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Abstract

In this paper a network model for wormlike micellar solutions is presented which incorporates scission and reforming of the chains, based on a
discrete version of Cates’ ‘living polymer’ theory. Specifically we consider two elastically active Hookean species: long chains which can break
to form two short chains, which can themselves recombine to form a long chain. The chains undergo rupture at a rate dependent on the local
elongation and deformation rate. This two species model, developed ultimately to enable understanding of inhomogeneous flows, is examined in
this paper for various deformations; steady-state shear flow, step strain, extension, and linear small amplitude oscillatory flow in homogeneous
conditions. We also examine how systematic variations in the model parameters affect the rheological predictions and material functions.
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1. Introduction

Wormlike micelles, also known as living polymers, have been
the center of numerous theoretical and experimental studies, see
for example the reviews [1,2]. Unlike typical polymers these
long macromolecular assemblies can break and reform continu-
ously, showing distinctive behaviors under different deformation
conditions. Observations in small amplitude oscillatory shear
(SAOS) flows show that under certain conditions the linear vis-
coelastic response is primarily a single mode Maxwell response
[3,4]. Specifically, if we denote Threax as the expected time for
breakage of the micelle, and Treptation as the expected time for
a micelle to reptate out of its entanglements, when Tpreax K
Treptation, Cates [5], showed that wormlike micellar mixtures
have a single mode Maxwellian response in the linear viscoelas-
tic regime, with a second ‘Rouse’ mode important only at high
frequencies. He also showed that the time scale associated with
this first, dominant, mode is Teff = (rrepta[ionrbreak)l/ 2 [5,6]. In
steady-state shear experiments, at small shear rates, 7 < y1, and
large shearrates, > y,, these micellar solutions exhibit a linear
dependence of the stress on the shear rate. However, given the
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right conditions of concentration, salinity, and temperature [7], a
stress plateau in an intermediate shear-rate region, y; < 7 < 2,
is observed in the flow curve and, in these cases, experiments
in a circular Couette cell commonly show the formation of two
primary ‘shear bands’, a high shear rate region near the inner or
moving wall connected to a low shear rate region near the outer
or fixed wall [8-10].

In uniaxial extension flows experiments have shown a plateau
in the extensional viscosity for small extensional rates, followed
by a sharp extensional thickening and, at a critical elongational
rate, an extensional thinning [11].

In step strain these mixtures show a factorization of the shear
stress as 0,9 = YGog(t)h(y) where G(t) = Gog(?) is the stress
relaxation modulus and k() the damping function. Experiments
have shown that G(7) can be well described by single exponential
relaxation G(1) = Go e /*. The damping function may have a
more complex response. Experiments by Brown et al. [12] on a
CTAB/NaSal system show a strain-hardening response followed
by a strain-softening. Recent experiments with a CPyCl/NaSal
solution show a monotonic softening response similar to that
described by the Doi—-Edwards model [13]. Additionally, exper-
iments show that the Lodge—Meissner relation is obeyed up to
strains of yp ~ 8 [13].

The present work presents a constitutive model to describe
the flow of wormlike micellar solutions under these different


mailto:vasquez@math.udel.edu
dx.doi.org/10.1016/j.jnnfm.2007.03.007

PA. Vasquez et al. / J. Non-Newtonian Fluid Mech. 144 (2007) 122—-139 123

deformation conditions and details the rheological predictions
and parameter dependence of the model. The model includes
scission and reformation effects as well as an elastic network
response and diffusion of species in the presence of stress
gradients. Such a model should thus be capable of capturing
inhomogeneous flow structures such as shear bands.

Various approaches have been taken in modeling wormlike
micellar solutions. Cates [14] introduced reaction dynamics to
account for the reversible breaking and reforming of the micellar
chains. In his model there are two different time scales, the rep-
tation time and the breaking time. Although experiments have
shown good agreement with his model, especially in linear defor-
mations, that model still fails to predict stress overshoot in the
start up of steady shear [6] and to our knowledge no calcula-
tions in extensional flow have been done for that model. Other
authors have combined dumbbell models for elastic chains and
network theory by introducing creation and destruction terms in
the evolution equation of the dumbbells [15,16]. Different forms
of these breaking and reforming terms have been considered.
Bautista et al. [17] developed a single species model based on
a codeformational Maxwell constitutive equation and included
a kinetic equation governing the relaxation time to account for
the dependence of the breakage rate on the shear rate. This par-
ticular version of their model predicts a multivalued shear stress
versus shear rate curve and hence one expects that the model
will demonstrate shear banding.

Two species models have been considered to describe closely
related fluids such as associative polymeric networks. These
mixtures do not typically exhibit shear banding, but these models
do incorporate two species in an elastic network with attach-
ment and detachment of strands. In [18] Cates introduced a
modified version of his association and dissociation dynamics
[14], to model pairwise associating polymers. The dynamics dis-
cussed in that paper are similar to the ones considered here in
that monomers form dimers and dimers break into monomers.
In [18] Cates focuses primarily on computing terminal relax-
ation times. Using Brownian dynamics simulations to evaluate
the rheological behavior of reversible polymeric networks, van
den Brule and Hoogerbrugge [19] assumed that the probability
of attachment to the network is proportional to the stretch of
the dumbbell. They introduced a FENE-like term in the prob-
ability of detachment to account for the fact that during flow a
chain has a higher probability of detaching once it becomes more
fully stretched. Brownian dynamics were also used in the work
of Hernandez-Cifre et al. [16] to simulate reversible polymeric
networks, they considered two separate species, one represent-
ing active chains connected to the network by both ends, and
the other representing dangling chains connected to the network
by one end only. In their work, disassociation from the network
was an exponential function of stress and, by using the same
form of the association rate as [19] they were able to predict
shear thickening. Tripathi et al. [20] in their two species net-
work model for associative polymers derived a destruction rate
for the non-linearly elastic bridging chains which depends on
the stress acting on the micellar junction and a creation rate
which depends on the configuration of the dangling ends and
the local shear rate. In their work the creation rate of the bridg-

ing chains was proportional to a function of the shear rate and
stress.

Single species bead—spring models based on the Johnson—
Segalman constitutive equation were considered by Olmsted and
collaborators. In these models the number density of the species
was kept fixed and numerical studies were carried out with and
without non-local diffusion terms [21-23]. A similar model
but with addition of variable density was considered in Refs.
[24,25]. These models result in a non-monotone Stress—strain
rate curve under homogeneous flow conditions. Under inhomo-
geneous flow conditions, with the addition of a viscous solvent
and the incorporation of stress diffusion terms, these models
predict a stress plateau in the flow curve over a range of shear
rates. Numerical studies have shown that, without diffusion,
the structure of the steady-state solution depends on the flow
history [21]. For shear rates within the plateau region, these
models predict shear banding in the velocity profiles across
the gap in a cylindrical Couette geometry. Such models are
phenomenological, that is they do not relate the state of the
stress directly to the microstructural dynamics of the micel-
lar system. Additionally, the Johnson—Segalman model predicts
a singularity in the extensional viscosity at a finite elonga-
tional rate and exhibits a non-physical negative damping in
rapid step strain deformations [26]. Experiments using NMR
imaging [27] and small-angle neutron scattering [28] have also
shown that for a model to be able to accurately describe the
highly non-linear behavior of some wormlike micellar solutions,
it should include local effects in the orientation and dynamics
of the molecules, as opposed to a bulk average of the proper-
ties. For these reasons alternative models, tied to the physics
of the micellar breakage and reforming processes, need to be
considered.

The present approach is based on a discrete version of Cates’
original reversible breaking theory. In contrast to Cates’ model
in which reptation theory was used, the breaking and reforming
dynamics in this model are incorporated into network the-
ory in which we follow elastic segments of wormy micelles
between entanglement points. In the present approach two dif-
ferent species are considered, one of length L that breaks in the
middle to form two strands of equal length, L /2. These strands
can also recombine to form one species of length L as shown in
Fig. 1.

In this paper we formulate the constitutive equations for such
a model and consider predictions under different deformation
conditions assuming homogeneous flow. In Section 2 we present
the formulation and appropriate non-dimensionalization of our
model. In Section 3 the governing equations describing steady
and transient shear flow in a cylindrical Couette geometry and
in uniaxial extensional flows are presented. Section 4 deals with
analysis of the model in the linear viscoelastic regime, specif-
ically small amplitude oscillation. Also, a first examination of
the model parameters and their effects on the model predictions
and in particular on the magnitude of the zero shear rate vis-
cosity is presented. In Section 5 non-linear material functions
in step strain, and in steady homogenous shear and elongational
flow are studied. The dependency of the material functions on
model parameters such as the equilibrium number density of
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Fig. 1. Micellar network: (top) Cates’ model with a continuous distribution of lengths N(L) and (bottom) our discrete two species model.

each species and the breakage rate are explored. A second paper,
Part II [13], consists of a detailed comparison of experiments
with the predictions of the model and optimal model parameter
selection for the model in agreement with experiments. Further
papers analyze this and similar models computationally in steady
and transient inhomogeneous shearing flows [29].

2. Formulation of the model

In the model presented here we simplify Cates’ dynamics by
considering only two species of wormlike micelles. We consider
species A, which are chains of length L units that break at the
middle to form chains of length L /2 units, denoted species B.
Analogously, the short chains can join at their ends to reform
into one long chain. This discrete dynamics is opposed to Cates’
theory in which chains can break with equal probability at any
point along their length, and in which chains of any length can
join to form a longer chain. This simplification of Cates’ break-
age dynamics allows us to understand the species interaction,
to examine the model in a variety of non-linear flow conditions,
and in particular, to develop a theory which consistently cap-
tures the spatial variations in the number density of each species.
This is key to understanding the experimental behavior of worm-
like micellar solutions and the selection of the stress at which
these solutions show shear banding [30]. One effect the contin-
uous, versus the discrete, dynamics has on our results is that by
allowing the chains to break at any point, the rate of breakage
is effectively increased and the breakage time correspondingly
decreased.

Let ¥, (r', Q', 1), Wp(r', Q', ') represent the number density
distribution of each species in space, configuration space and

time. Here Q' is the end to end vector of the chain. Then,
(W, t) = / W dQ/

represents the dimensional number density of species « as a func-
tion of space and time. Here and throughout this paper primes
represent dimensional variables.

The equations governing the configuration density function,
using network theory coupled with bead—spring kinetics, and
assuming Hookean forces, can be obtained by generalizing tech-
niques introduced by Bird et al. [31] and others [32,33] and used
in Refs. [24,25], to formulate a two species model:

kT

‘I’A’,/ + Ve - (Va¥) + Vo Q' - VV )W) — V- EVMI’A
2Hy 2kT
TV - AQY, — Vo VW
T, 4 @y @A
= %%* W, — ca W, (1a)
Uy, + V- (VY V [ VYV )W, — VY, kTVlI’/
Bt r (VB B)+ Q’(Q' vV'B) B— r"@ r¥Yp
2Hp 2kT
1V B QY, — vy eV W
g B Qo Q7B
= —'pWp x Wy + 2 4 W) (1b)

In these equations k is the Boltzmann constant; 7 the tempera-
ture; ¢, the drag coefficient of the species «; ¢/, the dimensional
breakage rate; ¢z the dimensional reforming rate per micelle;
H, is the spring constant or elasticity of the « th species.
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The flux of species A and B relative to the main flow is given
by

—kTV/ , 2mHy

jy=——V'o, + V- {QQ}4, (22)
ga laA
kT H o

fp=——V o+ BV (QQ)s. (2b)
¢B ¢B

The second term on the right hand side of Eq. (2) arises from
assuming there is a finite spatial extent for the dumbbell that
characterizes the elastic network segment and the mass is dis-
tributed at the two ends, one bead at (r' + (Q’/2), Q’, ¢') and the
other at (r' — (Q'/2), Q', ¢) [24,32,33].

By integrating the Smoluchowski equation (1) over Q’, with
Py = 4mn', and ply = 2mn'y, we obtain the evolution equations
governing the number densities of each species,

Drn’ AV (A
o= P o
Dl”l/ V/ 'j/ 2
th? = sz — cgnp + 241y, (3b)

The functional form of the reaction rates, c/A , c’B, for the breaking
and reforming of the chains will be discussed in Section 2.3. For
now we assume they are functions of the average extension of
the respective chains and the shear rate:

)y {Q' Q4. ¥, cp(n's, {Q'Q'}p. ¥).

Substituting for the flux from Eq. (2) into (3), the equations for
the number density for each species become

Dn’ ’ DAHA
Dtj* =2DaV )y — V'V {QQ)4
C/

+ TBn% —cyny, (4a)

Dn’B ) DBHB
=2DgV “np — V'V {QQ

D BV g — — {QQ}s

— cgn's 26,0, (4b)

Here the diffusivities of the A and B chains are Dy =
kT/2t4, Dp = kT/2¢p, respectively. The stress associated with
the « th species is related to the second moment of the distribu-
tion by

(QQ), = / QQ¥, Q. s)

Then multiplying the distribution Eq. (1) by Q’Q’ and integrating
over the configuration space, dQ’, we find the equations for the
second moment of each species:

an’ kT
PAZ Y - DAVHQQ) 4

4H
QQaq + C—AA{Q’Q’}A -

= Z1QQpry — 4QQs (62)

An' kT
"R - DV QQ)

4H

QQ} 51y + —21QQ} 5 —
{B

= —c3{Q'Q'}pns + 24 {Q'Q'} 4, (6b)

where (-)(/y represents the upper convected time derivative
defined as

D 1 NT 1)
Oany = ﬁ(')—(VV) () =) (V'v).

Because the flow may be inhomogeneous, that is the number
density distribution function, ¥, of each species varies in space,
configuration space and time, the number densities, nfx(r, 1),
cannot be factored out of the second moment, and

{QQ)y # 1,(Q'Q)q.
Finally, the total micellar contribution to the stress is given by
o' = Hy{Q'Q'}4 + Hp{Q'Q'}p. @)

2.1. Non-dimensionalization

The equations are non-dimensionalized as follows:

r= r t= L V= V/@d

d’ Aeff’ d
H4{Q'Q} n,

{QQ}a=/07a7 na:%,
n’ kT n’y

where o = A, B; d is a macroscopic characteristic length, in
circular Couette geometry, d = R, — R; where R,, R; are the
outer and inner radii; Afr is the effective relaxation time of the

network (to be determined); and 4/ n’ %kT/ H 4 is a characteristic
microscopic length scale for an elastic segment of species A.
Here n’g is the dimensional value of the number density of
chains of length L at equilibrium conditions. The relaxation time
of the « th species is Ay = {y/4H,. As opposed to being located
solely at the beads, as in bead—spring dumbbell models, the drag
is distributed along the chain, in accordance with network theory,
and hence depends non-linearly on the molecular weight of the
chain.

As will be seen through fitting to experimental data, the
shorter chains have a much shorter relaxation time, Apg, than
that of the longer chains, 1 4. Note that, since we only consider
two species, we effectively lump “all” short segments as species
B and “all” long entangled chains as species A. Then, from repta-
tion theory [34], one would expect that A4 ~ L3 /Lg where Lg
is the entanglement length [6]. On the other hand, the lumped
species B represents short segments with a Rouse-like relaxation
mechanism, so that Ap ~ (L/ 2)2 [6]. Thus we expect,

L
e 4 e > 1, (8)
hence, after the values of A4 and A g are determined, the ratio in
Eq. (8) should be an indicator of how long and/or entangled the
chains are in the system.
The consideration of only two species simplifies the analysis
but it is also restrictive. Introduction of more species enables
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us to capture the distribution of chain lengths and a broader
spectrum of relaxation times as observed in wormlike micellar
solutions, but it substantially complicates the analysis.

For compactness, we define the two configuration tensors

A= / QQ¥4 dQ = (QQ} 4. (%)

B— / QQ¥5dQ = (QQ} 5. (9b)

Additionally, the dimensionless breakage and reformation rates
are given by

/
cA=Aaclh, cB = hanicl, (10)

where c4 is the ratio of the relaxation time of the long chains
to the breakage time of the long chain, similarly for cp and the
shorter chains. The ratio of the relaxation time of the short chains
to the relaxation time of the long chains is denoted by

AB
€=—, 1D

AA
and that of the relaxation time of the long chains to the effective
relaxation time of the elastic network, as

AA

w= . (12)
Aeff

The ratio of the spring constant of the shorter chains to that of
the longer chains is

H

IB _ g, (13)
Hy

If the network segments are ideal Hookean entropic springs, then
we expect

3kT d H 3kT 3kT
Ny 0 TAT RN, T 2Ny
where N, is the number of Kuhn steps of length / in the segment
of species «. Note that, in our two species model, Ny = 2Np
so H* = 2. The ratios €, u are to be determined by fitting to
experiments.
Finally, the non-dimensional total stress o is given by

0,/

0= =(QQ) + H'(QQ); = A+ 2B (14)

where Go = n’ ng is a characteristic elastic modulus arising
from the long, A, chains.

2.2. Governing equations

With the scaling and parameters introduced in Section 2.1,
Egs. (4)-(6) become

DnA 2 1 2
" =204Vng —84VV i A4 —cpny —cana, (15a)
Dt 2
Dnpg 5 5
% =26pV°np —26pVV : B —cpny +2cana, (15b)
Ay + A —nal — 84 VA = cpnpB — caA, (16a)

euB()+B — ”731 — 85V2B= —2ecpngB + 2ecaA,  (16b)

Here, we have defined non-dimensional diffusion constants §, =
*aDy/d? fora = A, B.

These equations for the number density and stress must be
coupled with the fluid equations of conservation of mass, and of
conservation of momentum:

V.v=0, a7
D
Y —v.m, (18)
Dt
where E is an elasticity number defined as
Gorly  De
= = . 19
od? Re (19

Here Re = pV'd/nj,is the Reynolds number and De = A V' /d
is the Deborah number, where V' is the velocity at the mov-
ing wall. Thus, with our scaling, the dimensionless value of
the velocity at the moving boundary is De. The dimensionless
diffusion constants are

_ AaDg _ AV Dy De

5 A
AT TR d Vd_ Pe
ZA 1 De
0p=""0a=7——,
’B 2€ Pe

where the Peclet number is Pe = V'd/D4 and is a measure of
the relative importance of convection to diffusion of the elastic
chains of species A.

In addition, the total stress tensor is given by

m=pl-By+r, (20)
where the extra stress arising from the network is
T =(n4g +npl—(A+2B), (21)

and the solvent contribution to the total viscosity is 8 = 1/,
where 7; is the solvent viscosity, and 7, is the dimensional zero
shear rate viscosity.

To solve the system of Eqs. (17)—(21), appropriate boundary
and initial conditions on both stress and velocity need to be
specified. In this paper spatial variations are not considered, thus
boundary conditions for stress are not required at this point. A
full discussion of boundary conditions will be given in Part III
[29], where the full inhomogeneous flow is solved numerically.

On the other hand, initial values are found from Egs.
(15)—(16) assuming equilibrium conditions. That is, in absence
of flow, n% = 1 and Eq. (15a) gives

2c
nh ==, (22)
CBeq

where ¢ Acq» CBeq A€ the values of the breakage and reformation
rates c4, cp at equilibrium.
Similarly, at equilibrium we obtain

0

n
Aeq =1, Beq = TBI.
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2.3. Determination of breakage rate

So far we have developed a general two species network
model for the evolution of stress and number density of elastic
segments of length O 4, QO p. To complete the model we need to
specify appropriate breakage and reformation rates that describe
the evolution of the number density of each species under both
equilibrium and flowing conditions. In principle, appropriate
expressions could be determined by Brownian dynamics calcu-
lations of entangled wormlike micelles in the same manner as the
studies of van den Brule and Hoogerbrugge [19] and Hernandez-
Cifre et al. [16] for associative polymer networks. However,
such simulations are complicated by the multiple breaking and
reforming events expected for each chain. In the present work we
thus use simplified analytic expressions for each term. In partic-
ular, the dependence of the breakage rate of the elastically active
network elements (which correspond to stretched micellar seg-
ments) on the flow strength is taken to be of the form of the tube
loss term, proposed by Larson [35]. In this work Larson consid-
ered the dynamics of network segments which are convected by
a flow but which do not deform affinely inside their bounding
tubes. The resulting partially extending convected (PEC) strand
model provides a simple differential analog of the Doi—-Edwards
reptation theory. The longer elastic segments, species A, in our
model will experience similar convection by the flow and recoil
following a breakage event before being reincorporated into the
network. We thus write

1 A
CA = Cag + 361 ri)

Cp = CBeq'

(23a)

(23b)

A term with similar functional form to that in our breaking term
is used in the single species differential model of Marrucci et
al. [36] and in Likhtman and Graham’s non-extendable limit of
their Rolie-Poly model [37]. Although in the latter two cases
full retraction of the strand within the tube is assumed, in the
Larson’s form the parameter £ is allowed to vary to capture the
partial retraction of a strand within its tube. When & = 0 this
corresponds to no retraction or ideal affine neo-Hookean behav-
ior, the resulting constitutive equation is of simple convected
Maxwell form [31]. When & # O this corresponds to partial
extension and retraction. Finally, when & = 3/5 Larson showed
that the PEC model closely approximates the Doi—Edwards
theory in which the chain fully retracts inside the deforming
tube.

Larson’s term, which represents tube breakage after partial
retraction, is used instead in our case to model stress-induced
micelle breakage. We have introduced this term as an explicit
breakage term in our two species model as opposed to a non-
affine derivative in a single species model, as introduced by
Larson. Thus the non-affine nature of our network deformation
arises due to the continued breaking and the reforming of the
elastic elements comprising the network. When the breaking
and reforming rates are set to zero the model reduces to two
uncoupled Maxwell modes, which agrees with the observations
in linear regimes, so that the non-linear behavior of wormlike

micellar solutions in this model comes from the breaking and
reforming terms.

The advantage of the Larson-type term in the single species
case, provided a solvent viscosity is added to the model similar
to the Johnson—Segalman model, is that it not only predicts a
non-monotonic flow curve (which may result in shear-banding),
but that also, unlike the Johnson—Segalman model, it obeys the
Lodge—Meissner relation in step strain and it exhibits a maxi-
mum in elongational viscosity as a function of elongation rate
[26]. The single species model proposed by Larson has shown
good agreement with experimental data in shear, extensional,
and step strain for certain polymeric melts, although it was
noted that different values of the parameter £ are needed to
quantitatively describe each type of deformation [26,38].

A similar expression to the one in Eq. (23a), is also used in
the two species network model of Tripathi et al. [20] for associa-
tive polymer networks in order to describe the creation rate of
bridging chains from dangling chains. The difference between
that model and the model presented here is that our model
incorporates inhomogeneities in the flow, and that Tripathi et
al. explicitly modeled the molecular weight dependence of the
breaking rate of the bridging chains, which we have not included.
In addition, the creation and destruction of each species is mod-
eled as a first order reaction in the Tripathi case, whereas the
creation rate of long chains is quadratic in our model as it inher-
ently involves the combination of two shorter chains rather than
the reincorporation of a dangling chain into an elastic network.

3. Predictions in viscometric flow

Experiments with wormlike micellar solutions carried out in
cylindrical Couette devices show that spatial variations develop
in the flow above a critical shear rate [8,10,28,39]. We consider
Egs. (15) and (16) in the absence of spatial variation, thus we
assume §4 = 6p = Oand p (r)constant. Here, we present the for-
mulation and rheological predictions of this two species micellar
network model under such assumptions.

3.1. Shear flow in circular-Couette geometry

We employ the following assumptions of a homogeneous
unidirectional shear flow,

V= (07 v(r)7 O)a A\ V() = 05 y = 7/06750 + 7./06961”7

v: A= 29049,

and substitute these in Eqs. (15) and (16) to find evolution
equations for the number densities and stress contributions,
from species A and B, as functions of yg. Note that in non-
viscometric flow spatial variations arise through the shear rate,
y =ro(v/r)/dr. We thus obtain the following expressions for
the number density of each species:

dng 1 2.
M? = ECBeqng - ggﬂyoAre — CAMA, (24a)
Mg = CBu'B + gSMVOAra +2ca naA (24b)
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and for the components of the stress tensor A for species A:

dA,, 2 . A

123 dr + Ay —npg = CBeanBrr - gENVOEArr - CAqurra
(25a)
dArs A+ A
1% dr MVO rr ro
2 . A
= CBeanBrG — Zéup—=~A — CAqur(% (25b)
3 na
dAge .
K~ 2u0Arg + Agp —na
2 . Ar@
= CB BB — 55/’«)’071490 — CAyAvos (25¢)
na
dA Arg
dzz + Az —nyg= CchnBBzz ‘fﬂ 0 - Azz - CAchzz
t
(25d)
and finally for the stress associated with species B:
dB,, 1
w dr + By — EnB
[ 2CBeanBrr + 5#)/0 Arr + cheq rr:| . (26a)
dBr9 .
97 — €uyoBrr + Bro
dr
4 . Ar9
= € _ZCBeanBrO + gEUVOTArO + 2CAqur9 , (26b)
A
dBgy 1
—— —2euyB Bgp — =
€n a €uyoBrg + Boo 2”3
4 . Ar0
=€ |—2cp,npBow + g%MVOEAee +2ca,, Ao |, (260)
dB,, 4B 1
€ ——n
n dr Y B
A
ZCBeanB 2z T EMVO Azz + 2c4, Azz . (26d)

3.2. Extensional flow

For homogeneous uniaxial extensional flow with extension
rate &g we have:

v=(—1260n,0,802), V-V()=0

Y = —£06,6, — 208900 + 2£06,9,
v: A= éO(ZAZZ — Ay — Ag) = 2‘6/‘0(AZZ — Ap).

Egs. (15) and (16) give for the number densities of species A
and B:

dnA 1

M— dr = 2 Bean SMSO(AZZ —Ay) — CAlA, (27a)

dnB 2 4 .
H=q, = ~CBa"B + gélwo(Azz — Ap) + 2c4,04 (27b)
and for the components of the stress tensor A for species A:
dA,
M? + wéoAy + Ay —na
2 &péo
= cBeanBrr —=— Ay — A Ay — CAqurr’ (28a)
3 na
dA 0
dr + Ar@
2 §péo
= CBeanBrG (A — Ap)Ar — cAqurG» (28b)
3 na
dA_;
MT —21é0Az; + Azz —
2&pé0
= cBeanBZZ — gW(AZZ AFV)AZZ — CAquZZ (28C)

and finally for the stress associated with species B:

dB;, . 1
6“7 + euéo By + By — EnB

4&uég
= € |—2cp BBy + 7 ——(Azz; — Ap)Apr +2¢a Arr |
q 3 nga q
(29a)
dByy
W dr 0
4&upéo
=€ |—2cp npBry+ (A — Ap) Ao + 2ca,, Ao | 5
q 3 ngu q
(29b)
1
dtzz 22+ B — E”B
4&péo
= —2cpnpBy; + s ——(Az; — Ap)Agr + 24, Az | -
q 3 nyu q

(29¢)

The equations for Agg and Bgg are identical to those for A, B,,
respectively, with all 7 components changed to 66 components.
Note that if A,g, B,g are initially zero, they stay identically zero.
Hence this component of the stress does not play an important
role in extensional flow except under pre-shear conditions in
which A,g, Byg may not be zero at the inception of the exten-
sional flow. Recent experiments have considered the role of
pre-shear on the extensional response of micellar networks [40],
but analysis of this is beyond the scope of the present study.

4. Linear viscoelasticity

We now proceed to solve the constitutive equations to eval-
uate the steady and transient rheological predictions. We first
consider the linearized limit of small deformations. In general,
as will be seen below, fitting the linearized equations in shear
to linear viscoelastic data only serves to determine the effec-
tive relaxation time of the network, Aefr = A4/(1 + c4,,), and
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the product Azn% = A2,/2c Acq /c Beg- In order to fully determine
the individual model parameters, in particular the magnitude of
the equilibrium reaction rates, CAeq and CBeg> non-linear defor-
mations must be considered. The set of parameters specified
above cannot be determined uniquely from the available linear
viscoelastic data, due to the limitation of the ranges of fre-
quencies obtained experimentally. The parameter £ describes
the non-linear breakage processes and can only be determined
by regressing to full non-linear rheological measures.

4.1. Small amplitude oscillatory shear flow (SAOS)

In this section we develop linear theory in SAOS flow. Assum-
ing that
vio = Ne{y’e ) and " <1,

where w = Aefr@’ is the dimensionless oscillation frequency,
inserting this into Eqgs. (24)—(26), and keeping only linear terms
in »° we obtain:

inwAly + (14 ca Ay — cp Ny Bl = inwy’ A, (30a)

(14 cae)AD, — Cpony B = 1% =1, (30b)
: 1 1 1 _ - 0 R0
lepwB,y + B,y(1 + 2ecpnp) — 2ca €A,y = iepwy” By,

(30c)
BY.(1 4 2ecpny) = 3n% + 2eca AL (30d)
BN — 2Cag = 0. (30e)

Note that in linearized small disturbance theory the number den-
sity of each species, ng and n%, are constant since variations in
these terms are introduced in the full Eq. (24) by quadratically
small terms. In these linearized equations all quantities are non-
dimensional as before. Egs. (30b) and (30d) give, after ignoring
O(e) terms,

B, = b, Gla
A0 =1 (31b)
Thus, for € small, we have
A% =1, (32a)
Bi(‘)r = %n%’ (32b)
AL 0 (n/(1 + cag o)
" 1+ /(1 + ca))w)
/(1 +
(/A +eagho 320
L+ ((1/(1 + capy))®)
0 2 .
gl ot [ _(cre) R R 32d
PV \ T+ o) | 1+ (o) G

In the limit of small frequencies the system behaves as a single
mode Maxwellian system. Our system of equations has been
non-dimensionalized by the effective relaxation time and hence
we use Eq. (32¢) to define the effective relaxation time, Aegf, as

Aa Aa 1

= — = , (33)
1+ cag 1+ )LACACq Lt c;‘eq

Aeff =

which results from setting the ratio /(1 + ca,,) to unity. Here
Aeff has units of time.

Eq. (33) shows that the overall relaxation time of the network,
Aeff, 18 reduced from the longest relaxation time of the elastic
chains, A4, due to the additional mechanism of breakage. Thus,
the stress relaxes either through chains of length L relaxing or
through the chains of length L breaking to form chains of length
L /2. This re-scaling of the effective relaxation time is a result
of the simplification of Cates’ continuous breaking dynamics
to a two species discrete limit. Recall that in the continuous
limit Cates showed (in our notation) that Aesr = (A A)Lbreak)l/ 2,

(a) 30
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Fig. 2. Variations on the zero shear rate viscosity for: (a) different relaxation
times of species A, A4, and (b) different breaking rates at equilibrium, c/leq' In
these figures, Go = 27 Pa.
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Finally, for all values of w the linear system behaves as the
superposition of two Maxwell modes with relaxation times Acfr
and A p, respectively.

From these results the zero shear rate viscosity is given, to
order €, by

AA

/ 0
T)O:nAkT 7
1+ )”ACAeq

= GoAefr-

For a fixed relaxation time of the longer species, A 4, the dimen-
sional zero shear rate viscosity of the mixture decreases as the
breaking rate at equilibrium, c;\eq ,increases. The effective relax-
ation time also decreases as the breakage rate increases. Fig. 2
(a) shows the variation in the zero shear rate viscosity, 776, as
a function of the breakage rate c;\eq, for different values of A 4.

In Fig. 2(b), the breakage rate, C’Aeq is kept fixed at different

values, and 7 is plotted against A4. Experiments have shown
that for a given solution the zero shear rate viscosity increases
non-linearly with increasing surfactant concentration [9,41,42].
Hence in our model, the model parameters c/ACcl and A4 play
an important role in capturing the effect of concentration and
salinity. That is, in order to change C:Aeq or A4 one would need to
change the concentration of polymer, the concentration of salt,
and/or change the type of salt counterion.

5. Evaluation of model parameters

The characteristic stress scale for the micellar network is
given by Gy = n’ %kT. Following this non-dimensionalization,
the response of a particular micellar solution to non-linear
deformations is described in this model by three independent
parameters. At first glance, the model appears to contain six
parameters: A4, Ap, Cheq> CBeg> n%, and &. However, five of the
parameters are related to one another through three independent
equations. In the first of these we see from (15a) that the reaction

TAES CAyys CBegs and the number density of the second species

nY are related by

ZCAeq

n% =
CBeq

Recall that the number densities were non-dimensionalized by
n’ ?4 so that n% = 1. Similarly, when the effective relaxation time
of the solution, Aff, is known, a relation between A 4 and c;‘eq is
established by means of Eq. (33). Finally, in the linear viscoelas-
tic regime the model reduces to a two-mode Maxwell model and
the amplitude of the second mode is governed by the product:

A Bn% = constant,

where the constant is found by fitting to experiments and this
then determines a relation between n% and Ap.

Consequently, there are only three parameters to be deter-
mined for a given micellar mixture. One of these is the non-linear
parameter £, which only appears in non-linear flows, and
which determines the magnitude of the contribution from the
stress/strain rate-dependent term to the overall breaking rate of
the long micelles. The other two parameters to be fitted can be

— - - Storage Modulus, G’
Loss Modulus, G"

-]

GG, G'G,.
Sl

Fig. 3. Non-dimensional storage and loss modulus model prediction compared
with experimental data from a solution of 100 mM CpyCl [9]. In this figure
Apn% =1 x 1073, Aegr = 1.17 s, and Gy = 27Pa.

chosen arbitrary from the remaining five. In this study we have
chosen these two parameters to be n% and C/Aeq'

From Egs. (32c) and (32d) the storage and loss moduli are
given, in dimensional form, by

(hefre') o (pa')

G =G n
V1t e 21+ Gopo)?

, (34a)

G" =Gy { hette nY Ao
14 Gefr’)? "1+ (pa)?

} +ns0’.  (34b)

The upturn in the dynamic moduli observed experimentally at
high frequencies arises from the shorter chains, species B. The
contribution to the loss modulus, G”, from the solvent viscosity
is negligibly small, ns/no = B = O(107>).

If Aegr and A Bn% are held constant then the frequency depen-
dence of the linear viscoelastic moduli remain unchanged as
shown in Fig. 3. Regression of the model to experimental data
[9] yields best fit values of G, Aegr and ABn% as shown in Fig. 3.
In Fig. 4(a) we show the effect of decreasing the effective relax-
ation time, by either increasing c;‘eq or decreasing A 4 according
to

1 1

At Aa

/
+ CAeqa

and in Fig. 4(b), we show that if either n% or Ap is increased,
the contribution to the elastic moduli from the second mode (i.e.
shorter chains) increases.

Next we examine the model predictions under three different
non-linear deformations: step strain, steady-state shear flow, and
steady-state uniaxial elongational flow. First we discuss some
general considerations and asymptotic behavior of the model for
these deformation histories. This is followed by exploration of
model predictions under these prescribed deformation histories
as the parameters C/Aeq’ n%, and & are varied.
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Fig. 4. Variations in the predicted loss and storage moduli: (a) effect of decreasing A¢fr by either increasing the breaking rate c/Aeq or decreasing the micellar relaxation

time X 4; (b) effect of increasing the number density or relaxation time of species B, n%, or A g. Here, the solid line corresponds to the parameters in Fig. 3, the dashed
line is the result arising from the variation of the indicated parameter. Other parameter values are kept as in Fig. 3.

5.1. Step strain calculations

Because the evolution equations for number density and
stress are strongly coupled, it is necessary to integrate them for-
ward in time from equilibrium conditions. To simulate actual
step strain experiments, Eqs. (24)—(26), were integrated in time
with an imposed strain given by

V(@) = y(1 = (1 +b'1) exp(=b'1)), (35)

where the parameter ' is obtained through fitting to the exper-
imental motor response of a controlled strain rheometer [13].
For large b’ this is the achievable experimental approximation
to a Heaviside function in time. For the curves presented in this
paper we have taken b’ = 127 57!

Results for the stress relaxation as a function of time are
shown in Fig. 5 for different applied strains. In the inset the
results are graphed semi-logarithmically. It can be seen, in the
inset, that for every value of yy the slope of each of the parallel
lines is — 1, after the initial transient is completed. This indicates

10°

107"

10 10° 10
t/ heﬁ, [-]

Fig. 5. Model predictions of stress relaxation after imposing a shear deformation

given by Eq. (35) for yp=0.1, 1, 3, 5,7, 10, 12. Inset: stress relaxation on linear-

log scale. In this figure £ = 0.3 and € = 6.5 x 107> Broken line shows the
linear viscoelastic response for instantaneous shear deformation.

that the stress can be factored in the form:

ol9(v, 1) = yGog(Dh(y) = yG(Dh(y), (36)

where the relaxation modulus is

/
G(t) = Goexp(—t) = Gopexp (—I) (37)
Aeff

and h(y) is a strain-dependent damping function. Thus, if the
stress is scaled by a factor yph(yp) all the curves will superpose.
This behavior remains unchanged as long as A and A Bn% are
kept constant.

Analytic considerations show that the model predicts the
following form of the damping function:

h(y) = exp <_§y2> + O(epb). (38)

For ¢ — 0 the relaxation is due primarily to the relaxation of
species A and the damping function predicted by the model
approaches,

h(y) = e 57°/3, (39)

But when then terms of order eub are no longer negligible they
have an effect on the behavior of (). The numerical best fit, for
our range of values of the parameter ¢, suggests that the damping
function can be approximated by

h(y) ~ exp (_iyz) + fu, b)EY

_25( _2'1>2 (40)
4 JE .

Fa 1/5 2 @l
b\2 u/)’

Comparison of this numerical fitting with the model predictions

are discussed in Section 5.4 and also presented in Fig. 7(a) below.
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Fig. 6. Model predictions in steady-state shear flow (a) shear stress; (b) first

normal stress difference, as a function of dimensionless shear rate. Here §4 =
8 = 0.

Note that 2.1//€=6.6,3.8,2.7 for &=0.1,0.3,0.6,
respectively. This corresponds to values of the strain, yp, at
which the Lodge—Meissner relation no longer holds, as seen
in Fig. 7(b).

5.2. Homogeneous shear flow

Egs. (24)—(26) were integrated numerically in time to steady-
state subject to a constant dimensionless shear rate yp = (keffyé).
Fig. 6 shows plots of the steady-state shear stress and the first
normal stress difference as functions of shear rate. The resulting
flow curves are non-monotonic. Beyond a critical deformation
rate, y1, the scission of the long network strands (species A)
overwhelms the increased stretching that arises from increasing
shear. At very high deformation rates the growth in the stress is
again linear with respect to the shear rate due to the deformation
of the shorter B micellar strands. Recall that

0r9 = Arg + 2Bp.

From (24)—(26) it can be seen that for j < 1, By ~ 0 and
a9 ~ Arg ~ Y0-

On the other hand, at large shear rates, yp > 1, most of the
chains of length L have been destroyed, hence the flow response
is dominated by the short species which in this limit give rise to
a stress of

0
np )
Bg~ |1+ - | mero,

so that:

0
o0 ~ 2By ~ MVO
Aeff

The non-monotonic behavior at the intermediate rates, where
contributions from both species vary due to breaking and
reforming mechanisms, can be resolved only by performing
inhomogeneous flow calculations in which a plateau is allowed
to develop in the the stress/shear rate curve and shear bands are
formed by the selection of different local shear rates and number
densities. Calculations with other non-local constitutive mod-
els show that the precise shape of these curves depends on the
dimensionless diffusivities, § 4,  p, the flow loading history, and
the geometry [21].

Additionally the model predicts, under viscometric flow con-
ditions, that the maximum in the shear stress is given by

1
(Porefmax = S(CAcqs CBey) g (42a)
<a;9) _ 8(CAq: CBey) _ 8(CAcy: CBey) [1 (42b)
GO max SVO f(CAeq ° cBeq) S

where fand g are non-linear functions of the equilibrium reaction
rates.

Recall that, under inhomogenous flow conditions, the curve
of steady stress versus shear rate is expected to develop a
plateau in solutions that exhibit shear banding. Some authors
have proposed that this plateau is formed by a “top-jumping”
mechanism [43], that is the value of the stress at the plateau,
op, corresponds to the maximum value of the stress, omax, in
the non-monotonic curve under homogenous flow. However,
other authors have observed, theoretically and experimentally,
that this is not always the case [44-47]. For our model, under
inhomogenous flow conditions, the plateau is not typically real-
ized by “top jumping” and hence the location of such a stress
plateau is expected to be at a dimensionless stress value less
than unity [29]. Furthermore, as pointed out by Berret et al.
[48], the non-dimensional values of the shear stress and shear
rate corresponding to the onset of a stress plateau in fact vary
systematically with surfactant concentration. In our model, such
a dependence is captured by variations in the parameters ca,,,
CBey> and n%.

The predictions of the present scission/reformation model
also appear to be broadly consistent with thermodynamic argu-
ments regarding the energetics associated with the formation of a
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plateau in the flow curve. If we take the scission energy reported
for similar systems [49,50], Eiss &~ 4kgT, multiply it by the
dimensional breaking rate, c’;, and the number of long micelles
per unit volume that have been broken at the maximum of the
non-monotonic flow curve, n’ % — 1’y lmax, we obtain the energy
rate at which work was done per unit volume at the onset of the
non-linear regime.

C;x X (n/?q - n/A|max) X Egciss
=13.7s"' x5.04 x 10 m™> x 4kgTJ ~ 276 J/m’s,
43)

where n'y = nAn/g =na(Go/kpT)and ¢y = caha = [Caeq +
(1/3)&uio(Arg/na)l/ Aettit-

We compare this value with the power dissipated per unit
volume, which can be calculated from the dimensional stress
and deformation rate tensor, ¢’ : §’, at the maximum of the flow
curve,

267gImax X ¥ lmax = 66.7Pa x 322571 ~ 215J/m’s.  (44)

Here the scaling parameters Go and Aegr are taken from [9].
This estimate of the internal power dissipation is made at the
maximum of the non-monotonic viscometric flow curve; the
exact values at the stress plateau cannot be determined from
viscometric calculations as pointed out above.

The first normal stress difference grows quadratically in the
limit of small deformation rates and asymptotically approaches
the limit N; — 2G’)’/’(2) as y, — 0, as expected from simple fluid
theory. The homogeneous solution exhibits a non-monotonicity
similar to that observed in the shear stress at intermediate rates
before increasing quadratically again at high rates due to the
contribution of the short elastic B species. On the other hand,
inspection of Eqgs. (15) and (16) shows that N> = ¢, — 0;; = 0.

Although the precise form of the elastic first normal stress
difference in the inhomogeneous shear-banding region cannot
be determined without solving the full inhomogeneous equa-
tion set, we anticipate a change of slope but not a plateau in
Nj. This is due to the coupling between the shear stress and
the velocity field which, at least in the case of no significant
changes in scission/reformation, gives rise to terms of the form
2Xeft074(70) 7y ~ Vo in the plateau region where o, is constant.

5.3. Elongational flow

Because of the importance of micellar additives in control-
ling the extensional rheology of complex fluids employed in
consumer applications (e.g. paints, shampoos) and in oil recov-
ery, we also examine the predictions of the model in uniaxial
elongation.

The steady extensional viscosity (in dimensionless form) is
defined as,

. Ozz — Orr
ne(éo) = ——.
€0

At small elongational rates, ignoring terms of order €, so
that B, = Bgy = B;; = n%/Z, and taking n% and n% at their

equilibrium value, Egs. (28) and (29) result in
4 2
SEE0NE + SEED2 — o
4+ 1+ &)1 —2&)ng —3+---=0. 45)
For linear theory, £ = 0, this gives
1
3%
(1 + &o)(1 — 2&0)

and the long chains behave as a single convected Maxwell mode.
As the dimensionless extension rate &g = )Leffé'é) — 0, we have,

nE = (46)

ng =3,

or, equivalently the Trouton ratio is ng/n, = 3.
At large elongational rates the Larson model predicts

-1 .
e~ Go(36) €p1. @7

Equivalently, at least for the values of w that agree with
experiments (1 ~ 3), our two species model predicts

095, 15

NE 2~ f(Cae: CB)3E) 857, (48)

where the exponent in the term containing & was found through
numerical fitting and fis a function of the equilibrium reaction
rates . For u > 1, fis given by

062 2.6
fu)~245+—= - =
woop

Recall that our two species scission model would reduce to the
Larson PEC model for the long species A if the number densities,
n4 and np, were constant. Hence the difference between Egs.
(47) and (48) arises because of the additional mode of stress
reduction due to the scission of the elongated chains in the two
species model. Note that, from Eq. (47), Larson’s one species
model predicts that at large elongational rates the extensional
stress difference becomes constant at a value n; ~ 3Go/2&. On
the other hand Eq. (48) predicts p ~ 3

Oz — Oy = NEED ~ £ 7. (49)

The parameter © can take on a wide range of values any-
where between 2 and 100, and the prediction is a non-monotonic
stress. That is for our two species model the extensional stress
reaches a maximum, (0;; — 0yr)pax» at @ critical elongational
rate, &max. At rates greater than this maximum the extensional
stress decreases. Thinning filaments of such fluids would be
expected to be Hadamard unstable due to the rapid growth of
high wavenumber disturbances beyond a maximum stress. Vis-
coelastic jets of fluids described by such a model can undergo
elastic modes of rupture which do not depend on the pres-
ence or magnitude of interfacial tension [51]. Instabilities in
the elongational flow of wormlike micelles have been observed
in experiments [39]. Analysis of the present two species model
shows that this maximum in the stress is given by

JE(CAey» CBy)

(2£/3)emax G0

(022 = Orr)max =
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where fg is a function of the equilibrium reaction rates, and &max
is the positive root of

ao + @1émax + (@ + a3(3€)ida = 0,

here the coefficients, a;, are functions of the reaction rates, ¢ Aeq
and cp,,.

5.4. Model parameters

Ultimately we wish to quantitatively compare the model pre-
dictions with experimental data on the rheology of wormlike
micellar solutions. We thus study the effects of varying the equi-
librium breaking rate, c’Aeq; the equilibrium number density of

species B, n%; and the parameter £ for the three different types
of deformations described above.

5.4.1. Variation of the equilibrium breaking rate

From (33) we see that once the value of A is set by fitting it
to SAOS experiments and once a value of C/Aeq has been chosen,
A4 can be determined from the relationship:

Aeff

Ay =——"7--—.
7
1-— )\.effCAeq

D

Note that for A 4 to remain positive we require

In this section we consider two different limits. In the first limit
c’Aeq & (1/Xeff), hence o ~ 1, 0r Ag ~ Aeff since

1+ ta
a A = et
So that in this limit the effective relaxation is affected by both
reptation and breaking dynamics (or in Cates’ notation Tefr ~
Threaking ™ Treptation) and reptation and breaking happen on the
same time scale. In the second limit, c’Aecl — 1/Aefror > 1
$0 that Tefr ~ Tpreaking K Treptation and breakage of the chains
happens more rapidly than reptation.

Fig. 7 shows predictions of the damping function for the
model in step strain. It can be seen that in the regime where
the breaking and reforming rates are large (i« >> 1), the damp-
ing function is softer. Asymptotic expressions for the damping
function have been given earlier by Eq (39) for © ~ 1 and Eqgs.
(40) and (41) for the case when p > 1. The Lodge—Meissner
relation asserts that for a step strain )y the first normal stress
difference N is related to the shear stress o by the relationship
N1(t, yo) = yoo(t, yo) [26]. In our case, with time—strain fac-
torability, this becomes N1 (yg) = YoG()h(yp). Fig. 7(b) shows
that for larger breaking and reforming rates the Lodge—Meissner
relation is broken sooner. Interestingly the relationship is non-
monotonic but always deviates below the affine relationship.
Experiments suggest that the deviation from this co-linear rela-
tion, at y ~ 8, coincides with the onset of shear banding. In a
future paper [13] this phenomenon is studied, and we determine,
for a given solution, which of the two limits better agrees the
experimental results.
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Fig. 7. Model predictions in step strain with variations in u: (a) damping func-
tion, for i ~ 1 (broken line) the fit comes from theory and for > 1 (solid line)
the fit is numerical; (b) first normal stress difference divided by shear stress, here
the dotted line demonstrates the extent of agreement with the Lodge—Meissner
relation, Ni/oy = Y.

Fig. 8 shows the steady shear stress and number density of
the longer species as a function of shear rate for different values
of the ratio u = A /Aer. In the limit where u > 1, such that
CAe, and cp,, are also large, the main relaxation mechanism in
the intermediate shear-rate region is the breaking and reforming
of long micelles, hence the stress is larger compared to the limit
where relaxation is due to both reversible breaking and reptation.
As the shear rate increases beyond Aeffyé ~ 1, the number den-
sity of the long species A decreases and the population balance
shifts towards the shorter B chains. This gives rise (in a homoge-
neous analysis) to a non-monotonic flow curve. In an experiment
or inhomogeneous simulation this will lead to a ‘banded’ flow
with different number densities and orientations of the wormlike
molecules in each band. Recall that the maximum in the shear
stress is a function of the rates of breakage and reformation, Cleq
and 24> AS shown in Eq. (42). Regardless of the value of u, the
stress contribution from the short species, By, is the same for
large 4.



PA. Vasquez et al. / J. Non-Newtonian Fluid Mech. 144 (2007) 122—-139 135

(a) 10 ‘ T . . ‘

w>1
-

¢ /Gy [
A

Ci
=
-

0.9r

0.8+

0.6

0.5F

0.3+

0.2+

Number Density Species A, [-]

Y‘éheﬁ ’ [']

Fig. 8. Model prediction in shear flow for different values of the relaxation time
ratio = A /Aefr: (a) steady shear stress vs. shear rate, here the dotted line
indicates the contribution to the shear stress from the short species at large shear
rates and (b) number density of species A vs. shear rate. In the calculations shown
by the solid line we use u = 3.5.

In Fig. 9, predictions of the model in steady uniaxial exten-
sional flow for the two different limiting values of u are
compared with those of the Larson PEC model [35]. As shown in
Fig. 9(a), the model first predicts an increase in the elongational
viscosity due to the stretching and alignment of the micellar
network segments. However, after an initial increase, the tensile
stress difference saturates and the steady elongational viscosity
at high rates begins to decrease. Elongational thinning is pre-
dicted by our model to be faster than that of the Larson model
due to the breaking of the longer, A, species. As the breakage
rate increases the number density decreases more rapidly and
the extensional viscosity falls more rapidly. This decrease in the
number of elongated A species at large strains reduces the total
tensile stress difference further (see Eq. (49)). Beyond the point
of maximum elongational viscosity, elongating micellar threads
would be expected to be dynamically unstable to necking or
rupture events.
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Fig. 9. Prediction of the two species model in elongational flow for different
values of ; compared to predictions from the single species Larson model: (a)
steady-state Trouton ratio vs. elongational rate and (b) number density of species
A. The Larson model has a constant number density at all deformation rates. In
this figure, & = 0.3 for all curves.

5.4.2. Variations of equilibrium number density species B

In the selection of the parameter n%, note that for the con-
tinuous length distribution presented in Cates’ theory [14], at
equilibrium the micellar length obeys an exponential distribution
so that,
n'y _ exp(=L/2)/D)

n%  exp(—L/0)

or, with our non-dimensionalization (based on n’ ?4) we find,
L/2
n% =exp ( é ) (52)

where £ is the “number average” length of the micelles. If
n% = ¢, this corresponds to choosing the length of the short
chains in the present model to be k-times the average length
as it is understood in Cates theory. Thus larger values of «

n%:l,
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Fig. 10. Variation of the damping function vs.applied strain for different n%.
Inset: breaking of chains of length L as a function of the applied strain.

implies longer chains relative to £. In this study we have chosen
k=1,1/2,1/8. A value of k = 1/2 thus corresponds to L = ¢
and the long chains in our two species model are of mean length
within the Cates theory. Fig. 10 shows the damping function
plotted for different values of n%. It can be seen that if the length
of species A, atequilibrium, is longer than the average length, i.e.
k > 1/2,then after a deformation is applied species A chains will
break at smaller strains than when x < 1/2. In this section plots
of the viscometric properties of shear and elongational flows
are omitted since the variations, as n% changes, are qualitatively
similar to that in Figs. 8 and 9. In shear flow, the maximum in the
intermediate shear rate region of the curve of steady shear stress
versus shear rate is higher for smaller « because species A break
less. The dependence of the maximum shear stress on the shear
rate is given by Eq. (42). The curve of steady shear stress versus
shear rate is unaffected in the non-monotonic regions. In exten-
sional flow, smaller values of k result in a larger elongational
thickening.

5.4.3. Effect of the partially extending strand parameter &
Recall from Section 2.3 that the long species, A, break with
a reaction rate

15 y. A +
cA == T — Chey-
a=gEu (v Acq

Hence variations of the parameter £ directly affect the breaking
rate, in non-linear flows, as a function of the strain, shear rate,
and elongational rate. As a consequence, smaller values of &
result in a softer damping function, a larger steady-state shear
stress, and greater elongational thickening, as seen in Figs. 11
and 12.

The value of the parameter £ necessary to predict experimen-
tal responses of a given solution can be determined by fitting to
step strain experiments, since this parameter directly affects the
rate of strain softening.

(a) 10°
- -1
5 107"k
=
1072 : —
10 10° 10
T, [-]
1
(b) 10 T T
- - —2=0.1 e
—=¢=03 " ~.]
- - =06 =7

107 : :
107" 10° 10!
Ty [l

Fig. 11. Model prediction in step strain for different values of &:(a) damping
function vs. applied strain and (b) Lodge—Meissner relation.

InFig. 11(a), the damping function predicted by our model for
different values of & are compared to the asymptotic expressions
obtained from Eq. (40). Predictions for strains larger than 8 are
studied in a future paper [29], since the onset of shear banding
has been observed for strains of this order [13]. In Fig. 11(b), it
is shown that the model output agrees with the Lodge—Meissner
relation up to a strain value dependent on the value of the param-
eter £, with agreement up to higher values of y for smaller & as
anticipated.

In Fig. 12(a) the variation of the shear stress with & as a
function of the shear rate, and in Fig. 12(b) the variation of
the Trouton ratio with extension rate, are shown. As antici-
pated, the shear stress approaches a monotone (upper convected
Maxwell like) dependence on the shear rate as £ goes to zero,
and the Trouton ratio approaches an unbounded curve at finite
extension rates (again Maxwell like) as & goes to zero. Once
regularized by & the Trouton ratio shows a local maximum
(see ]%(% (50)) followed by an extensional thinning that scales
asé; .
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Fig. 12. Model predictions in shear and elongational flow for different values
of the parameter &: (a) steady-state shear stress vs. shear rate and (b) steady-
state Trouton ratio vs. elongational rate. In this figure the dotted line shows the
asymptotic linear behavior when & = 0.
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Fig. 13. Model predictions in transient shear flow for different values of the
parameter £. Inset: variation of the number density of species A in time. Here,
et = 1.17s and Gg = 27 Pa.
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Fig. 14. Transient model predictions in homogeneous shear flow for different
shear rates. Here, Aesf = 1.17 s and Gy = 27 Pa. (a) Shear stress vs. time and
(b) first normal stress difference vs. time. Note that yékeff > 6 corresponds to
the non-monotonic part of the flow curve and hence shear banding is expected
at these shear rates.

6. Transient response

As we have discussed above, predictions from this new con-
stitutive model for homogenous flows are only valid in regions
where the spatial variation of the number densities of the species
are not important, that is regions which have not been subject to
shear banding. Step strain experiments with a 100 mM CpyCl
solution have shown that, for this solution, shear banding begins
at a strain of yp ~ 8 [13], hence constitutive predictions that
assume homogenous flow are only valid up to strains of this
order. Fig. 13 shows the model predictions in transient shear
flow for variations of the parameter £ at a constant shear rate
Yo = )7(/))\,eff = 1, the inset shows the variations of the number
density of species A. Fig. 14 shows the transient predictions of
the model for different shear rates. In each figure the stresses
are plotted up to maximum strains of )¢ = 8. Continuation
of such curves to steady-state (corresponding to experimental
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results for start up of steady shear) needs to be performed after
spatial effects are re-incorporated into the equations.

7. Conclusion

We have presented a model for wormlike micellar solutions
involving scission and reforming of chains based on non-affine
network theory and a discrete version of Cates theory. Specifi-
cally, we consider two elastically active species, the long chains
are convected by the flow and undergo rupture at a rate that
depends on the deformation rate and on the local elongation
rate. Following rupture the new, shorter, elastic chains partially
retract before being reconnected to the network. This partially
extended and convected (PEC) response is captured by a single
non-linear model parameter £ which controls the level of exten-
sion thickening in elongation and the extent of strain softening
in step strain displacements. To date we have only considered
Hookean elastic segments, however it is straightforward to con-
sider numerically the role of non-linear (FENE) springs [20]. We
anticipate that this will result in strain-hardening at intermedi-
ate shear strains, as observed by Brown et al. [12], and a further
enhancement in the extension thickening expected in uniaxial
elongation. The model, which allows for inhomogeneities in
the flow kinematics, was examined in various homogenous flow
situations, steady-state in a circular Couette device, step strain,
steady uniaxial extension, and linear small amplitude oscillatory
flow (SAOS). In each case we have explored the rheological con-
sequences of varying the model parameters. In future papers the
model predictions will be compared directly with experiments
[13] and the full inhomogeneous flow field will also be explored
[29].
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