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A network scission model for wormlike micellar solutions
I. Model formulation and viscometric flow predictions
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bstract

In this paper a network model for wormlike micellar solutions is presented which incorporates scission and reforming of the chains, based on a
iscrete version of Cates’ ‘living polymer’ theory. Specifically we consider two elastically active Hookean species: long chains which can break
o form two short chains, which can themselves recombine to form a long chain. The chains undergo rupture at a rate dependent on the local

longation and deformation rate. This two species model, developed ultimately to enable understanding of inhomogeneous flows, is examined in
his paper for various deformations; steady-state shear flow, step strain, extension, and linear small amplitude oscillatory flow in homogeneous
onditions. We also examine how systematic variations in the model parameters affect the rheological predictions and material functions.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Wormlike micelles, also known as living polymers, have been
he center of numerous theoretical and experimental studies, see
or example the reviews [1,2]. Unlike typical polymers these
ong macromolecular assemblies can break and reform continu-
usly, showing distinctive behaviors under different deformation
onditions. Observations in small amplitude oscillatory shear
SAOS) flows show that under certain conditions the linear vis-
oelastic response is primarily a single mode Maxwell response
3,4]. Specifically, if we denote τbreak as the expected time for
reakage of the micelle, and τreptation as the expected time for
micelle to reptate out of its entanglements, when τbreak �

reptation, Cates [5], showed that wormlike micellar mixtures
ave a single mode Maxwellian response in the linear viscoelas-
ic regime, with a second ‘Rouse’ mode important only at high
requencies. He also showed that the time scale associated with
his first, dominant, mode is τeff = (τreptationτbreak)1/2 [5,6]. In

teady-state shear experiments, at small shear rates, γ̇ < γ̇1, and
arge shear rates, γ̇ > γ̇2, these micellar solutions exhibit a linear
ependence of the stress on the shear rate. However, given the

∗ Corresponding author. Tel.: +1 302 831 0582.
E-mail address: vasquez@math.udel.edu (P.A. Vasquez).
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ight conditions of concentration, salinity, and temperature [7], a
tress plateau in an intermediate shear-rate region, γ̇1 < γ̇ < γ̇2,
s observed in the flow curve and, in these cases, experiments
n a circular Couette cell commonly show the formation of two
rimary ‘shear bands’, a high shear rate region near the inner or
oving wall connected to a low shear rate region near the outer

r fixed wall [8–10].
In uniaxial extension flows experiments have shown a plateau

n the extensional viscosity for small extensional rates, followed
y a sharp extensional thickening and, at a critical elongational
ate, an extensional thinning [11].

In step strain these mixtures show a factorization of the shear
tress as σrθ = γG0g(t)h(γ) where G(t) = G0g(t) is the stress
elaxation modulus and h(γ) the damping function. Experiments
ave shown that G(t) can be well described by single exponential
elaxation G(t) = G0 e−t/λ. The damping function may have a
ore complex response. Experiments by Brown et al. [12] on a
TAB/NaSal system show a strain-hardening response followed
y a strain-softening. Recent experiments with a CPyCl/NaSal
olution show a monotonic softening response similar to that
escribed by the Doi–Edwards model [13]. Additionally, exper-

ments show that the Lodge–Meissner relation is obeyed up to
trains of γ0 ∼ 8 [13].

The present work presents a constitutive model to describe
he flow of wormlike micellar solutions under these different

mailto:vasquez@math.udel.edu
dx.doi.org/10.1016/j.jnnfm.2007.03.007
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eformation conditions and details the rheological predictions
nd parameter dependence of the model. The model includes
cission and reformation effects as well as an elastic network
esponse and diffusion of species in the presence of stress
radients. Such a model should thus be capable of capturing
nhomogeneous flow structures such as shear bands.

Various approaches have been taken in modeling wormlike
icellar solutions. Cates [14] introduced reaction dynamics to

ccount for the reversible breaking and reforming of the micellar
hains. In his model there are two different time scales, the rep-
ation time and the breaking time. Although experiments have
hown good agreement with his model, especially in linear defor-
ations, that model still fails to predict stress overshoot in the

tart up of steady shear [6] and to our knowledge no calcula-
ions in extensional flow have been done for that model. Other
uthors have combined dumbbell models for elastic chains and
etwork theory by introducing creation and destruction terms in
he evolution equation of the dumbbells [15,16]. Different forms
f these breaking and reforming terms have been considered.
autista et al. [17] developed a single species model based on
codeformational Maxwell constitutive equation and included
kinetic equation governing the relaxation time to account for

he dependence of the breakage rate on the shear rate. This par-
icular version of their model predicts a multivalued shear stress
ersus shear rate curve and hence one expects that the model
ill demonstrate shear banding.
Two species models have been considered to describe closely

elated fluids such as associative polymeric networks. These
ixtures do not typically exhibit shear banding, but these models

o incorporate two species in an elastic network with attach-
ent and detachment of strands. In [18] Cates introduced a
odified version of his association and dissociation dynamics

14], to model pairwise associating polymers. The dynamics dis-
ussed in that paper are similar to the ones considered here in
hat monomers form dimers and dimers break into monomers.
n [18] Cates focuses primarily on computing terminal relax-
tion times. Using Brownian dynamics simulations to evaluate
he rheological behavior of reversible polymeric networks, van
en Brule and Hoogerbrugge [19] assumed that the probability
f attachment to the network is proportional to the stretch of
he dumbbell. They introduced a FENE-like term in the prob-
bility of detachment to account for the fact that during flow a
hain has a higher probability of detaching once it becomes more
ully stretched. Brownian dynamics were also used in the work
f Hernandez-Cifre et al. [16] to simulate reversible polymeric
etworks, they considered two separate species, one represent-
ng active chains connected to the network by both ends, and
he other representing dangling chains connected to the network
y one end only. In their work, disassociation from the network
as an exponential function of stress and, by using the same

orm of the association rate as [19] they were able to predict
hear thickening. Tripathi et al. [20] in their two species net-
ork model for associative polymers derived a destruction rate
or the non-linearly elastic bridging chains which depends on
he stress acting on the micellar junction and a creation rate
hich depends on the configuration of the dangling ends and

he local shear rate. In their work the creation rate of the bridg-
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ng chains was proportional to a function of the shear rate and
tress.

Single species bead–spring models based on the Johnson–
egalman constitutive equation were considered by Olmsted and
ollaborators. In these models the number density of the species
as kept fixed and numerical studies were carried out with and
ithout non-local diffusion terms [21–23]. A similar model
ut with addition of variable density was considered in Refs.
24,25]. These models result in a non-monotone stress–strain
ate curve under homogeneous flow conditions. Under inhomo-
eneous flow conditions, with the addition of a viscous solvent
nd the incorporation of stress diffusion terms, these models
redict a stress plateau in the flow curve over a range of shear
ates. Numerical studies have shown that, without diffusion,
he structure of the steady-state solution depends on the flow
istory [21]. For shear rates within the plateau region, these
odels predict shear banding in the velocity profiles across

he gap in a cylindrical Couette geometry. Such models are
henomenological, that is they do not relate the state of the
tress directly to the microstructural dynamics of the micel-
ar system. Additionally, the Johnson–Segalman model predicts

singularity in the extensional viscosity at a finite elonga-
ional rate and exhibits a non-physical negative damping in
apid step strain deformations [26]. Experiments using NMR
maging [27] and small-angle neutron scattering [28] have also
hown that for a model to be able to accurately describe the
ighly non-linear behavior of some wormlike micellar solutions,
t should include local effects in the orientation and dynamics
f the molecules, as opposed to a bulk average of the proper-
ies. For these reasons alternative models, tied to the physics
f the micellar breakage and reforming processes, need to be
onsidered.

The present approach is based on a discrete version of Cates’
riginal reversible breaking theory. In contrast to Cates’ model
n which reptation theory was used, the breaking and reforming
ynamics in this model are incorporated into network the-
ry in which we follow elastic segments of wormy micelles
etween entanglement points. In the present approach two dif-
erent species are considered, one of length L that breaks in the
iddle to form two strands of equal length, L/2. These strands

an also recombine to form one species of length L as shown in
ig. 1.

In this paper we formulate the constitutive equations for such
model and consider predictions under different deformation

onditions assuming homogeneous flow. In Section 2 we present
he formulation and appropriate non-dimensionalization of our

odel. In Section 3 the governing equations describing steady
nd transient shear flow in a cylindrical Couette geometry and
n uniaxial extensional flows are presented. Section 4 deals with
nalysis of the model in the linear viscoelastic regime, specif-
cally small amplitude oscillation. Also, a first examination of
he model parameters and their effects on the model predictions
nd in particular on the magnitude of the zero shear rate vis-

osity is presented. In Section 5 non-linear material functions
n step strain, and in steady homogenous shear and elongational
ow are studied. The dependency of the material functions on
odel parameters such as the equilibrium number density of



124 P.A. Vasquez et al. / J. Non-Newtonian Fluid Mech. 144 (2007) 122–139

tribut

e
P
w
s
p
a

2

c
s
m
A
i
t
p
j
a
t
a
t
T
l
t
u
a
i
d

d

t

n

r
t
r

u
a
n
i

Fig. 1. Micellar network: (top) Cates’ model with a continuous dis

ach species and the breakage rate are explored. A second paper,
art II [13], consists of a detailed comparison of experiments
ith the predictions of the model and optimal model parameter

election for the model in agreement with experiments. Further
apers analyze this and similar models computationally in steady
nd transient inhomogeneous shearing flows [29].

. Formulation of the model

In the model presented here we simplify Cates’ dynamics by
onsidering only two species of wormlike micelles. We consider
pecies A, which are chains of length L units that break at the
iddle to form chains of length L/2 units, denoted species B.
nalogously, the short chains can join at their ends to reform

nto one long chain. This discrete dynamics is opposed to Cates’
heory in which chains can break with equal probability at any
oint along their length, and in which chains of any length can
oin to form a longer chain. This simplification of Cates’ break-
ge dynamics allows us to understand the species interaction,
o examine the model in a variety of non-linear flow conditions,
nd in particular, to develop a theory which consistently cap-
ures the spatial variations in the number density of each species.
his is key to understanding the experimental behavior of worm-

ike micellar solutions and the selection of the stress at which
hese solutions show shear banding [30]. One effect the contin-
ous, versus the discrete, dynamics has on our results is that by
llowing the chains to break at any point, the rate of breakage

s effectively increased and the breakage time correspondingly
ecreased.

Let Ψ ′
A(r′, Q′, t′), Ψ ′

B(r′, Q′, t′) represent the number density
istribution of each species in space, configuration space and

I
t
b
H

ion of lengths N(L) and (bottom) our discrete two species model.

ime. Here Q′ is the end to end vector of the chain. Then,

′
α(r′, t′) =

∫
Ψ ′

α dQ′

epresents the dimensional number density of speciesα as a func-
ion of space and time. Here and throughout this paper primes
epresent dimensional variables.

The equations governing the configuration density function,
sing network theory coupled with bead–spring kinetics, and
ssuming Hookean forces, can be obtained by generalizing tech-
iques introduced by Bird et al. [31] and others [32,33] and used
n Refs. [24,25], to formulate a two species model:

Ψ ′
A,t′ + ∇r′ · (v′

AΨ ′
A) + ∇Q′ (Q′ · ∇v′

A)Ψ ′
A − ∇r′ · kT

2ζA

∇r′Ψ ′
A

+ ∇Q′ · 2HA

ζA

Q′Ψ ′
A − ∇Q′

2kT

ζA

∇Q′Ψ ′
A

= cB′

2
Ψ ′

B ∗ Ψ ′
B − cA′Ψ ′

A (1a)

Ψ ′
B,t′ + ∇r′ · (v′

BΨ ′
B) + ∇Q′ (Q′ · ∇v′

B)Ψ ′
B − ∇r′ · kT

2ζB

∇r′Ψ ′
B

+∇Q′ · 2HB

ζB

Q′Ψ ′
B − ∇Q′

2kT

ζB

∇Q′Ψ ′
B

= −c′
BΨ ′

B ∗ Ψ ′
B + 2c′

AΨ ′
A (1b)
n these equations k is the Boltzmann constant; T the tempera-
ure; ζα the drag coefficient of the species α; c′

A the dimensional
reakage rate; c′

B the dimensional reforming rate per micelle;
α is the spring constant or elasticity of the α th species.
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The flux of species A and B relative to the main flow is given
y

′
A = −kT

ζA

∇′ρ′
A + 2mHA

ζA

∇′ · {Q′Q′}A, (2a)

′
B = −kT

ζB

∇′ρ′
B + mHB

ζB

∇′ · {Q′Q′}B. (2b)

he second term on the right hand side of Eq. (2) arises from
ssuming there is a finite spatial extent for the dumbbell that
haracterizes the elastic network segment and the mass is dis-
ributed at the two ends, one bead at (r′ + (Q′/2), Q′, t′) and the
ther at (r′ − (Q′/2), Q′, t′) [24,32,33].

By integrating the Smoluchowski equation (1) over Q′, with
′
A = 4mn′

A and ρ′
B = 2mn′

B, we obtain the evolution equations
overning the number densities of each species,

Dn′
A

Dt′
= −∇′ · j′A

4m
+ c′

B

2
n

′2
B − c′

An′
A, (3a)

Dn′
B

Dt′
= −∇′ · j′B

2m
− c′

Bn
′2
B + 2c′

An′
A. (3b)

he functional form of the reaction rates, c′
A, c′

B, for the breaking
nd reforming of the chains will be discussed in Section 2.3. For
ow we assume they are functions of the average extension of
he respective chains and the shear rate:

′
A(n′

A, {Q′Q′}A, γ̇ ′), c′
B(n′

B, {Q′Q′}B, γ̇ ′).

ubstituting for the flux from Eq. (2) into (3), the equations for
he number density for each species become

Dn′
A

Dt′
= 2DA∇′2n′

A − DAHA

kT
∇′∇′ : {Q′Q′}A

+ c′
B

2
n′2

B − c′
An′

A, (4a)

Dn′
B

Dt′
= 2DB∇′2n′

B − DBHB

kT
∇′∇′ : {Q′Q′}B

− c′
Bn′2

B + 2c′
An′

A. (4b)

ere the diffusivities of the A and B chains are DA =
T/2ζA, DB = kT/2ζB, respectively. The stress associated with
he α th species is related to the second moment of the distribu-
ion by

Q′Q′}α =
∫

Q′Q′Ψ ′
α dQ′. (5)

hen multiplying the distribution Eq. (1) by Q′Q′ and integrating

ver the configuration space, dQ′, we find the equations for the
econd moment of each species:

{Q′Q′}A(1′) + 4HA

ζA

{Q′Q′}A − 4n′
AkT

ζA

I − DA∇′2{Q′Q′}A

= c′
B

2
{Q′Q′}Bn′

B − c′
A{Q′Q′}A, (6a)

h
E
c

b

luid Mech. 144 (2007) 122–139 125

{Q′Q′}B(1′) + 4HB

ζB

{Q′Q′}B − 4n′
BkT

ζB

I − DB∇′2{Q′Q′}B

= −c′
B{Q′Q′}Bn′

B + 2c′
A{Q′Q′}A, (6b)

here (·)(1′) represents the upper convected time derivative
efined as

·)(1′) = D

Dt′
(·) − (∇′v′)T · (·) − (·) · (∇′v′).

ecause the flow may be inhomogeneous, that is the number
ensity distribution function, Ψ ′

α, of each species varies in space,
onfiguration space and time, the number densities, n′

α(r, t),
annot be factored out of the second moment, and

Q′Q′}α �= n′
α〈Q′Q′〉α.

inally, the total micellar contribution to the stress is given by

′ = HA{Q′Q′}A + HB{Q′Q′}B. (7)

.1. Non-dimensionalization

The equations are non-dimensionalized as follows:

r = r′

d
, t = t′

λeff
, v = v′ λeff

d
d,

{QQ}α = HA{Q′Q′}α
n′0

AkT
, nα = n′

α

n′0
A

,

here α = A, B; d is a macroscopic characteristic length, in
ircular Couette geometry, d = Ro − Ri where Ro, Ri are the
uter and inner radii; λeff is the effective relaxation time of the

etwork (to be determined); and
√

n′0
AkT/HA is a characteristic

icroscopic length scale for an elastic segment of species A.
ere n′0

A is the dimensional value of the number density of
hains of length L at equilibrium conditions. The relaxation time
f the α th species is λα = ζα/4Hα. As opposed to being located
olely at the beads, as in bead–spring dumbbell models, the drag
s distributed along the chain, in accordance with network theory,
nd hence depends non-linearly on the molecular weight of the
hain.

As will be seen through fitting to experimental data, the
horter chains have a much shorter relaxation time, λB, than
hat of the longer chains, λA. Note that, since we only consider
wo species, we effectively lump “all” short segments as species

and “all” long entangled chains as species A. Then, from repta-
ion theory [34], one would expect that λA ∼ L3/LE where LE
s the entanglement length [6]. On the other hand, the lumped
pecies B represents short segments with a Rouse-like relaxation
echanism, so that λB ∼ (L/2)2 [6]. Thus we expect,

λA

λB

∼ 4
L

LE

 1, (8)

ence, after the values of λA and λB are determined, the ratio in

q. (8) should be an indicator of how long and/or entangled the
hains are in the system.

The consideration of only two species simplifies the analysis
ut it is also restrictive. Introduction of more species enables
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s to capture the distribution of chain lengths and a broader
pectrum of relaxation times as observed in wormlike micellar
olutions, but it substantially complicates the analysis.

For compactness, we define the two configuration tensors

=
∫

QQΨA dQ = {QQ}A, (9a)

=
∫

QQΨB dQ = {QQ}B. (9b)

dditionally, the dimensionless breakage and reformation rates
re given by

A = λA c′
A, cB = λAn

′0
Ac′

B, (10)

here cA is the ratio of the relaxation time of the long chains
o the breakage time of the long chain, similarly for cB and the
horter chains. The ratio of the relaxation time of the short chains
o the relaxation time of the long chains is denoted by

= λB

λA

, (11)

nd that of the relaxation time of the long chains to the effective
elaxation time of the elastic network, as

= λA

λeff
. (12)

he ratio of the spring constant of the shorter chains to that of
he longer chains is

HB

HA

= H∗. (13)

f the network segments are ideal Hookean entropic springs, then
e expect

B = 3kT

l2NB

and HA = 3kT

l2NA

= 3kT

2l2NB

,

here Nα is the number of Kuhn steps of length l in the segment
f species α. Note that, in our two species model, NA = 2NB

o H∗ = 2. The ratios ε, μ are to be determined by fitting to
xperiments.

Finally, the non-dimensional total stress σ is given by

= σ′

G0
= {QQ}A + H∗{QQ}B = A + 2B (14)

here G0 = n′0
AkT is a characteristic elastic modulus arising

rom the long, A, chains.

.2. Governing equations

With the scaling and parameters introduced in Section 2.1,
qs. (4)–(6) become

DnA

Dt
= 2δA∇2nA − δA∇∇ : A + 1

2
cBn2

B − cAnA, (15a)
DnB

Dt
= 2δB∇2nB − 2δB∇∇ : B − cBn2

B + 2cAnA, (15b)

A(1) + A − nAI − δA∇2A = cBnBB − cAA, (16a)
A

luid Mech. 144 (2007) 122–139

μB(1)+B − nB

2
I − εδB∇2B= −2εcBnBB + 2εcAA, (16b)

ere, we have defined non-dimensional diffusion constants δα =
ADα/d2 for α = A, B.

These equations for the number density and stress must be
oupled with the fluid equations of conservation of mass, and of
onservation of momentum:

· v = 0, (17)

−1 Dv
Dt

= ∇ · �, (18)

here E is an elasticity number defined as

= G0λ
2
eff

ρd2 = De

Re
. (19)

ere Re = ρV ′d/η′
0 is the Reynolds number and De = λeffV

′/d
s the Deborah number, where V ′ is the velocity at the mov-
ng wall. Thus, with our scaling, the dimensionless value of
he velocity at the moving boundary is De. The dimensionless
iffusion constants are

A = λADA

d2 = λAV ′

d
· DA

V ′d
= De

Pe
,

B = ζA

ζB

δA = 1

2ε

De

Pe
,

here the Peclet number is Pe = V ′d/DA and is a measure of
he relative importance of convection to diffusion of the elastic
hains of species A.

In addition, the total stress tensor is given by

= pI − βγ̇ + τ, (20)

here the extra stress arising from the network is

= (nA + nB)I − (A + 2B), (21)

nd the solvent contribution to the total viscosity is β = ηs/η
′
0,

here ηs is the solvent viscosity, and η′
0 is the dimensional zero

hear rate viscosity.
To solve the system of Eqs. (17)–(21), appropriate boundary

nd initial conditions on both stress and velocity need to be
pecified. In this paper spatial variations are not considered, thus
oundary conditions for stress are not required at this point. A
ull discussion of boundary conditions will be given in Part III
29], where the full inhomogeneous flow is solved numerically.

On the other hand, initial values are found from Eqs.
15)–(16) assuming equilibrium conditions. That is, in absence
f flow, n0

A = 1 and Eq. (15a) gives

0
B =

√
2cAeq

cBeq

, (22)

here cAeq , cBeq are the values of the breakage and reformation
ates cA, cB at equilibrium.
Similarly, at equilibrium we obtain

eq = I, Beq = n0
B

2
I.
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.3. Determination of breakage rate

So far we have developed a general two species network
odel for the evolution of stress and number density of elastic

egments of length QA, QB. To complete the model we need to
pecify appropriate breakage and reformation rates that describe
he evolution of the number density of each species under both
quilibrium and flowing conditions. In principle, appropriate
xpressions could be determined by Brownian dynamics calcu-
ations of entangled wormlike micelles in the same manner as the
tudies of van den Brule and Hoogerbrugge [19] and Hernandez-
ifre et al. [16] for associative polymer networks. However,

uch simulations are complicated by the multiple breaking and
eforming events expected for each chain. In the present work we
hus use simplified analytic expressions for each term. In partic-
lar, the dependence of the breakage rate of the elastically active
etwork elements (which correspond to stretched micellar seg-
ents) on the flow strength is taken to be of the form of the tube

oss term, proposed by Larson [35]. In this work Larson consid-
red the dynamics of network segments which are convected by
flow but which do not deform affinely inside their bounding

ubes. The resulting partially extending convected (PEC) strand
odel provides a simple differential analog of the Doi–Edwards

eptation theory. The longer elastic segments, species A, in our
odel will experience similar convection by the flow and recoil

ollowing a breakage event before being reincorporated into the
etwork. We thus write

A = cAeq + 1

3
ξμ

(
γ̇ :

A
nA

)
, (23a)

B = cBeq . (23b)

term with similar functional form to that in our breaking term
s used in the single species differential model of Marrucci et
l. [36] and in Likhtman and Graham’s non-extendable limit of
heir Rolie-Poly model [37]. Although in the latter two cases
ull retraction of the strand within the tube is assumed, in the
arson’s form the parameter ξ is allowed to vary to capture the
artial retraction of a strand within its tube. When ξ = 0 this
orresponds to no retraction or ideal affine neo-Hookean behav-
or, the resulting constitutive equation is of simple convected

axwell form [31]. When ξ �= 0 this corresponds to partial
xtension and retraction. Finally, when ξ = 3/5 Larson showed
hat the PEC model closely approximates the Doi–Edwards
heory in which the chain fully retracts inside the deforming
ube.

Larson’s term, which represents tube breakage after partial
etraction, is used instead in our case to model stress-induced
icelle breakage. We have introduced this term as an explicit

reakage term in our two species model as opposed to a non-
ffine derivative in a single species model, as introduced by
arson. Thus the non-affine nature of our network deformation
rises due to the continued breaking and the reforming of the

lastic elements comprising the network. When the breaking
nd reforming rates are set to zero the model reduces to two
ncoupled Maxwell modes, which agrees with the observations
n linear regimes, so that the non-linear behavior of wormlike

μ

μ
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icellar solutions in this model comes from the breaking and
eforming terms.

The advantage of the Larson-type term in the single species
ase, provided a solvent viscosity is added to the model similar
o the Johnson–Segalman model, is that it not only predicts a
on-monotonic flow curve (which may result in shear-banding),
ut that also, unlike the Johnson–Segalman model, it obeys the
odge–Meissner relation in step strain and it exhibits a maxi-
um in elongational viscosity as a function of elongation rate

26]. The single species model proposed by Larson has shown
ood agreement with experimental data in shear, extensional,
nd step strain for certain polymeric melts, although it was
oted that different values of the parameter ξ are needed to
uantitatively describe each type of deformation [26,38].

A similar expression to the one in Eq. (23a), is also used in
he two species network model of Tripathi et al. [20] for associa-
ive polymer networks in order to describe the creation rate of
ridging chains from dangling chains. The difference between
hat model and the model presented here is that our model
ncorporates inhomogeneities in the flow, and that Tripathi et
l. explicitly modeled the molecular weight dependence of the
reaking rate of the bridging chains, which we have not included.
n addition, the creation and destruction of each species is mod-
led as a first order reaction in the Tripathi case, whereas the
reation rate of long chains is quadratic in our model as it inher-
ntly involves the combination of two shorter chains rather than
he reincorporation of a dangling chain into an elastic network.

. Predictions in viscometric flow

Experiments with wormlike micellar solutions carried out in
ylindrical Couette devices show that spatial variations develop
n the flow above a critical shear rate [8,10,28,39]. We consider
qs. (15) and (16) in the absence of spatial variation, thus we
ssume δA = δB = 0 and γ̇ (r)constant. Here, we present the for-
ulation and rheological predictions of this two species micellar

etwork model under such assumptions.

.1. Shear flow in circular-Couette geometry

We employ the following assumptions of a homogeneous
nidirectional shear flow,

v = (0, v(r), 0), v · ∇(·) = 0, γ̇ = γ̇0δrδθ + γ̇0δθδr,

γ̇ : A = 2γ̇0Arθ,

nd substitute these in Eqs. (15) and (16) to find evolution
quations for the number densities and stress contributions,
rom species A and B, as functions of γ̇0. Note that in non-
iscometric flow spatial variations arise through the shear rate,

˙ = r∂(v/r)/∂r. We thus obtain the following expressions for
he number density of each species:
dnA

dt
= 1

2
cBeqn

2
B − 2

3
ξμγ̇0Arθ − cAeqnA, (24a)

dnB

dt
= −cBeqn

2
B + 4

3
ξμγ̇0Arθ + 2cAeqnA (24b)
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nd for the components of the stress tensor A for species A:

dArr

dt
+ Arr − nA = cBeqnBBrr − 2

3
ξμγ̇0

Arθ

nA

Arr − cAeqArr,

(25a)

μ
dArθ

dt
− μγ̇0Arr + Arθ

= cBeqnBBrθ − 2

3
ξμγ̇0

Arθ

nA

Arθ − cAeqArθ, (25b)

μ
dAθθ

dt
− 2μγ̇0Arθ + Aθθ − nA

= cBeqnBBθθ − 2

3
ξμγ̇0

Arθ

nA

Aθθ − cAeqAθθ, (25c)

dAzz

dt
+ Azz − nA = cBeqnBBzz − 2

3
ξμγ̇0

Arθ

nA

Azz − cAeqAzz

(25d)

nd finally for the stress associated with species B:

εμ
dBrr

dt
+ Brr − 1

2
nB

= ε

[
−2cBeqnBBrr + 4

3
ξμγ̇0

Arθ

nA

Arr + 2cAeqArr

]
, (26a)

εμ
dBrθ

dt
− εμγ̇0Brr + Brθ

= ε

[
−2cBeqnBBrθ + 4

3
ξμγ̇0

Arθ

nA

Arθ + 2cAeqArθ

]
, (26b)

εμ
dBθθ

dt
− 2εμγ̇0Brθ + Bθθ − 1

2
nB

= ε

[
−2cBeqnBBθθ + 4

3
ξμγ̇0

Arθ

nA

Aθθ + 2cAeqAθθ

]
, (26c)

εμ
dBzz

dt
+ Bzz − 1

2
nB

= ε

[
−2cBeqnBBzz + 4

3
ξμγ̇0

Arθ

nA

Azz + 2cAeqAzz

]
. (26d)

.2. Extensional flow

For homogeneous uniaxial extensional flow with extension
ate ε̇0 we have:

v = (− 1
2 ε̇0r, 0, ε̇0z), v · ∇(·) = 0,

γ̇ = −ε̇0δrδr − ε̇0δθδθ + 2ε̇0δzδz,

γ̇ : A = ε̇0(2Azz − Arr − Aθθ) = 2ε̇0(Azz − Arr).
Eqs. (15) and (16) give for the number densities of species A
nd B:

dnA

dt
= 1

2
cBeqn

2
B − 2

3
ξμε̇0(Azz − Arr) − cAeqnA, (27a)

c
a
t
t
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dnB

dt
= −cBeqn

2
B + 4

3
ξμε̇0(Azz − Arr) + 2cAeqnA (27b)

nd for the components of the stress tensor A for species A:

μ
dArr

dt
+ με̇0Arr + Arr − nA

= cBeqnBBrr − 2

3

ξμε̇0

nA

(Azz − Arr)Arr − cAeqArr, (28a)

μ
dArθ

dt
+ Arθ

= cBeqnBBrθ − 2

3

ξμε̇0

nA

(Azz − Arr)Arθ − cAeqArθ, (28b)

μ
dAzz

dt
− 2με̇0Azz + Azz − nA

= cBeqnBBzz − 2

3

ξμε̇0

nA

(Azz − Arr)Azz − cAeqAzz (28c)

nd finally for the stress associated with species B:

εμ
dBrr

dt
+ εμε̇0Brr + Brr − 1

2
nB

= ε

[
−2cBeqnBBrr + 4

3

ξμε̇0

nA

(Azz − Arr)Arr + 2cAeqArr

]
,

(29a)

εμ
dBrθ

dt
+ Brθ

= ε

[
−2cBeqnBBrθ + 4

3

ξμε̇0

nA

(Azz − Arr)Arθ + 2cAeqArθ

]
,

(29b)

εμ
dBzz

dt
− 2εμε̇0Bzz + Bzz − 1

2
nB

= ε

[
−2cBeqnBBzz + 4

3

ξμε̇0

nA

(Azz − Arr)Azz + 2cAeqAzz

]
.

(29c)

he equations for Aθθ and Bθθ are identical to those for Arr, Brr,
espectively, with all rr components changed to θθ components.
ote that if Arθ, Brθ are initially zero, they stay identically zero.
ence this component of the stress does not play an important

ole in extensional flow except under pre-shear conditions in
hich Arθ, Brθ may not be zero at the inception of the exten-

ional flow. Recent experiments have considered the role of
re-shear on the extensional response of micellar networks [40],
ut analysis of this is beyond the scope of the present study.

. Linear viscoelasticity

We now proceed to solve the constitutive equations to eval-
ate the steady and transient rheological predictions. We first

onsider the linearized limit of small deformations. In general,
s will be seen below, fitting the linearized equations in shear
o linear viscoelastic data only serves to determine the effec-
ive relaxation time of the network, λeff = λA/(1 + cAeq ), and
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L/2. This re-scaling of the effective relaxation time is a result
of the simplification of Cates’ continuous breaking dynamics
to a two species discrete limit. Recall that in the continuous
limit Cates showed (in our notation) that λeff = (λAλbreak)1/2.
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he product λ2n
0
B = λ2

√
2cAeq/cBeq . In order to fully determine

he individual model parameters, in particular the magnitude of
he equilibrium reaction rates, cAeq and cBeq , non-linear defor-

ations must be considered. The set of parameters specified
bove cannot be determined uniquely from the available linear
iscoelastic data, due to the limitation of the ranges of fre-
uencies obtained experimentally. The parameter ξ describes
he non-linear breakage processes and can only be determined
y regressing to full non-linear rheological measures.

.1. Small amplitude oscillatory shear flow (SAOS)

In this section we develop linear theory in SAOS flow. Assum-
ng that

rθ = �e{γ0eiωt} and γ0 � 1,

here ω = λeffω
′ is the dimensionless oscillation frequency,

nserting this into Eqs. (24)–(26), and keeping only linear terms
n γ0 we obtain:

μωA1
rθ + (1 + cAeq )A1

rθ − cBeqn
0
BB1

rθ = iμωγ0A0
rr, (30a)

1 + cAeq )A0
rr − cBeqn

0
BB0

rr = n0
A = 1, (30b)

εμωB1
rθ + B1

rθ(1 + 2εcBnB) − 2cAeqεA
1
rθ = iεμωγ0B0

rr,

(30c)

0
rr(1 + 2εcBeqn

0
B) = 1

2n0
B + 2εcAeqA

0
rr, (30d)

Beqn
2
B − 2cAeq = 0. (30e)

ote that in linearized small disturbance theory the number den-
ity of each species, n0

A and n0
B, are constant since variations in

hese terms are introduced in the full Eq. (24) by quadratically
mall terms. In these linearized equations all quantities are non-
imensional as before. Eqs. (30b) and (30d) give, after ignoring
(ε) terms,

0
rr = 1

2n0
B, (31a)

0
rr = 1. (31b)

hus, for ε small, we have

0
rr = 1, (32a)

0
rr = 1

2n0
B, (32b)

1
rθ = γ0

(
((μ/(1 + cAeq ))ω)2

1 + ((μ/(1 + cAeq ))ω)2

+ i(μ/(1 + cAeq ))ω

1 + ((μ/(1 + cAeq ))ω)2

)
+ · · · , (32c)
1
rθ = γ0 n0

B

2

(
(εμω)2

1 + (εμω)2 + iεμω

1 + (εμω)2

)
+ · · · . (32d)

F
t

t
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n the limit of small frequencies the system behaves as a single
ode Maxwellian system. Our system of equations has been

on-dimensionalized by the effective relaxation time and hence
e use Eq. (32c) to define the effective relaxation time, λeff, as

eff = λA

1 + cAeq

= λA

1 + λAc′
Aeq

= 1
1

λA
+ c′

Aeq

, (33)

hich results from setting the ratio μ/(1 + cAeq ) to unity. Here
eff has units of time.

Eq. (33) shows that the overall relaxation time of the network,
eff, is reduced from the longest relaxation time of the elastic
hains, λA, due to the additional mechanism of breakage. Thus,
he stress relaxes either through chains of length L relaxing or
hrough the chains of length L breaking to form chains of length
ig. 2. Variations on the zero shear rate viscosity for: (a) different relaxation
imes of species A, λA, and (b) different breaking rates at equilibrium, c′

1eq
. In

hese figures, G0 = 27 Pa.
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non-linear deformations: step strain, steady-state shear flow, and
steady-state uniaxial elongational flow. First we discuss some
30 P.A. Vasquez et al. / J. Non-Newto

inally, for all values of ω the linear system behaves as the
uperposition of two Maxwell modes with relaxation times λeff
nd λB, respectively.

From these results the zero shear rate viscosity is given, to
rder ε, by

′
0 = n0

AkT
λA

1 + λAc′
Aeq

= G0λeff.

or a fixed relaxation time of the longer species, λA, the dimen-
ional zero shear rate viscosity of the mixture decreases as the
reaking rate at equilibrium, c′

Aeq
, increases. The effective relax-

tion time also decreases as the breakage rate increases. Fig. 2
a) shows the variation in the zero shear rate viscosity, η′

0, as
function of the breakage rate c′

Aeq
, for different values of λA.

n Fig. 2(b), the breakage rate, c′
Aeq

is kept fixed at different

alues, and η′
0 is plotted against λA. Experiments have shown

hat for a given solution the zero shear rate viscosity increases
on-linearly with increasing surfactant concentration [9,41,42].
ence in our model, the model parameters c′

Aeq
and λA play

n important role in capturing the effect of concentration and
alinity. That is, in order to change c′

Aeq
or λA one would need to

hange the concentration of polymer, the concentration of salt,
nd/or change the type of salt counterion.

. Evaluation of model parameters

The characteristic stress scale for the micellar network is
iven by G0 = n′0

AkT . Following this non-dimensionalization,
he response of a particular micellar solution to non-linear
eformations is described in this model by three independent
arameters. At first glance, the model appears to contain six
arameters: λA, λB, cAeq , cBeq , n0

B, and ξ. However, five of the
arameters are related to one another through three independent
quations. In the first of these we see from (15a) that the reaction
ates cAeq , cBeq , and the number density of the second species
0
B are related by

0
B =

√
2cAeq

cBeq

.

ecall that the number densities were non-dimensionalized by
′0
A so that n0

A = 1. Similarly, when the effective relaxation time
f the solution, λeff, is known, a relation between λA and c′

Aeq
is

stablished by means of Eq. (33). Finally, in the linear viscoelas-
ic regime the model reduces to a two-mode Maxwell model and
he amplitude of the second mode is governed by the product:

Bn0
B = constant,

here the constant is found by fitting to experiments and this
hen determines a relation between n0

B and λB.
Consequently, there are only three parameters to be deter-

ined for a given micellar mixture. One of these is the non-linear

arameter ξ, which only appears in non-linear flows, and
hich determines the magnitude of the contribution from the

tress/strain rate-dependent term to the overall breaking rate of
he long micelles. The other two parameters to be fitted can be

g
t
m
a

ig. 3. Non-dimensional storage and loss modulus model prediction compared
ith experimental data from a solution of 100 mM CpyCl [9]. In this figure

Bn0
B = 1 × 10−3 s, λeff = 1.17 s, and G0 = 27Pa.

hosen arbitrary from the remaining five. In this study we have
hosen these two parameters to be n0

B and c′
Aeq

.
From Eqs. (32c) and (32d) the storage and loss moduli are

iven, in dimensional form, by

′ = G0

{
(λeffω

′)2

1 + (λeffω′)2 + n0
B

(λBω′)2

1 + (λBω′)2

}
, (34a)

′′ = G0

{
λeffω

′

1 + (λeffω′)2 + n0
B

λBω′

1 + (λBω′)2

}
+ ηsω

′. (34b)

he upturn in the dynamic moduli observed experimentally at
igh frequencies arises from the shorter chains, species B. The
ontribution to the loss modulus, G′′, from the solvent viscosity
s negligibly small, ηs/η0 = β = O(10−5).

If λeff and λBn0
B are held constant then the frequency depen-

ence of the linear viscoelastic moduli remain unchanged as
hown in Fig. 3. Regression of the model to experimental data
9] yields best fit values of G0, λeff and λBn0

B as shown in Fig. 3.
n Fig. 4(a) we show the effect of decreasing the effective relax-
tion time, by either increasing c′

Aeq
or decreasing λA according

o

1

λeff
= 1

λA

+ c′
Aeq

,

nd in Fig. 4(b), we show that if either n0
B or λB is increased,

he contribution to the elastic moduli from the second mode (i.e.
horter chains) increases.

Next we examine the model predictions under three different
eneral considerations and asymptotic behavior of the model for
hese deformation histories. This is followed by exploration of

odel predictions under these prescribed deformation histories
s the parameters c′

Aeq
, n0

B, and ξ are varied.
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Fig. 4. Variations in the predicted loss and storage moduli: (a) effect of decreasing λeff by either increasing the breaking rate c′
Aeq

or decreasing the micellar relaxation
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B

l amete

5

s
w
s
w

γ

w
i
F
t
p

s
r
i
l

F
g
l
l

t

σ

w

G

a
s
T
k

f

h

ime λA; (b) effect of increasing the number density or relaxation time of species
ine is the result arising from the variation of the indicated parameter. Other par

.1. Step strain calculations

Because the evolution equations for number density and
tress are strongly coupled, it is necessary to integrate them for-
ard in time from equilibrium conditions. To simulate actual

tep strain experiments, Eqs. (24)–(26), were integrated in time
ith an imposed strain given by

′(t′) = γ ′
0(1 − (1 + b′t′) exp(−b′t′)), (35)

here the parameter b′ is obtained through fitting to the exper-
mental motor response of a controlled strain rheometer [13].
or large b′ this is the achievable experimental approximation

o a Heaviside function in time. For the curves presented in this
aper we have taken b′ = 127 s−1.

Results for the stress relaxation as a function of time are

hown in Fig. 5 for different applied strains. In the inset the
esults are graphed semi-logarithmically. It can be seen, in the
nset, that for every value of γ0 the slope of each of the parallel
ines is −1, after the initial transient is completed. This indicates

ig. 5. Model predictions of stress relaxation after imposing a shear deformation
iven by Eq. (35) for γ0 = 0.1, 1, 3, 5, 7, 10, 12. Inset: stress relaxation on linear-
og scale. In this figure ξ = 0.3 and ε = 6.5 × 10−5. Broken line shows the
inear viscoelastic response for instantaneous shear deformation.
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, or λB. Here, the solid line corresponds to the parameters in Fig. 3, the dashed
r values are kept as in Fig. 3.

hat the stress can be factored in the form:

′
rθ(γ, t) = γG0g(t)h(γ) = γG(t)h(γ), (36)

here the relaxation modulus is

(t) = G0 exp(−t) = G0 exp

(
− t′

λeff

)
(37)

nd h(γ) is a strain-dependent damping function. Thus, if the
tress is scaled by a factor γ0h(γ0) all the curves will superpose.
his behavior remains unchanged as long as λeff and λBn0

B are
ept constant.

Analytic considerations show that the model predicts the
ollowing form of the damping function:

(γ) = exp

(
− ξ

3
γ2
)

+ O(εμb). (38)

or ε → 0 the relaxation is due primarily to the relaxation of
pecies A and the damping function predicted by the model
pproaches,

(γ) = e−ξγ2/3. (39)

ut when then terms of order εμb are no longer negligible they
ave an effect on the behavior of h(γ). The numerical best fit, for
ur range of values of the parameter ε, suggests that the damping
unction can be approximated by

(γ) ≈ exp

(
− ξ

3
γ2
)

+ f (μ, b)
√

ξγ

× exp

(
−2ξ

9

(
γ − 2.1√

ξ

)2
)

. (40)

nd for the value of b = b′λeff used in this study,

1
(

5 2
)

≈
b 2

−
μ

. (41)

omparison of this numerical fitting with the model predictions
re discussed in Section 5.4 and also presented in Fig. 7(a) below.
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ig. 6. Model predictions in steady-state shear flow (a) shear stress; (b) first
ormal stress difference, as a function of dimensionless shear rate. Here δA =
B = 0.

Note that 2.1/
√

ξ = 6.6, 3.8, 2.7 for ξ = 0.1, 0.3, 0.6,
espectively. This corresponds to values of the strain, γ0, at
hich the Lodge–Meissner relation no longer holds, as seen

n Fig. 7(b).

.2. Homogeneous shear flow

Eqs. (24)–(26) were integrated numerically in time to steady-
tate subject to a constant dimensionless shear rate γ̇0 = (λeffγ̇

′
0).

ig. 6 shows plots of the steady-state shear stress and the first
ormal stress difference as functions of shear rate. The resulting
ow curves are non-monotonic. Beyond a critical deformation
ate, γ̇1, the scission of the long network strands (species A)
verwhelms the increased stretching that arises from increasing
hear. At very high deformation rates the growth in the stress is

gain linear with respect to the shear rate due to the deformation
f the shorter B micellar strands. Recall that

rθ = Arθ + 2Brθ.

c

a
m

luid Mech. 144 (2007) 122–139

rom (24)–(26) it can be seen that for γ̇0 � 1, Brθ ∼ 0 and

rθ ∼ Arθ ∼ γ̇0.

n the other hand, at large shear rates, γ̇0 
 1, most of the
hains of length L have been destroyed, hence the flow response
s dominated by the short species which in this limit give rise to
stress of

rθ ∼
(

1 + n0
B

2

)
μεγ̇0,

o that:

rθ ∼ 2Brθ ∼ λB(2 + n0
B)

λeff
γ̇0.

The non-monotonic behavior at the intermediate rates, where
ontributions from both species vary due to breaking and
eforming mechanisms, can be resolved only by performing
nhomogeneous flow calculations in which a plateau is allowed
o develop in the the stress/shear rate curve and shear bands are
ormed by the selection of different local shear rates and number
ensities. Calculations with other non-local constitutive mod-
ls show that the precise shape of these curves depends on the
imensionless diffusivities, δA, δB, the flow loading history, and
he geometry [21].

Additionally the model predicts, under viscometric flow con-
itions, that the maximum in the shear stress is given by

γ̇ ′
0λeff)max = f (cAeq , cBeq )

√
1

ξ
, (42a)

σ′
rθ

G0

)
max

= g(cAeq , cBeq )

ξγ̇0
= g(cAeq , cBeq )

f (cAeq , cBeq )

√
1

ξ
, (42b)

here f and g are non-linear functions of the equilibrium reaction
ates.

Recall that, under inhomogenous flow conditions, the curve
f steady stress versus shear rate is expected to develop a
lateau in solutions that exhibit shear banding. Some authors
ave proposed that this plateau is formed by a “top-jumping”
echanism [43], that is the value of the stress at the plateau,

p, corresponds to the maximum value of the stress, σmax, in
he non-monotonic curve under homogenous flow. However,
ther authors have observed, theoretically and experimentally,
hat this is not always the case [44–47]. For our model, under
nhomogenous flow conditions, the plateau is not typically real-
zed by “top jumping” and hence the location of such a stress
lateau is expected to be at a dimensionless stress value less
han unity [29]. Furthermore, as pointed out by Berret et al.
48], the non-dimensional values of the shear stress and shear
ate corresponding to the onset of a stress plateau in fact vary
ystematically with surfactant concentration. In our model, such
dependence is captured by variations in the parameters cAeq ,
Beq , and nB.
The predictions of the present scission/reformation model

lso appear to be broadly consistent with thermodynamic argu-
ents regarding the energetics associated with the formation of a
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lateau in the flow curve. If we take the scission energy reported
or similar systems [49,50], Esciss ≈ 4kBT , multiply it by the
imensional breaking rate, c′

A, and the number of long micelles
er unit volume that have been broken at the maximum of the
on-monotonic flow curve, n′0

A − n′
A|max, we obtain the energy

ate at which work was done per unit volume at the onset of the
on-linear regime.

c′
A × (n′0

A − n′
A|max) × Esciss

= 13.7 s−1 × 5.04 × 1023 m−3 × 4kBT J ≈ 276 J/m3s,

(43)

here n′
A = nAn′0

A = nA(G0/kBT ) and c′
A = cAλA = [cAeq +

1/3)ξμγ̇0(Arθ/nA)]/λeffμ.
We compare this value with the power dissipated per unit

olume, which can be calculated from the dimensional stress
nd deformation rate tensor, σ′ : γ̇ ′, at the maximum of the flow
urve,

σ′
rθ|max × γ̇ ′|max = 66.7 Pa × 3.22 s−1 ≈ 215 J/m3s. (44)

ere the scaling parameters G0 and λeff are taken from [9].
his estimate of the internal power dissipation is made at the
aximum of the non-monotonic viscometric flow curve; the

xact values at the stress plateau cannot be determined from
iscometric calculations as pointed out above.

The first normal stress difference grows quadratically in the
imit of small deformation rates and asymptotically approaches
he limit N1 → 2G′γ̇ ′2

0 as γ̇ ′
0 → 0, as expected from simple fluid

heory. The homogeneous solution exhibits a non-monotonicity
imilar to that observed in the shear stress at intermediate rates
efore increasing quadratically again at high rates due to the
ontribution of the short elastic B species. On the other hand,
nspection of Eqs. (15) and (16) shows that N2 = σrr − σzz = 0.

Although the precise form of the elastic first normal stress
ifference in the inhomogeneous shear-banding region cannot
e determined without solving the full inhomogeneous equa-
ion set, we anticipate a change of slope but not a plateau in

1. This is due to the coupling between the shear stress and
he velocity field which, at least in the case of no significant
hanges in scission/reformation, gives rise to terms of the form
λeffσ

′
rθ(γ̇ ′

0)γ̇ ′
0 ∼ γ̇ ′

0 in the plateau region where σ′
rθ is constant.

.3. Elongational flow

Because of the importance of micellar additives in control-
ing the extensional rheology of complex fluids employed in
onsumer applications (e.g. paints, shampoos) and in oil recov-
ry, we also examine the predictions of the model in uniaxial
longation.

The steady extensional viscosity (in dimensionless form) is
efined as,
E(ε̇0) = σzz − σrr

ε̇0
.

At small elongational rates, ignoring terms of order ε, so
hat Brr = Bθθ = Bzz = n0

B/2, and taking n0
B and n0

A at their

s

(

luid Mech. 144 (2007) 122–139 133

quilibrium value, Eqs. (28) and (29) result in

4

9
ξ2ε̇4

0η
3
E + 2

3
ξε̇2

0(2 − ε̇0)η2
E

+ (1 + ε̇0)(1 − 2ε̇0)ηE − 3 + · · · = 0. (45)

or linear theory, ξ = 0, this gives

E = 3
1

(1 + ε̇0)(1 − 2ε̇0)
(46)

nd the long chains behave as a single convected Maxwell mode.
s the dimensionless extension rate ε̇0 = λeffε̇

′
0 → 0, we have,

E = 3,

r, equivalently the Trouton ratio is η′
E/η′

0 = 3.

At large elongational rates the Larson model predicts

′
E � G0( 2

3ξ)
−1

ε̇′
0−1 . (47)

Equivalently, at least for the values of μ that agree with
xperiments (μ ≈ 3), our two species model predicts

E � f (cAeq , cBeq )( 2
3ξ)

−0.95
ε̇−1.5

0 , (48)

here the exponent in the term containing ξ was found through
umerical fitting and f is a function of the equilibrium reaction
ates . For μ > 1, f is given by

(μ) � 2.45 + 0.62

μ
− 2.6

μ2 .

ecall that our two species scission model would reduce to the
arson PEC model for the long species A if the number densities,
A and nB, were constant. Hence the difference between Eqs.
47) and (48) arises because of the additional mode of stress
eduction due to the scission of the elongated chains in the two
pecies model. Note that, from Eq. (47), Larson’s one species
odel predicts that at large elongational rates the extensional

tress difference becomes constant at a value η′
E ≈ 3G0/2ξ. On

he other hand Eq. (48) predicts μ ∼ 3

zz − σrr = ηEε̇0 ∼ ε̇−0.5
0 . (49)

The parameter μ can take on a wide range of values any-
here between 2 and 100, and the prediction is a non-monotonic

tress. That is for our two species model the extensional stress
eaches a maximum, (σzz − σrr)max, at a critical elongational
ate, ε̇max. At rates greater than this maximum the extensional
tress decreases. Thinning filaments of such fluids would be
xpected to be Hadamard unstable due to the rapid growth of
igh wavenumber disturbances beyond a maximum stress. Vis-
oelastic jets of fluids described by such a model can undergo
lastic modes of rupture which do not depend on the pres-
nce or magnitude of interfacial tension [51]. Instabilities in
he elongational flow of wormlike micelles have been observed
n experiments [39]. Analysis of the present two species model

hows that this maximum in the stress is given by

σzz − σrr)max = fE(cAeq , cBeq )

(2ξ/3)ε̇max
(50)
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here fE is a function of the equilibrium reaction rates, and ε̇max
s the positive root of

0 + a1ε̇max + (a2 + a3( 2
3ξ))ε̇2

max = 0,

ere the coefficients, ai, are functions of the reaction rates, cAeq

nd cBeq .

.4. Model parameters

Ultimately we wish to quantitatively compare the model pre-
ictions with experimental data on the rheology of wormlike
icellar solutions. We thus study the effects of varying the equi-

ibrium breaking rate, c′
Aeq

; the equilibrium number density of

pecies B, n0
B; and the parameter ξ for the three different types

f deformations described above.

.4.1. Variation of the equilibrium breaking rate
From (33) we see that once the value of λeff is set by fitting it

o SAOS experiments and once a value of c′
Aeq

has been chosen,

A can be determined from the relationship:

A = λeff

1 − λeffc
′
Aeq

. (51)

ote that for λA to remain positive we require

≤ c′
Aeq

≤ 1

λeff
.

n this section we consider two different limits. In the first limit
′
Aeq

� (1/λeff), hence μ ∼ 1, or λA ∼ λeff since

= 1 + cAeq = λA

λeff
.

o that in this limit the effective relaxation is affected by both
eptation and breaking dynamics (or in Cates’ notation τeff ∼
breaking ∼ τreptation) and reptation and breaking happen on the
ame time scale. In the second limit, c′

Aeq
→ 1/λeff or μ 
 1

o that τeff ∼ τbreaking � τreptation and breakage of the chains
appens more rapidly than reptation.

Fig. 7 shows predictions of the damping function for the
odel in step strain. It can be seen that in the regime where

he breaking and reforming rates are large (μ 
 1), the damp-
ng function is softer. Asymptotic expressions for the damping
unction have been given earlier by Eq (39) for μ ∼ 1 and Eqs.
40) and (41) for the case when μ 
 1. The Lodge–Meissner
elation asserts that for a step strain γ0 the first normal stress
ifference N1 is related to the shear stress σ by the relationship
1(t, γ0) = γ0σ(t, γ0) [26]. In our case, with time–strain fac-

orability, this becomes N1(γ0) = γ0G(t)h(γ0). Fig. 7(b) shows
hat for larger breaking and reforming rates the Lodge–Meissner
elation is broken sooner. Interestingly the relationship is non-
onotonic but always deviates below the affine relationship.
xperiments suggest that the deviation from this co-linear rela-
ion, at γ ∼ 8, coincides with the onset of shear banding. In a
uture paper [13] this phenomenon is studied, and we determine,
or a given solution, which of the two limits better agrees the
xperimental results.

s
a
s
l

ion, for μ ∼ 1 (broken line) the fit comes from theory and for μ > 1 (solid line)
he fit is numerical; (b) first normal stress difference divided by shear stress, here
he dotted line demonstrates the extent of agreement with the Lodge–Meissner
elation, N1/σrθ = γ0.

Fig. 8 shows the steady shear stress and number density of
he longer species as a function of shear rate for different values
f the ratio μ = λA/λeff. In the limit where μ > 1, such that
Aeq and cBeq are also large, the main relaxation mechanism in
he intermediate shear-rate region is the breaking and reforming
f long micelles, hence the stress is larger compared to the limit
here relaxation is due to both reversible breaking and reptation.
s the shear rate increases beyond λeffγ̇

′
0 ∼ 1, the number den-

ity of the long species A decreases and the population balance
hifts towards the shorter B chains. This gives rise (in a homoge-
eous analysis) to a non-monotonic flow curve. In an experiment
r inhomogeneous simulation this will lead to a ‘banded’ flow
ith different number densities and orientations of the wormlike
olecules in each band. Recall that the maximum in the shear
tress is a function of the rates of breakage and reformation, c1eq

nd c2eq , as shown in Eq. (42). Regardless of the value of μ, the
tress contribution from the short species, Brθ , is the same for
arge γ̇0.
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Fig. 8. Model prediction in shear flow for different values of the relaxation time
ratio μ = λA/λeff: (a) steady shear stress vs. shear rate, here the dotted line
indicates the contribution to the shear stress from the short species at large shear
r
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Fig. 9. Prediction of the two species model in elongational flow for different
values of μ compared to predictions from the single species Larson model: (a)
steady-state Trouton ratio vs. elongational rate and (b) number density of species
A
t
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where �̄ is the “number average” length of the micelles. If
ates and (b) number density of species A vs. shear rate. In the calculations shown
y the solid line we use μ = 3.5.

In Fig. 9, predictions of the model in steady uniaxial exten-
ional flow for the two different limiting values of μ are
ompared with those of the Larson PEC model [35]. As shown in
ig. 9(a), the model first predicts an increase in the elongational
iscosity due to the stretching and alignment of the micellar
etwork segments. However, after an initial increase, the tensile
tress difference saturates and the steady elongational viscosity
t high rates begins to decrease. Elongational thinning is pre-
icted by our model to be faster than that of the Larson model
ue to the breaking of the longer, A, species. As the breakage
ate increases the number density decreases more rapidly and
he extensional viscosity falls more rapidly. This decrease in the
umber of elongated A species at large strains reduces the total
ensile stress difference further (see Eq. (49)). Beyond the point

f maximum elongational viscosity, elongating micellar threads
ould be expected to be dynamically unstable to necking or

upture events.

n

c
a

. The Larson model has a constant number density at all deformation rates. In
his figure, ξ = 0.3 for all curves.

.4.2. Variations of equilibrium number density species B
In the selection of the parameter n0

B, note that for the con-
inuous length distribution presented in Cates’ theory [14], at
quilibrium the micellar length obeys an exponential distribution
o that,

n′0
B

n′0
A

= exp((−L/2)/�̄)

exp(−L/�̄)

r, with our non-dimensionalization (based on n′0
A) we find,

0
A = 1, n0

B = exp

(
L/2

�̄

)
(52)
0
B = eκ, this corresponds to choosing the length of the short
hains in the present model to be κ-times the average length
s it is understood in Cates theory. Thus larger values of κ
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ig. 10. Variation of the damping function vs.applied strain for different n0
B.

nset: breaking of chains of length L as a function of the applied strain.

mplies longer chains relative to �̄. In this study we have chosen
= 1, 1/2, 1/8. A value of κ = 1/2 thus corresponds to L = �̄

nd the long chains in our two species model are of mean length
ithin the Cates theory. Fig. 10 shows the damping function
lotted for different values of n0

B. It can be seen that if the length
f species A, at equilibrium, is longer than the average length, i.e.
> 1/2, then after a deformation is applied species A chains will

reak at smaller strains than when κ < 1/2. In this section plots
f the viscometric properties of shear and elongational flows
re omitted since the variations, as n0

B changes, are qualitatively
imilar to that in Figs. 8 and 9. In shear flow, the maximum in the
ntermediate shear rate region of the curve of steady shear stress
ersus shear rate is higher for smaller κ because species A break
ess. The dependence of the maximum shear stress on the shear
ate is given by Eq. (42). The curve of steady shear stress versus
hear rate is unaffected in the non-monotonic regions. In exten-
ional flow, smaller values of κ result in a larger elongational
hickening.

.4.3. Effect of the partially extending strand parameter ξ

Recall from Section 2.3 that the long species, A, break with
reaction rate

A = 1

3
ξμ

(
γ̇ :

A
nA

)
+ cAeq .

ence variations of the parameter ξ directly affect the breaking
ate, in non-linear flows, as a function of the strain, shear rate,
nd elongational rate. As a consequence, smaller values of ξ

esult in a softer damping function, a larger steady-state shear
tress, and greater elongational thickening, as seen in Figs. 11
nd 12.
The value of the parameter ξ necessary to predict experimen-
al responses of a given solution can be determined by fitting to
tep strain experiments, since this parameter directly affects the
ate of strain softening.

r
(
a

ig. 11. Model prediction in step strain for different values of ξ:(a) damping
unction vs. applied strain and (b) Lodge–Meissner relation.

In Fig. 11(a), the damping function predicted by our model for
ifferent values of ξ are compared to the asymptotic expressions
btained from Eq. (40). Predictions for strains larger than 8 are
tudied in a future paper [29], since the onset of shear banding
as been observed for strains of this order [13]. In Fig. 11(b), it
s shown that the model output agrees with the Lodge–Meissner
elation up to a strain value dependent on the value of the param-
ter ξ, with agreement up to higher values of γ for smaller ξ as
nticipated.

In Fig. 12(a) the variation of the shear stress with ξ as a
unction of the shear rate, and in Fig. 12(b) the variation of
he Trouton ratio with extension rate, are shown. As antici-
ated, the shear stress approaches a monotone (upper convected
axwell like) dependence on the shear rate as ξ goes to zero,

nd the Trouton ratio approaches an unbounded curve at finite
xtension rates (again Maxwell like) as ξ goes to zero. Once

egularized by ξ the Trouton ratio shows a local maximum
see Eq. (50)) followed by an extensional thinning that scales
s ε̇−1.5

0 .
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Fig. 12. Model predictions in shear and elongational flow for different values
of the parameter ξ: (a) steady-state shear stress vs. shear rate and (b) steady-
state Trouton ratio vs. elongational rate. In this figure the dotted line shows the
asymptotic linear behavior when ξ = 0.

Fig. 13. Model predictions in transient shear flow for different values of the
parameter ξ. Inset: variation of the number density of species A in time. Here,
λeff = 1.17 s and G0 = 27 Pa.

Fig. 14. Transient model predictions in homogeneous shear flow for different
shear rates. Here, λeff = 1.17 s and G0 = 27 Pa. (a) Shear stress vs. time and
( ′
t
a

6

s
w
a
s
s
a
a
o
fl
γ

d
t
a
o

b) first normal stress difference vs. time. Note that γ̇0λeff > 6 corresponds to
he non-monotonic part of the flow curve and hence shear banding is expected
t these shear rates.

. Transient response

As we have discussed above, predictions from this new con-
titutive model for homogenous flows are only valid in regions
here the spatial variation of the number densities of the species

re not important, that is regions which have not been subject to
hear banding. Step strain experiments with a 100 mM CpyCl
olution have shown that, for this solution, shear banding begins
t a strain of γ0 ∼ 8 [13], hence constitutive predictions that
ssume homogenous flow are only valid up to strains of this
rder. Fig. 13 shows the model predictions in transient shear
ow for variations of the parameter ξ at a constant shear rate

˙0 = γ̇ ′
0λeff = 1, the inset shows the variations of the number

ensity of species A. Fig. 14 shows the transient predictions of

he model for different shear rates. In each figure the stresses
re plotted up to maximum strains of γ̇ ′

0t
′ = 8. Continuation

f such curves to steady-state (corresponding to experimental
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esults for start up of steady shear) needs to be performed after
patial effects are re-incorporated into the equations.

. Conclusion

We have presented a model for wormlike micellar solutions
nvolving scission and reforming of chains based on non-affine
etwork theory and a discrete version of Cates theory. Specifi-
ally, we consider two elastically active species, the long chains
re convected by the flow and undergo rupture at a rate that
epends on the deformation rate and on the local elongation
ate. Following rupture the new, shorter, elastic chains partially
etract before being reconnected to the network. This partially
xtended and convected (PEC) response is captured by a single
on-linear model parameter ξ which controls the level of exten-
ion thickening in elongation and the extent of strain softening
n step strain displacements. To date we have only considered
ookean elastic segments, however it is straightforward to con-

ider numerically the role of non-linear (FENE) springs [20]. We
nticipate that this will result in strain-hardening at intermedi-
te shear strains, as observed by Brown et al. [12], and a further
nhancement in the extension thickening expected in uniaxial
longation. The model, which allows for inhomogeneities in
he flow kinematics, was examined in various homogenous flow
ituations, steady-state in a circular Couette device, step strain,
teady uniaxial extension, and linear small amplitude oscillatory
ow (SAOS). In each case we have explored the rheological con-
equences of varying the model parameters. In future papers the
odel predictions will be compared directly with experiments

13] and the full inhomogeneous flow field will also be explored
29].
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