig. 3). This is the signature of the gap- 
loading regime, and gives the following bound for the gap height in 
the gap loading limit: H 6 1/(10b).

Next, we follow a similar argument to determine limits for the 
surface-loadi ng regime. In this limit the velocity is given by [2],

vxðt; yÞ ¼ U0eiðxt�dyÞ;

and the resulting normaliz ed velocity gradient is,

~rv ¼ N
jvx;Y j
jvGL 

x;Y j
¼ 1

2
eaY ¼ 1

2
eða=bÞðbYÞ: ð10Þ

Here Y, N and jvGL 
x;Y j are defined as before. Plots of this limit are 

shown in Fig. 3 by dashed lines. For the surface loading limit the 
condition on the height is H
 1/a and is highly dependent on 
the material properties.

Finally, we can also define bounds for heights in the intermedi- 
ate gap regime. In general for any viscoelastic fluid the require- 
ment is that the sample thickness accommodates the wavelength 
of the propagating shear wave, i.e., H is of order 1/ b or larger. To 
express this limit as a function of material parameters, we use 
Eq. (6). Since b P a, the bounds for any viscoelastic material in 
the intermediate gap height are approximat ed by 1/ b 6 H 6 1/a.

Note that the formulation of Eq. (6) includes the assumption 
gs = 0. However, it can be shown that the functiona l form of a
and b remains the same after introducing a solvent viscosity, e.g.,
using the Oldroyd B model instead of UCM. In this case the com- 
plex modulus is G⁄(x) = G0(x) + gsx + iG00(x). Asymptotic analysis 
for small solvent viscosity shows that while the oscillation wave 
length (2p/b) always increases with the addition of a solvent, the 
attenuation length (1/a) may decrease or increase depending on 
the relation between the elastic and viscous components of the 
complex modulus. To first order, addition of solvent viscosity in- 
creases the attenuation length, or equivalently the damping of 
the shear wave occurs on longer length scales, if 

G00 >
ffiffiffi
3
p

G0:
4. A review of LAOS metrics in rheometric and non-rheom etric 
flows

The simplest model for a nonlinear viscoelasti c material is the 
Upper Convected Maxwell (UCM) model, whose constitutive equa- 
tion in non-dimensi onal form is 
@sp

@t
� ð$vÞT � sp � sp � ð$vÞ þ sp ¼ ð1� bsÞ½ð$vÞT þ ð$vÞ�: ð11Þ

In the limit of small deformat ions the Giesekus model reduces 
to the UCM model and fittings to experimental data in this regime,
for example to small amplitude oscillatory shear (SAOS), give val- 
ues for the relaxation time, k, and the modulus, G0. The storage 
and loss moduli for the UCM model are [16],

G0ðxÞ ¼ G0
ðk2pxÞ2

1þ ðk2pxÞ2
; G00ðxÞ ¼ G0

k2px
1þ ðk2pxÞ2

; ð12Þ

here the frequency, x, has units of Hz. Using Eqs. (6) and (12), we 
can now estimate bounds on the gap height, H, that insure the 
gap-load ing limit for different materials , by H⁄ < 1/(10b). Table 1
shows the paramete r values for three representat ive viscoelas tic 
fluids and their calculate d H⁄. Recall that we defined the intermedi- 
ate-gap regime for heights 1/ b 6 H 6 1/a. From Table 1 we see that 
while the lower bounds for the viscoelastic and strongly elastic flu-
ids are comparable , their upper bound s differ by one order of mag- 
nitude. This is a conseque nce of the viscoelas tic wave being more 
damped than a pure elastic wave.

4.1. Resonance heights of the shear gap 

For a viscoelasti c fluid confined between two parallel plates and 
given a shear wave speed c, a shear wave launched from an oscil- 
lating bottom plate at period 2p/x will travel a distance Lr = 2pc/x
in one period of the plate motion. Lindley et al. [5] investigated the 
spatial distribution of shear and normal stresses for three model 
materials and several H/Lr ratios. They found that the viscoelastic 
response shows non-monoto nicity of stresses within the gap with 
respect to the gap position, y, for fixed material parameters, gap 
height and driving conditions, and with respect to changes in gap 
height and material propertie s, for all other parameters fixed,
respectivel y. And they showed that there are large domains in 
the full parameter space where the maximum shear stress occurs 
within the interior of the gap, as opposed to the driving boundary .
Following [5], we define a resonance height Hr = Lr/2 = pc/x speci-
fied by the shear wave speed,

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0 þ s0yy

q

s
: ð13Þ

Here, as in Table 1, we take G0 = 10 Pa and we assume the den- 
sity to be comparable to that of water, q � 1000 kg/m 3. Then, for 
the UCM model Eq. (13) becomes,

cL ¼

ffiffiffiffiffiffi
Go

q

s
¼ 0:1 m=s: ð14Þ

In this case Hr = 0.1/2 = 5 cm for x = 1 Hz. For nonlinear visco- 
elastic responses, syy – 0 so that the ‘‘resonant height’’ is not 
well-defined, and if so only in an averaged sense, since the wave 
speed of the nonlinear solution for vx, sxy, sxx and syy, varies in both 
space and time. In Section 5.1.2 we discuss the procedure we fol- 
low to specify a resonance height.

4.2. Large Amplitud e Oscillatory Shear (LAOS)

4.2.1. Review of LAOS analysis in the gap-loading (homogeneous) limit 
In the gap-loading regime, linear viscoelastici ty, often called 

small amplitud e oscillatory shear (SAOS), implies that the material 
propertie s are determined by measurements of the shear stress 
amplitud e, s0, and the phase angle, d, between the stress and 
the applied strain, c = c0sin(xt): s(t) = s0sin(xt + d). The dynamic 
moduli are given by G0 = G0(x) = (s0/c0)cos(d) and G00 = G00(x) =
(s0/c0)sin(d) [2]. If the strain amplitude, c0, is increased



Table 1
Fluid param eters. Here G0 = g0/k = 10 Pa for all three fluids, and x = 2p rad/s. In this work we consider gap heights on the order of cm, which correspond to the intermediate gap 
regime for all three fluids.

Fluid g0 (Pa s) k (s) a/b G0/G00 1/a (mm) 1/ b (mm) H⁄ (mm)

Strongly elastic 100 10 0.0080 62.832 2000.1 15.915 1.592 
Viscoelastic 10 1 0.0791 6.2832 200.63 15.866 1.586 
Nearly viscous 0.1 0.01 0.9391 0.0628 5.8218 5.4675 0.547 
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systematical ly to enter the nonlinear viscoelasti c regime, the 
resulting tests are known as large amplitud e oscillatory shear 
(LAOS), and the stress response, although constant across the 
gap, is no longer restricted to the fundamenta l harmonic of the 
strain. Analyzing data for rheological significance obtained from 
LAOS experiments is not straightforwar d, and several protocols 
have been proposed. For an excellent recent review, we refer to 
[22]. The most common methods of interpreting LAOS data are 
Fo uri er tra nsf orm (FT ) rh eo lo gy [2 3–25 ], Lis sa jo us –Bo wdi tc h cur ves 
[23], stress decomposition (SD) into elastic and viscous stress con- 
tributions [8,26], description of these contributions by orthogonal 
Chebyshev polynomials [9], and the analysis of the stress temporal 
waveforms as a sequence of physical processes [10].

Lissajous–Bowditch curves offer a qualitative analysis of the 
stress waveforms . Elastic Lissajous –Bowditch curves show the 
oscillatory stress as a parametric function of the input strain,
whereas in viscous Lissajous–Bowditch curves one plots the stress 
against the rate of strain. In this way, for an elastic solid, the elastic 
Lissajous–Bowditch curves are represented by straight lines and 
viscous Lissajous –Bowditch curves by circles, while the opposite 
is true for a viscous fluid. In the small amplitude regime for a gen- 
eric viscoelasti c fluid, both Lissajous –Bowditch curves are ellipses.
Departures from an ellipse signal that the nonlinear LAOS regime 
has been reached.

FT rheology decomposes stress time-dom ain series into a fre- 
quency dependent spectrum and deviations from linear behavior 
are studied by comparing relative intensities of higher harmonics 
with respect to the fundamenta l harmonic , In/I1 [25],

sxyðt; x; c0Þ / I1ðc0Þ cosðxtÞ þ I3ðc0Þ cosð3xtÞ þ I5ðc0Þ
	 cosð5xtÞ þ . . . ð15Þ

The coefficients are found in the usual manner by Fourier anal- 
ysis, either from experimental or numerica l data. In particular , the 
magnitude of the third harmonic, I3, besides being a metric to indi- 
cate departures from linear behavior, can be also viewed as a non- 
linear material property. To this end, Hyun and Wilhelm [27]
proposed the following nonlinear coefficient: Q ¼ I3=c2

0. At small 
strain amplitudes, but still within the LAOS regime, this coefficient
is a constant, Q0. This limit of small strain amplitude is known as 
the medium amplitude oscillator y shear (MAOS) [27].

Other approaches to the analysis of LAOS data are based on the 
fact that the shear stress can be written as a time-dom ain Fourier 
series of odd-harmoni cs [28]

sxyðt; x; c0Þ ¼ c0

X
n:odd

G0n sinðnxtÞ þ G00n cosðnxtÞ
� 	

; ð16Þ

Cho et al. [8] proposed a stress decomposition (SD) into elastic 
and viscous contributions based on geometric considerations . They 
show that these contributions are one-to-one functions of the 
strain and the strain rate respectively, so that they become one- 
dimensional lines in the elastic and viscous Lissajous–Bowditch 
curves. This overcomes the problem of characterizi ng two-dimen- 
sional ellipses in the Lissajous –Bowditch curves. The authors sug- 
gested a polynomial regressio n fit to these single-val ued curves 
as a mean to characteri ze nonlinearities.

Yu et al. [26] generaliz ed the SD method so that any signal is 
decomposed into Fourier series without limitations on odd or even 
harmonic s as in the SD method. That is, they decompose the signal 
into four parts, one for the odd harmonics of the sine function, one 
for the odd harmonics of the cosine function, one for the even har- 
monics of the sine function, and one for the even harmonics of the 
cosine function. The coefficients are then determined by polyno- 
mial fitting to orthogon al Chebyshev polynomials of the first and 
second kind. This approach allows for the analysis of transient data 
and normal stresses, as well as data from experiments with non- 
sinusoida l input, e.g., superimposed oscillatory shear flow.

Ewoldt et al. [9] extended the stress decomposition (SD) meth- 
od by expanding the elastic and viscous components in terms of 
Chebyshev polynomials of the first kind. The authors proposed sev- 
eral metrics to characterize nonlinear viscoelasticity. These metrics 
have a direct geometri cal representat ion in the Lissajous–Bowditch 
curves (see Fig. 3 in [9]), and have the advantag e of not being based 
on individual harmonic contributi ons. Läuger and Stettin [29] ex-
tended this framework to minimum-and large-stress compliance s
and fluidities in the case of stress-contr olled tests.

Finally, Rogers et al. [10] argue that a more physical description 
of the nonlinear behavior in LAOS can be attained if the responses 
are represented by a sequence of purely elastic to purely viscous 
physical processes. They defined a pair of parameter metrics for 
nonlinear ity: A0min; hc

� 	
. The first parameter is the minimum un- 

signed area enclosed by the projection of the elastic Lissajous –Bow-
ditch curve under rotations about the z � axis. The second 
paramete r, hc is the angle at which this minimum is attained. In 
this way, A0min; > 0 signals deviation s from linear viscoelastic 
behavior and the total stress response can be then characterized 
as ‘‘predominantl y elastic’’: hc < p/4 or ‘‘predomi nantly viscous’’:
hc > p/4.

All of these analyses are restricted to the gap-loadi ng limit; they 
are model independen t; and inferences about linear and nonlinear 
response are based solely on measured data at the driven plate un- 
der the assumption that the stress and rate of strain are uniform 
througho ut the gap. In the next sections we will show that, in 
the heterogeneous limit, all these metrics are also functions of 
space, and measure ments only at the plate are oblivious to, and 
are insufficient to infer, a rich set of linear and nonlinear behavior 
that evolves within the gap.

4.2.2. LAOS in the intermediate gap height regime 
Our interest here is in gap heights that support shear wave fea- 

tures and thereby nontrivial stress gradients, but that are small en- 
ough to avoid damping of the shear waves before reaching the 
opposing boundary. Loosely, the gap height, H, lies between 1/ b
(oscillation length) and 1/ a (attenuation length), as discussed in 
Section 3. Thus the gap response, after transients, consists of con- 
structive and destructive interfere nces of bi-directional waves of 
strain, strain rate, shear stress, and normal stresses. This heteroge- 
nous behavior could be experimenta lly observed by particle tracking,
simply by detection of higher harmonic generatio n of time series of 
particle position in the gap interior. However, the inference s that 
can be drawn from the data are not well understood . Instead, here 
we use numerical models to explore and predict this behavior 
and to learn the extent to which the behavior can be predicted 
from known propertie s of the fluid. This latter issue is prerequisite 
to any future progress on the use of models together with data for 
the inverse problem, i.e., to infer nonlinear rheological properties.
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As a first step in this process, we explore the behavior, within the 
gap, of some of the metrics used in the gap-loadi ng regime. The 
purpose of Section 5.2 is to represent the internal gap dynamics 
in the standard metrics of LAOS, which will reveal how these met- 
rics breakdown outside the gap-loadi ng limit.

Recall that the analysis of both SAOS and LAOS data is restricted 
to standard stress-or strain-control led rheometers in the gap load- 
ing limit. In this limit, a single-har monic sinusoidal stress (or
strain) is imposed throughout the gap. The typical LAOS analysis 
therefore is a mapping from a controlled linear harmonic mode 
(e.g., the strain) to the shear stress. Outside the gap-loading limit,
and once nonlinearities arise, coupling between velocity and stres- 
ses results in the violation of these assumptions , potentially every- 
where away from the driven plate. If one variable has higher 
harmonics at a given gap height, it is expected that all other vari- 
ables at that height will reflect higher harmonics. Hence, inference 
of material responses inside the gap are given by the correlations 
between the time series of strain and stress. Numerically, these 
correlations depend on the nature of the constituti ve relations that 
govern the fluid. Furthermore, the fact that in the heterogeneous 
limit the stress and strain can be written as,

sxyðt;y;x;c0Þ ¼ c0

X
n:odd

G0nðy;x;c0ÞsinðnxtÞþG00nðy;x;c0ÞcosðnxtÞ
� 	

;

ð17Þ

cðt; y; x; c0Þ ¼ c0

X
n:odd

c0nðy;x; c0Þ sinðnxtÞ þ c00nðy;x; c0Þ cosðnxtÞ
� 	

;

ð18Þ

limits the use of some of the metrics describ ed in the previous sec- 
tion which were formulated assuming that the only nonzero com- 
ponent of the strain series is c01.

We explore these correlations between stress and strain in the 
next section by direct numerica l simulations of the coupled system 
of hyperboli c PDEs for finite depth viscoelastic layers in oscillatory 
strain driving conditions.

5. Nonlinear phenomena for intermed iate gap heights 

In this section we present solutions of the PDE system Eqs. (1)
and (2) taking representative material parameters from Table 1,
i.e., g0 = 10 Pa s and k = 1 s. We consider two viscoelastic constitu- 
tive laws. The first one is the Upper Convected Maxwell (UCM)
model, which has the property that the velocity and shear stress,
after transient s pass, obey the same damped linear wave equations 
[3], but with different boundary conditions. One consequence of 
this linear behavior is that additional nonlinear terms in the differ- 
ential constitutive equation are required to generate nonlinear 
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Fig. 4. Velocity features from UCM model: k = 1 s, g0 = 10 Pa s, H = 5 cm, c0 = A/H = 0.5 an
state is achieved at different times in the layer: 1 s at y = 0, 9 s at y = H/2. (b) Snapshots o
and solid lines represent the envelope of maximum velocities corresponding to the amp
LAOS responses . For this we use the Giesekus model, and we fixed
its mobility parameter, ag = 0.35, in all the simulations.

Analyses of the solutions to the PDE system are based on the ob- 
served behavior of the velocity and stress components in both time 
and space. As an illustration of typical solutions, in Fig. 4 we show 
the time evolution and spatial distribution of the velocity calcu- 
lated with the UCM model. Fig. 4a plots typical time evolutions 
of the UCM velocity at different positions in the gap. That figure
shows that the quasi-steady state, after transient s have passed, is 
achieved at different times in the gap. We allow transients to pass 
at all points in the gap, and focus on the quasi-steady velocity 
(equivalently strain) and stress components. These time series 
are then investigated through their Fourier decompositi on.

We calculate the Fourier coefficients of the time series of any 
feature v(t,y) at each height in the gap as,

anðyÞ ¼
1
p

Z 2px

0
vðt; yÞ sinð2pnxtÞdt; bnðyÞ

¼ 1
p

Z 2px

0
vðt; yÞ cosð2pnxtÞdt; ð19Þ

where 0 6 y 6 H and v(t,y) can be the veloci ty, strain, strain rate,
shear stress or first normal stress difference. Although early tran- 
sient behavior has non-vanis hing even harmonic s [30], we only 
consid er the quasi-stea dy response that only possesses odd 
harmonic s.

Finally, we also focus on spatial structure, including snapshot 
profiles but also the spatial distribution of the Fourier spectrum 
Eq. (19) for each flow-stress feature. Fig. 4b dashed lines show 
snapshot s in time of the velocity profile throughout the gap. From 
these, we construct gap ‘envelope s’ from the maximum values of 
the velocity at each height. These envelopes (solid lines) are used 
to illustrate the effects of different driving conditions and to com- 
pare important features across all the variables studied.

In the following sections we solve the UCM and Giesekus mod- 
els for several conditions to investigate material responses in the 
intermedi ate-gap regime through harmonic analysis, Lissajous–
Bowditch curves, and Pipkin diagrams discussed below in 
Section 5.3.
5.1. Harmonic analysis in the intermediate -gap regime 

A linear LAOS behavior is characteri zed by time series of strain 
and stress whose only harmonic component corresponds to the 
fundamenta l frequency. Linear LAOS response is guaranteed for 
the UCM model, while the Giesekus model may exhibit higher har- 
monics depending on the driving conditions, the material proper- 
ties, and the gap height. This section investigates Giesekus model 
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departures from linear LAOS behavior in the intermediate-gap re- 
gime arising solely from changes in gap height , Deborah and Weiss- 
enberg numbers are kept constant , De = 1 and We = 0.5, while the 
gap height is varied as multiples of the resonance height, Hr, as de- 
fined in Section 4.1.

5.1.1. Linear limits of LAOS in the intermediate -gap height regime 
Recall that in this study all simulations with the Giesekus model 

have ag = 0.35. Furthermor e, as discussed in Section 4, the Giesekus 
model reduces to the UCM model in the limit of small deforma- 
tions, c0 = A/H ? 0. In the gap-loading regime, the only way of 
reducing solutions of the Giesekus model to those of the UCM 
model is by reducing A, since H is bounded, H [ 0.16 cm (see Sec- 
tion 3). In the intermediate- gap regime, this limit can be attained 
by either reducing A and holding H constant, or increasing H while
A is kept constant. In this section we show the consequences of 
these two approaches.

In Fig. 5a the time series of the shear stress at the driving plate 
are shown for H� Hr. In addition, the gap-loading solution, for the 
same driving conditions, is shown by the black line. These plots 
confirm that the PDE system Eqs. (1) and (2) reduces to the gap- 
loading results in the limit H ? 0. Fig. 5b shows solutions for the 
UCM and Giesekus models with a gap height H = 1 cm (above the 
gap-loading limit bound) and two values of the amplitude of the 
driving plate, A = 0.5 and 10 cm. Here, nonlinear departures of 
the Giesekus model are observed as the amplitude is increased,
similarly to results in the gap-loading limit. However, in contrast 
to solutions in the gap-loading limit, the velocity profiles of the 
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Fig. 6. (a) Velocity envelopes for the UCM and Giesekus models. At small gap heights both
of shear stress at three places within the gap. Dashed lines correspond to predictions from
intermediate-gap regime is characterized by deviations from simple sinusoidal time seri
shown in the figure, however similar behavior is observed, i.e., Giesekus stress amplit
indicating linear behavior.
Giesekus model are not linear. The main conclusion from both 
plots in Fig. 5 is that systematic changes in the gap height or the 
driving amplitude, in the intermediate-gap height regime, holding 
all other conditions and material properties fixed, result in dramat- 
ically different material responses within the gap. Hence, unlike 
the gap-loading regime, inferences cannot be made based on snap- 
shots or measureme nts at only one position in the gap, including 
the driven plate.

Fig. 6a compares the velocity envelopes for the UCM and Gies- 
ekus models for two gap-heights. At a height of H = 0.5 Hr (Hr =
5 cm) the velocities calculated from the two models overlap. Thus 
at this fixed bulk strain, off-resonant gap heights yield linear re- 
sponse. Note that the resulting velocity is curvilinear, since we 
are considering heights away from the gap-loading limit. For the 
same bulk strain but resonant gap height H = Hr, however, the 
two velocity profiles differ in magnitude and shape, indicating a
nonlinear response in the Giesekus model. Further characteri zation 
of this nonlinear behavior is carried out by analysis of the time ser- 
ies of the shear stress shown in Fig. 6b. Two main differences are 
observed between the UCM and Giesekus shear stress profiles at 
different positions within the gap. The first one is related to the 
amplitud e of the time series, which correlates to the amplitude 
of the velocity profile. Recall that the Giesekus model differs from 
the UCM model in an extra term which is quadratic in the stress.
This term represents ‘‘stress-induce d accelerati on of the relaxation 
process’’, resulting in shear-thinn ing and strain softening [17]. A
conseque nce of this nonlinear ity in the constitutive equation is 
that the amplitudes of both shear stress and velocity are smaller
12 12.5 13 13.5 14 14.5 15

−50
0

50

Time, [s]

−10

0

10

τ xy
, [

Pa
]

−50
0

50

Close to fixed plate

Middle of gap

Moving plate

(b)
 curves overlap indicating that the Giesekus model behaves linearly. (b) Time series 
 the UCM model and solid lines from the Giesekus model. Nonlinear behavior in the 

es for the Giesekus stress. Shear stress profiles corresponding to H = 2.5 cm are not 
ude is smaller, although in this case both profiles have a single sinusoidal form,



0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

I1, [Pa]

N
or

m
al

iz
ed

 g
ap

, [
−]

0 0.05 0.1 0.15 0.2
0

20

40

60

80

100

H, [m]

M
ax

(I 1), 
[P

a]

0.5 Hr
Hr
1.5 Hr
2 Hr

2Hr 3 Hr1Hr

UCM
De = 1

We = 0.5

(a) (b)
Fig. 7. Resonance in the UCM model. (a) First harmonic distribution of the UCM shear stress calculated for gap heights that are multiples of the resonance height, Hr = 5 cm.
Higher harmonic components (not shown) are zero for this model. (b) Maximum value of the first harmonic as a function of gap height.

−100 0 100
0

0.5

1

τxy, [Pa]

N
or

m
al

iz
ed

 g
ap

, [
−]

−50 0 50
0

0.5

1

rate of strain, [1/s]
−200 0 200
0

0.5

1

N1, [Pa]

−1 0 1
0

0.5

1

vx, [m/s]
−10 0 10
0

0.5

1

strain, [−]
−2 0 2
0

0.5

1

X/Hr, [−]

Giesekus

UCM

Fig. 8. Contributions from the first harmonic for the UCM (dashed) and Giesekus (solid) models, at their respective resonance heights: HUCM 
r ¼ 5 cm and HG

r ¼ 4:4 cm. For the 
UCM the first harmonic amplitude corresponds to the full response.

−20 0 20
0

0.5

1

τxy, [Pa]

N
or

m
al

iz
ed

 g
ap

, [
−]

−20 0 20
0

0.5

1

rate of strain, [1/s]
−50 0 50

0

0.5

1

N1, [Pa]

−0.5 0 0.5
0

0.5

1

vx, [m/s]
−4 −2 0 2 4
0

0.5

1

strain, [−]
−1 0 1

0

0.5

1

X/Hr, [−]

Full

I1

Fig. 9. Full envelopes (dashed lines) for the Giesekus model, and comparison with the amplitude of the Giesekus first harmonic, shown in Fig. 8. Harmonics higher than the 
fundamental are more important in the first normal stress difference, N1 = sxx � syy, and the strain rate. The third harmonic generation is revealed in the features with shorter 
wavelengths in the envelopes.

44 P.A. Vasquez et al. / Journal of Non-Newtonian Fluid Mechanics 196 (2013) 36–50
for the Giesekus model. The second difference in the profiles
shown in Fig. 6b is more subtle and relates to the degree of nonlin- 
earity or how the periodic curve departs from a single sinusoidal 
form. This second feature is more evident when the distribution 
of the Fourier coefficients across the gap is investigated , as we do 
next.

Harmonic analysis of the shear stress time series is carried out 
using Eq. (19) to calculate their Fourier coefficients, ai(y) and bi(y).
In addition, the correspondi ng harmonic amplitudes are calculated 

as Ii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

i þ b2
i

q
. In the intermedi ate-gap regime, spatial variation 

of the harmonics become important in the analysis of the results.
In particular, as it will be discussed in Section 5.1.2, we use spatial 
symmetr y of the fundamenta l harmonic to determine resonance 
heights. Fig. 7a shows the spatial depende nce of the resulting first
harmonic amplitude, I1, for the UCM model and gap heights:
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H = 0.5 Hr, Hr, 1.5 Hr, 2Hr. Recall that in the UCM model, harmonics 
higher than the fundamental are negligible after initial transients 
have passed. The feature of interest in that figure is the non-mono- 
tonic depende nce of max y(I1(y)) as the gap height ranges from half- 
integer to integer multiples of the resonant height, in agreement 
with [5]. To amplify this behavior, in Fig. 7b, we vary the gap height 
continuously , and compute max(I1(y)), which can arise anywhere 
in the gap and not necessar ily at the driving plate; for more details 
on this behavior see [5]. As hinted by Fig. 7a the amplitud e of the 
stress response can be intensified by being in and out of resonance,
which has important consequences in the nonlinear behavior stud- 
ied next.

5.1.2. A criterion for nonlinear resonance heights for non-constant 
wave speeds 

Following the results shown in Fig. 7, we want to investiga te the 
effects of the gap height on the Giesekus model to explore the cou- 
pling between resonance height and nonlinearity. Recall that our 
estimate of the resonance length comes from the linear assump- 
tion syy = 0 in Eq. (13). However, for the quasi-stead y solutions of 
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the Giesekus model the correspondi ng resonant height not only 
differs from the linear resonant height, but the wave speed varies 
in space and time through syy(t,y) – 0. By analogy with the UCM 
resonant features, we estimate a resonance length by finding the 
gap height for which the minimum of the first harmonic of the 
shear stress is located exactly at the middle of the gap. This notion 
is based on intuition about constructive interference of counter- 
propagating waves at resonance when the top boundary is fixed.
For A/H = 0.5 and x = 2p rad/s, we find for Giesekus HG

r ¼ 4:4 cm,
whereas for UCM HUCM 

r ¼ 5 cm. The fact that HG
r < HUCM 

r is due to 
the nonzero normal stresses in the Giesekus fluid, which in turn re- 
sults in a decrease of the wave speed. In fact we found that for the 
Giesekus model the wave speed, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0 þ syyÞ=q

p
, can have val- 

ues within the gap that are three orders of magnitud e smaller than 
the linear wave speed, cL ¼

ffiffiffiffiffiffiffiffiffiffiffi
G0=q

p
.
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Fig. 13. I3/I1 for strain rate from simulations of the Giesekus model in the gap- 
loading limit.
5.1.3. Spatial distribution of nonlinear LAOS behavior 
In this subsectio n we ask a simple question: if we filter the fun- 

damental harmonic s at each height in the gap to get the linear pro- 
jection of the response, how does the nonlinear ity in the Giesekus 
model alter this linear response structure ? Fig. 8 shows the funda- 
mental harmonic contribution, I1, of the shear and normal stresses,
strain and strain rate, and corresponding velocity and displace- 
ment for the UCM model (which has only the fundamenta l har- 
monic) and Giesekus model. The upshot of Fig. 8 is that 
nonlinearity has a significant global impact on the ‘‘linear’’ re- 
sponse structure. Next, Fig. 9 shows the full Giesekus response 
functions next to the linear first harmonic projections of Fig. 8.
Clearly, the higher harmonic structure is responsible for greater 
amplitudes of each response feature, and for higher spatial wave 
numbers, as a consequence of frequency-dep endent wavelengths.
Note that the most significant difference between the first har- 
monic and full harmonic envelopes arise in first normal stress dif- 
ference, N1, and the rate of strain, _c ¼ @vxðy; tÞ=@y. This observation 
is representat ive of all simulatio ns and will influence our choice of 
metrics of nonlinear ity. Since the rate of strain is ‘‘more nonlinear ’’
than the shear stress, nonlinear ity metrics should be based on flu-
idities and compliances, rather than moduli and viscosities, similar 
to stress-co ntrolled experiments in the gap-loading limit [29].

Anticipati ng an experime nt where passive tracers are tracked in 
time, we use Fourier analysis of each feature in Fig. 9 at each height 
in the gap. Fig. 10 shows the contributions of the first (I1), third(I3),
and fifth (I5) harmonics for the Giesekus shear stress for gap 
heights that are multiples of the resonance height, as well as the 
ratios I3/I1 and I5/I1 proposed as metrics of nonlinear ity, as dis- 
cussed in Section 4.2.1. The purpose of these plots is to investigate 
the effects of being in and out of the resonance height and to visu- 
alize interlacing layers of linear and nonlinear responses within the 
gap, shown in the final panels of Fig. 10 . The spatial distribution of 
the layering and the degrees of nonlinearity are strongly affected 
by the gap height relative to the linear resonance height.

Another important feature of Fig. 10 is the asymmetric distribu- 
tion of the nonlinear behavior across the gap. For example, when 
H ¼ 1:5HG

r the third and fifth harmonics are smaller close to the 
driving plate and increase significantly as they approach the upper 
fixed plate. This means that close to the bottom plate, the shear 
stress is larger in response to a plate displacement amplitude that 
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is three times larger, recall A/H = 0.5 is held fixed in all simulatio ns.
Yet the local response near the plate shows no higher harmonic 
generation, indicating a linear behavior. On the other hand, in 
the top half of the gap, the third and fifth harmonics are larger indi- 
cating an increase in the nonlinear behavior of the shear stress.
These observations strengthen our previous claim that measure- 
ments of stress at either boundary are insufficient to detect interior 
nonlinear response in this heterogeneous limit.

The consequences of this asymmetric al distribution of layers of 
linear and nonlinear response will be explored elsewhere, and 
hereafter, we focus our attention at the resonance height were 
the symmetry with respect to the middle of the gap is conserved.

5.2. Lissajous–Bowditch curves in the intermediate-ga p regime 

Another metric of nonlinear LAOS behavior of viscoelastic mate- 
rials is the projection of model solutions onto Lissajous–Bowditch 
curves. A three-dim ensional Lissajous–Bowditch plot is a paramet- 
ric curve of the form ðcðt; yiÞ; _cðt; yiÞ; sxyðt; yiÞÞ, where yi is some 
height within the gap. Elastic Lissajous –Bowditch curves are pro- 
jections onto the sxy � c plane, and viscous Lissajous–Bowditch 
curves are projections onto the sxy � _c plane. It is straightfo rward 
to show that for linear viscoelasti city, each of these planar projec- 
tions is constrained to lie on an ellipse. Deviations of either the vis- 
cous or elastic Lissajous curves from an ellipse are indications of 
nonlinear behavior. Here we highlight the fact that this metric of non- 
linearity relies on the assumption that the parametric curve ðcðtÞ; _cðtÞÞ
is always a circle, which is only guaranteed in the gap-loadin g limit .
However , in the intermediate- gap regime, this constraint is vio- 
lated for a nonlinear constitutive behavior (like the Giesekus mod- 
el) everywher e except at the boundaries.

As an illustration, in Fig. 11 we plot 3D Lissajous –Bowditch
curves from numerical simulations of the UCM and Giesekus 
models, extracting data in the middle of the gap, y = H/2, when 
H = Hr. Since for the UCM model higher harmonics than the fun- 
damental are negligible at all points within the gap, projections 
of the Lissajous–Bowditch curve onto the c� _c plane are always 
circles.

In stark contrast, all projections (i.e., including c; _c!) of the 3D 
Lissajous –Bowditch curves for the Giesekus model away from the 
plates may be non-elliptic al; higher harmonic s even in the strain 
and strain rate are possibly non-zero, as demonstrated by Fig. 9.
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properties of the reflecting wave, i.e., amplitude and phase, are critical in the distribution of nonlinear behavior within the gap.
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That is, it is not possible to obtain a 2D circular projection of the 3D 
Lissajous–Bowditch curve, the basic assumption of this LAOS met- 
ric in the gap-loading limit. This implies that one can no longer define
metrics of nonlineari ty based on deviations from elliptical shapes .
These fundamenta l differences between the usual LAOS analysis 
in the gap-loading limit and our studies of heterogeneous behavior 
call for new measures of nonlinearity. In the following subsections 
we analyze the consequences of this observation.

5.2.1. Gap-loading results with a nonlinear input 
In the gap-loadi ng regime, where the Lissajous–Bowditch curve 

in the base plane (c� _c) is a circle, characterizati on of the nonlin- 
ear behavior is based on the explicit mapping from this circular 
curve to stress projections onto the c � sxy and _c� sxy planes. Here 
we are interested in whether the Lissajous–Bowditch curves at any 
gap height in the full PDE simulation can be inferred from the time 
series of c� _c at that gap height. This is a subtle question: the an- 
swer will be yes only if there is no spatial coupling in the global re- 
sponse across the gap. Since we have physical boundary conditions 
at the plates, we fully expect the answer to be no. The point of this 
illustration, however , is that one cannot draw significant infer- 
ences about local material response from monitoring of the local 
c� _c time series when the response is nonlinear.

Before giving the Giesekus results, we first show that one can 
indeed employ a local viscoelastic inference at any gap height for 
the UCM model. We consider the gap-loading limit first, for which 
the UCM model is exactly solvable for an arbitrary imposed Fourier 
series for the strain rate of the form,

_cðx; tÞ ¼
X
n:odd

An sinðnxtÞ þ Bn cosðnxtÞ:

The UCM stress is given by,

sxyðx; tÞ ¼
X
n:odd

G0nðxÞ sinðnxtÞ þ G00nðxÞ cosðnxtÞ;

where the corresp onding Fourier coefficients are given explicitly,
G0nðxÞ ¼
An þ ðnxÞBn

1þ ðnxÞ2
; G00nðxÞ ¼

Bn � ðnxÞAn

1þ ðnxÞ2
: ð20Þ

These results are shown in Fig. 12 as projections of the 3D Lis- 
sajous–Bowditch curves. In this case, the curves for the UCM model 
are no longer ellipses, as higher harmonics are communicated to 
the stress from the nonlinear imposed strain rate, as dictated by 
Eq. (20). Results for the Giesekus model in the gap-loading limit 
with a nonlinear input are also shown in dot-dashed lines. In the 
middle of the gap, y = H/2, and since the differences between Gies- 
ekus and UCM are negligible, it is implied that for the locally im- 
posed nonlinear strain rate, the stress response is linear. On the 
other hand, results for y = 3H/4 indicate that, locally, the stress 
from the Giesekus model is behaving nonlinearly, revealing the 
non-trivial influences of spatial heteroge neity in the local response.

The comparis on between the heterogeneous Giesekus response 
and this artificial simulatio n in the gap-loading limit reveals the 
influence of nonlocal spatial structure, i.e., heteroge neity. That is,
one simulation is a chain of uncoupled stress tensorial ODEs, and 
the heterogenous Giesekus simulation can be viewed as a spatially 
coupled chain of tensorial ODEs. Again, the point of this illustration 
is simply that one cannot use local time series of c� _c inside the 
gap to infer material consequences of nonlinearity.

5.3. Pipkin diagrams in the intermediate -gap regime 

In this section, we study the effects of varying the Weissenb erg 
and Deborah numbers on the material response in the intermedi -
ate-gap regime. In the gap-loading limit, it is typical to represent 
viscoelasti c phenomena in the parameter plane of We = kU0/H
and De = kx, creating what is called a Pipkin diagram [18]. This is 
to be expected since an experiment in the gap-loading limit can 
only control conditions at the driving plate, i.e., frequenc y and 
amplitud e. In contrast, in the intermedi ate-gap height regime the 
response depends not only on the driving conditions and material 
propertie s, but also on the height of the gap, as shown in previous 
sections. A 2D Pipkin diagram is insufficient to characterize 
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material response, so we append another axis (gap height) to 
represent often dramatic differences in material responses.
5.3.1. Pipkin diagram: Dirichlet boundary conditions for velocity 
Fig. 13 plots contour levels representing the magnitude of I3/I1

for the strain rate in the gap-loading limit. It is clear from that fig-
ure that nonlinear behavior (bright spots in the figure) in the gap- 
loading limit requires larger We compared to intermediate gap.
This difference stems from the fact that in the gap loading-limi t
there is no formatio n of structure s, so that the maximum strain 
amplitude is always at the imposed plate. On the other hand, in 
previous sections we show that in the intermediate- gap regime 
the maximum strain amplitud e can arise anywhere in the gap. This 
implies that amplitudes in the interior of the gap can be large en- 
ough to result in a nonlinear behavior of the fluid, even though the 
given We number is not large enough to induce nonlinearity close 
to the driving plate.

We explore this behavior in the intermediate- gap height regime 
in Fig. 14 by comparing contour plots of max y(I3/I1) in We number
and H for different values of De number. The first observation is 
that as De number increases, larger gap heights and We numbers
are necessary to induce nonlinear behavior. On the other hand,
the common feature of these plots is the ‘peak’ in the nonlinear 
behavior when the gap height is comparable to the value of the lin- 
ear resonance height, i.e., H ’ HL

r as We ? 1. This peak is more pro- 
nounced for higher De number, since the nonlinear behavior out of 
resonance is diminished as the high frequency reduces formation 
of inhomogeneities . Furthermore, ‘peaks’ and ‘valleys’ in the con- 
tour plots show that linear and nonlinear material responses, for 
fixed We, can be attained by being in and out of resonance.

In Fig. 15 we plot the Pipkin diagrams, correspondi ng to De = 12,
of the shear stress, sp xy , and the first normal stress differenc e,
N1 = sp xx � sp yy. Note that higher harmonics in N1 for We = O(1)
appear only at resonance. In addition, from these figures one can 
clearly observe the decrease of the resonance height as function 
of the We number. That is, for small We numbers the peak in the 
contour plot with respect to H=HL

r plateaus at one, and as We in-
creases the location of the peak with respect to H decreases. This 
in agreement with our discussion in Section 5.1.2, and the fact that 
normal stress generation, sp yy, reduces the wave speed.
5.3.2. Pipkin diagram: Dirichlet boundary conditions for shear stress 
In an experiment like the cell culture discussed in the introduc- 

tion, the top boundary condition s are no longer vanishing velocity,
but rather there is a zero stress (stress-free) condition at the mu- 
cus-air interface. Fig. 16 shows the resulting Pipkin diagrams under 
these condition s for the strain rate, the shear rate, and the first nor- 
mal stress difference with De = 12. These figures indicate that the 
nature of the reflected waves affects the location and magnitude 
of nonlinear layers within the gap, stressing our previous claim 
that nonlinearities within the gap arise from constructive and 
destructive interference of counter-propa gating waves and the 
importance of the given boundary conditions.
6. Conclusions 

We have employed numerical simulations of the UCM and Gies- 
ekus constitutive models coupled to the momentum balance equa- 
tions to explore heterogeneity in finite, uniform thickness 
viscoelastic layers with oscillatory shear driving conditions. In par- 
ticular, we explore intermediate gap heights between the gap- 
loading and the surface-loading limits. Gap heights in this regime 
allow the reflection and superposition of counter propagat ing trav- 
eling shear waves within the layer.
In this intermedi ate gap regime of heterogeneous phasic shear,
metrics of nonlinearity develope d for the gap-loading limit, and 
described in Section 4.2.1, are no longer applicabl e. Nonlinea r
behavior in the heterogeneous limit is characterized by the pres- 
ence of harmonics higher than the fundamenta l in all viscoelastic 
features, i.e., shear stress, strain rate, and strain. The fact that not 
a single feature is linear in the intermediate regime, precludes 
the use of such ‘‘non-par ametric’’ (i.e., model independen t) met- 
rics. Therefore, to explore, detect, and assess nonlinearity in the 
heteroge neous shear regime, one must abandon non-parametric 
metrics and a high premium is then placed on models and simula- 
tions. The present study therefore selects a canonical nonlinear 
constituti ve equation (Giesekus) and reports on the phenomena 
that arise in phasic shear, organizing the wide range of behavior 
in generalized Pipkin diagrams.

A rich array of nonlinear behavior, highlighted by interlacing 
layers of linear and nonlinear response, is revealed by extensive 
simulatio ns of linear and nonlinear coupled systems of PDEs. The 
nonlinear response is intensified by gap heights that are multiples 
of the resonance height determined by the characteristic speeds of 
the propagating shear and stress waves, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðG0 þ syyÞ=q

p
. For the 

Giesekus constitutive equation we track the resonance height 
depende nce and correspondi ng features versus driving condition s
and material propertie s, captured by the spatial dependence of 
the normal stress in the direction of the flow gradient, syy. We find
that nonlinear behavior can be suppressed by selecting heights out 
of resonance, while maintaining the same driving conditions and 
material parameters, i.e., We and De numbers .

As motivated in the Introduction, the parallel plate geometry 
was chosen to explore heterogeneous nonlinear responses in a
sheared viscoelastic layer out of convenience: the governing sys- 
tem of quasilinear partial differential equations reduces to one 
space dimension. Future challenges lie in extending these studies 
to geometries of lung tissue cell cultures and to lung airways,
where at least two space dimensions are needed.
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