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Synopsis

Although many constitutive models for wormlike micellar solutions have been proposed, few
quantitative comparisons have been made with detailed rheological measurements. The majority of
comparative studies focus on the linear viscoelastic properties of micellar solutions, which are well
described by monoexponential Maxwell-like behavior. In the present work we compare the
predictions of a prototypical two-species reptation-reaction model "developed in Part 1, Vasquez et
al., “A network scission model for wormlike micellar solutions: I. Model formulation and
viscometric flow predictions,” J. Non-Newtonian Fluid Mech. 144#2–3!, 122–139 #2007!$ with
rheological measurements performed using a concentrated cetyl pyridinium chloride/sodium
salicylate #CPyCl/NaSal! solution in a range of steady and transient shear flows. The model
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captures the continuous rupture and reformation of the long entangled chains that form a physically
entangled viscoelastic network and the enhanced breakage rates that occur during imposed
shearing deformations. In homogeneous shearing flows, the model describes numerous qualitative
features of the linear and nonlinear rheologies, including a strongly strain-dependent damping
function during large strains, agreement with the Lodge–Meissner rule at moderately large strains,
large rate-dependent first normal stress coefficients in steady shear flow, and pronounced stress
overshoots during start-up of steady shear. The present model cannot predict the second normal
stress difference observed experimentally or the persistent agreement with the Lodge–Meissner
rule observed experimentally at very large strains. Homogeneous flow calculations with this
simplified two-species model cannot capture quantitatively the full range of transient dynamics
observed experimentally. More complex time-dependent test protocols, including step-jumps #up
and down! in deformation rate and applied stress, are used to reveal the slow temporal dynamics
associated with evolution of the shear-banding plateau. Such experiments help to provide insight
into additional features #such as diffusion coefficients for stress-microstructure coupling! that are
required for fully quantitative rheological equations of state describing these concentrated
wormlike micellar solutions. © 2010 The Society of Rheology. "DOI: 10.1122/1.3439729$

I. INTRODUCTION

Wormlike micelles are high aspect ratio flexible chains of surfactant molecules in
solution which self-assemble under an appropriate combination of solvent, surfactant, and
counter-ions. Unlike conventional polymer chains, these wormlike microstructures have
the remarkable ability to break and then recombine, hence the name “living polymers”
"Anderson et al. #2006a!; Cates and Fielding #2006!$. Understanding the rheology of
these solutions is of considerable practical interest due to their wide class of applications,
ranging from household and personal care products to oil recovery. Accordingly, these
wormlike micellar systems have been well studied both experimentally "Cates and Can-
dau #1990!; Rehage and Hoffmann #1991!; Méndez-Sánchez et al. #2003!; Yesilata et al.,
#2006!$ and theoretically "Cates #1987!; Granek and Cates #1992!; Olmsted et al. #2000!$,
and a large variety of rheological behaviors has been observed for these solutions de-
pending on surfactant and co-surfactant concentrations. Here we focus on systems of
semi-dilute entangled wormlike micelles "Berret et al. #1994, 1997!; Miller and Rothstein
#2007!; Davies et al. #2010!$ which form highly elastic and heavily shear-thinning solu-
tions but which do not show shear-induced structure formation or shear-thickening at
high deformation rates "e.g., Boltenhagen et al. #1997!; Fischer et al. #2002!$.

The linear viscoelastic #LVE! response of these liquids is now well known: for small
deformations and low frequencies the response of the micellar network is well described
by a Maxwell fluid with a single relaxation time ! and an elastic modulus GN

0 "Rehage
and Hoffmann #1991!; Kern et al. #1994!$. However, instead of reaching the asymptotic
values of G!→GN

0 and G"→"−1 for high frequency deformations "#!−1, as would be
characteristic of a perfect Maxwellian fluid, both the elastic and loss moduli slowly
increase with frequency. This phenomenon is associated with the onset of Rouse modes
of relaxation "Turner and Cates #1991!$. Furthermore, as the amplitude of deformation
imposed on the micellar network increases beyond the linear domain, a strain-dependent
response is observed which may be characterized by a damping function h#$! "Brown et
al. #1997!; Bautista et al. #1999!$ so that the shear stress in the system is described as
%xy =G#t!h#$!.

The Maxwell-like description also holds for steady flow experiments at low shear rates
where the solutions exhibit a shear-rate-independent viscosity &0=GN

0 ! "Rehage and
Hoffmann #1991!$. At strain rates above approximately !−1, the steady-state shear vis-
cosity of the micellar solutions is strongly shear-thinning. Given the right conditions in
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concentration and temperature, this decrease in the viscosity with increasing shear-rate
approaches an asymptotic slope of '1 giving rise to a region in which the shear stress is
nearly constant for a wide range of shear rates. This region of the flow-curve is com-
monly referred to as the stress plateau. The stress plateau region is associated with the
presence of shear-banded flow "Berret et al. #1994!; Schubert et al. #2004!$ and has been
the focus of considerable attention "Grand et al. #1997!; Decruppe et al. #2001!; López-
González et al. #2004!; Fielding and Olmsted #2006!$. In particular, it has been shown
that this shear-banding behavior can be predicted by constitutive equations that result in
a non-monotonic viscometric flow-curve "Spenley et al. #1993!; Porte et al. #1997!;
Olmsted et al. #2000!$. Slow transient responses lasting hundreds of relaxation times have
also been reported in this plateau region "Grand et al. #1997!; Porte et al. #1997!$ which
suggest the possibilities of thixotropy and shear-induced phase transitions "Berret et al.
#1994!; Schubert et al. #2004!$ and can lead to chaotic fluctuations in the shear stress
"Ganapathy and Sood #2006!; Pimenta and Pashkovski #2006!$. Finally, at very high
shear rates, the shear plateau ends and the shear stress increases again with further
increases in rate; however, this part of the flow-curve can be difficult to access experi-
mentally using a standard rheometer due to the onset of more complex flow instabilities,
demixing, and foaming "Berret et al. #1994!; Yesilata et al. #2006!$. These problems can
be somewhat mitigated by using microfluidic rheometry which offers the possibility to
impose very high deformation rates without the presence of a free surface "Pipe et al.
#2008!; Nghe et al. #2008!$.

Recently, a variety of other non-linear flows have been explored to better understand
the rheological properties of wormlike micellar solutions, including the start-up of steady
shear flow "Soltero et al. #1999!$, large amplitude oscillatory deformations "Méndez-
Sánchez et al. #2003!$, steady flows with superposed oscillations "Anderson et al.
#2006b!$, and strong extensional deformations "Rothstein #2003!; Yesilata et al. #2006!;
Bhardwaj et al. #2007!$.

Constitutive modeling

Early rheological data indicated that wormlike micellar solutions resemble a familiar
entangled polymeric structure but possess quantitatively different dynamics. These ob-
servations inspired the “reptation-reaction” model of Cates #1987! which coupled the
original reptation model for entangled polymer solutions proposed by de Gennes #1971!
and by Doi and Edwards #1986! with reaction equations to capture the breaking and
reforming of the living polymer chains following a prescribed probability distribution.
Cates #1987! showed that in the fast breaking limit, in which micellar chains break on a
time-scale !br which is very short compared to the reptation time !rep, a mono-
exponential stress relaxation is recovered for small deformations, agreeing well with
experimental observations. In addition, Cates #1987! showed that in that limit,
!br(!rep, the effective elastic relaxation time ! of the micellar network is equal to the
geometric mean of the breaking and reptation times, !%#!br!rep!1/2.

As we have noted above, further experimental studies revealed transient responses
many hundreds of times greater than the elastic relaxation time near the onset of the
stress plateau region "Grand et al. #1997!; Porte et al. #1997!$. These long time-scales and
sigmoidal time signature inspired an analogy between the evolution of the stress-strain
rate field in a micellar system and the dynamics observed in thermodynamic phase tran-
sitions "Porte et al. #1997!$. This comparison helps motivate qualitative models that
adequately describe the principal features of the measured flow-curve. However, no com-
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plete constitutive theory exists and this analogy lacks the mechanisms to account for LVE
responses that occur on the effective relaxation time of the network #t&!! or nonlinear
elastic effects such as normal stress differences.

A phenomenological framework for modeling the dynamics of micellar systems in
shear flow was proposed by Bautista and co-workers "Bautista et al. #1999!; Soltero et al.
#1999!; Manero et al. #2002!$. Their approach incorporates a convected Maxwell model
coupled with a scalar evolution equation for a parameter characterizing the state of the
system’s microstructure. They showed that the Fredrickson model "Fredrickson #1970!$
for the evolution of the solution fluidity )=&−1 #i.e., the reciprocal of the viscosity! as a
function of time and imposed kinematics was able to describe various aspects of micellar
solution behavior. Bautista and co-workers’ approach qualitatively captures the non-linear
response to step strains and step strain rates and the failure of the Cox–Merz relation that
is observed experimentally in these systems. However, the model does not capture the
normal stress response measured in wormlike micellar solutions "Anderson et al.
#2006a!$. In addition, the flow is assumed to be homogeneous throughout the system,
whereas detailed pointwise measurements of the flow show the formation of shear-bands
of differing shear rates within the stress plateau region "Britton and Callaghan #1997!;
Salmon et al. #2003!; Hu and Lips #2005!; Liberatore et al. #2006!; Miller and Rothstein
#2007!; Davies et al. #2010!$.

The consequences of spatial variations of the local velocity field on the length scale of
a polymer chain and the resulting stress-driven diffusivity of molecules away from local
regions of high gradients of velocity and stress were first considered by El-Kareh and
Leal #1989!, Bhave et al. #1991!, and Mavrantzas and Beris #1992! within the framework
of the kinetic theory for dumbbells—which is most applicable for dilute solutions of
flexible polymer chains. Spenley and Cates "Spenley et al. #1993, 1996!$ extended the
original reptation-reaction model of Cates to nonlinear flows and arrived at a Doi–
Edwards-like model that focused on reptation of the longest species alone and led to a
non-monotonic flow-curve which, as mentioned above, can describe shear-banding be-
havior. However, only predictions for a “toy model” were considered in detail and no
comparison between theory and experiments was presented.

Olmsted and co-workers "Lu et al. #2000!; Olmsted et al. #2000!$ merged the two
concepts above by adapting the nonmonotonic Johnson–Segalman model "Johnson and
Segalman #1977!$ for polymer solutions to include “non-local” effects which give rise to
diffusive gradients in the stress and become important in rapidly varying regions such as
shear-bands. Calculations show that even in the absence of diffusive effects this model
captures many of the features of nonlinear shearing flows of micellar solutions, including
sharp spatial variations such as shear-banding and hysteresis in the flow-curve during rate
sweeps "Lu et al. #2000!; Olmsted et al. #2000!$. More recently it has been demonstrated
that it can also predict periodic fluctuations in the structure of the shear-bands "Fielding
and Olmsted #2006!$. Unfortunately this model cannot accurately describe results of step
strain shearing flows due to the form of the Gordon–Schowalter derivative. This non-
affine convected derivative is directly connected with the nonmonotonic stress variation
and enables the prediction of shear-banding; however, it cannot readily be connected to
microstructural processes such as scission/reforming events.

Cook and co-workers "Cook and Rossi #2004!; Rossi et al. #2006!$ developed a model
that is derived from the kinetic theory of dumbbells to incorporate both non-affine motion
and spatial variations in the local number density of the micelles which are modeled as
Hookean dumbbells. This model incorporates non-affine motions or “slippage” into pre-
vious dumbbell models "Bhave et al. #1991!; Mavrantzas and Beris #1992!$ via the
Gordon–Schowalter derivative and was studied computationally under steady-state shear
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in plane "Cook and Rossi #2004!$ and circular Couette flows "Rossi et al. #2006!$. How-
ever, even though this model included in a self-consistent manner local number density
variations, such as earlier variants of the Johnson–Segalman model, the model is phe-
nomenological in nature and hence cannot be directly compared to actual physical pro-
cesses of rupture and reformation in the micellar network.

In the present work, we compare, on a quantitative basis, rheological measurements in
both linear and nonlinear shear flows with the predictions of a rheological equation of
state that describes the coupling in the micellar microstructure, the local fluid kinematics,
and the resulting macroscopic stress. The constitutive model is described in detail in Part
I of this work "Vasquez et al. #2007!, or for brevity VCM$ and an overview is included
here in the Appendix. The VCM model was formulated to capture a number of the key
physical ideas outlined above, including the presence of an entangled elastic network,
continuous rupture and reformation of chains, and a coupling between the local number
density profile of micelles and gradients in the stress and velocity distributions, which can
lead to evolution in the macroscopic response over long time-scales.

The VCM model incorporates earlier constitutive developments as outlined in Table I.
In contrast to earlier constitutive equations, this family of two-species models captures
individual contributions to the total viscoelastic stress arising from long entangled chains
#species “A”! and from a shorter, unentangled “B” species. The models are self-
consistently derived from kinetic network theory and aim to capture the coupling between
the local microstructural conformation and the resulting macroscopic stress response
"Vasquez et al. #2007!; Zhou et al. #2008!$. Like earlier investigations, these models can
be studied in homogeneous #viscometric! flows, in which the kinematics are specified a

TABLE I. Overview of approaches to modeling the coupled microstructural and macrorheological responses of
complex fluids such as wormlike micellar solutions. Key: V—viscometric flows #specified kinematics! only;
IH—inhomogeneous kinematics; “Varying n” indicates that the local number density of elastically active spe-
cies is allowed to vary as a result of “non-local” effects such as gradients in the stress; the column “Stress-
driven diffusion” indicates that the model incorporates self-consistent constitutive terms for the coupled local
evolution in stress gradients and number density of species.

Model
Varying

n
Kinematics

studied
Stress-driven

diffusion Inertia Reference

Single species
Maxwell ¯ IH ' ¯ El-Kareh and Leal #1989!

Maxwell ' V ' ¯
Bhave et al. #1991!;

Mavrantzas and Beris #1992!
Johnson–Segalman #JS! ¯ IH ¯ ¯ Johnson and Segalman #1977!
Spenley and Cates ¯ V ¯ ¯ Spenley et al. #1993, 1996!

JS–Olmsted ¯ IH ' ¯
Lu et al. #2000!;

Olmsted et al. #2000!
Geisekus with diffusion ¯ IH ' ¯ Helgeson et al. #2009!
JS-slippage ' IH ' ¯ Rossi et al. #2006!
Partially extending
and convecting
#PEC! strand

¯ V ¯ ¯ Larson #1984!

Two species
VCM #viscometric! ' V ¯ ¯ Vasquez et al. #2007!
PEC and PEC+M ¯ IH ' ¯ Zhou et al. #2008!
VCM ' IH ' ' In preparation
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priori, or in more complex #inhomogeneous! situations in which the local kinematic
variations in the flow field #such as the onset of shear-banding transitions! are coupled to
the local state of stress in the fluid. If the local number density nA of the longer chains
evolves due to dynamic breaking and reforming events, then the VCM model describes
the dynamics and shear-banding observed in concentrated micellar solutions. Large lo-
calized stress gradients in the vicinity of the shear-bands also result in ‘non-local’ effects
such as stress-induced diffusion.

If breaking and reforming events are disallowed, then nA and nB remain constant;
however the VCM model still describes shear-banding transitions, and a plateau in the
steady shear flow-curve, as a result of non-affine deformation of the elastic network and
disentanglement of the longer A chains. In this non-breaking limit, the two-mode VCM
model involves fewer material constants and evolution equations "Larson #1988!$. If the
short chains comprising the B species have a vanishingly small relaxation time !B→0,
then their rheological response is essentially Newtonian; in this limit the model reduces
to the partially extending convected #PEC! equation proposed by Larson #1988! as a
differential analog of the Doi–Edwards reptation model for entangled melts. In the non-
breaking limit, the corresponding two-mode model is denoted “PEC-M” because the A
species evolve according to the PEC equation of state, and the shorter “B” species are
governed by an upper-convected Maxwell model.

Before considering the full complexity of inhomogeneous flows and shear-banding,
we first explore the capabilities and limitations of viscometric flow calculations with the
VCM model. To this end, in the present work we consider how well the two-mode VCM
model can describe measurements of the steady and transient rheology of a well-
characterized wormlike micelle system. We present detailed rheological measurements of
a CPyCl/NaSal micellar solution in unidirectional shear flows. The experiments explore
shear deformations for a wide range of amplitudes and frequencies. In particular, we
examine the onset and development of the non-linear response at large deformation
amplitudes and large deformation rates. As outlined above, we compare experimental
results with predictions from the VCM model for homogeneous flow in order to better
understand the strengths and limitations of the model for describing wormlike micellar
flow dynamics. In turn the behavior of the model is used to infer information on the
microstructural processes leading to the onset of shear-banded flow.

This work is organized as follows: in Sec. II we describe our experimental procedures
and the preparation of the test fluid. Results are presented and discussed in Sec. III,
including the small amplitude oscillatory shear #SAOS! measurements #Sec. III A!, the
decay of the shear stress and normal stress after a step strain #Sec. III B!, the steady-state
response in shear flow #Sec. III C!, the transient response after the start-up and cessation
of steady shear flow #Sec. III D!, the slow transients in steady shearing flow #Sec. III E!,
the transient evolution of the strain rate after the start-up of steady stress-controlled flow
#Sec. III F!, and, finally, the probes of the transient approach to the steady flow-curve
following step changes in the deformation rate #Sec. III G!. Conclusions are summarized
in Sec. IV with respect to the non-linear shear rheology of the micellar system, the
transition to non-linear flow, and the performance of the homogeneous VCM model in
capturing the dynamics of the wormlike micellar system.

II. EXPERIMENTAL PROCEDURE

In this work we investigate surfactant solutions of cetylpyridinium chloride #CPyCl,
m0=340 g /mol! and sodium salicylate #NaSal, m0=160.1 g /mol! dissolved in brine.
Such systems have been studied extensively in the past, for example, by Berret and
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co-workers "Berret et al. #1993, 1994!$, Rothstein and co-workers "Rothstein #2003!;
Miller and Rothstein #2007!$, and elsewhere "López-González et al. #2004!; Hu and Lips
#2005!$. For a fixed 2:1 ratio of surfactant to counterion, the concentration regimes for
CPyCl/NaSal were mapped out in Berret et al. #1993, 1994!. It was found that the
cross-over from a dilute to semi-dilute solution occurs at a surfactant concentration of 0.4
wt % #12.5 mM! and the transition from a semi-dilute to a concentrated solution occurs at
a surfactant concentration of 6 wt % #190 mM!. In the present work we focus on a
solution of 100 mM/50 mM #3.2 wt %/0.76 wt %! CPyCl/NaSal in a 100 mM #0.56
wt %! NaCl solution, which lies toward the upper end of the semi-dilute regime. This
system has been studied previously "Miller and Rothstein #2007!; Bhardwaj et al. #2007!;
Davies et al. #2010!$ and is far away from phase boundaries for the solution at rest.

Rheological measurements were performed using an ARES controlled rate #CR! rhe-
ometer #Rheometric Scientific! and an AR-G2 controlled stress rheometer #TA Instru-
ments!. Cone and plate geometries were used with a radius of 30 mm and an angle of 2.0°
on the AR-G2 rheometer and a radius 50 mm with an angle of 2.3° on the ARES. Unless
stated otherwise, all of the experiments reported were carried out at 22 °C and using a
solvent trap to minimize evaporation of the sample. Due to the high elasticity of the
micellar solutions, great care was taken when loading the samples in the rheometer: a
small pre-shear was applied during loading to ensure that the sample was distributed
evenly throughout the gap after in which the sample was allowed to sit and rest for 2 min
#*100 viscoelastic relaxation times! to allow any residual stresses to decay. Also, be-
tween experimental runs the sample was left to sit and rest for 2 min to ensure that
residual viscoelastic stresses from previous measurements had decayed. The first normal
stress difference was measured using the normal force transducers of the ARES and the
AR-G2 rheometers. Estimates of the second normal stress difference were determined
from the radial pressure distribution measured using a RheoSense pressure transducer
array #RheoSense Inc., San Ramon, CA! mounted on the upper fixture of the ARES
"Baek and Magda #2003!$.

III. RESULTS AND DISCUSSION OF RESULTS

A. Small amplitude oscillatory shear flow

In Fig. 1#a!, we present the LVE response of the 100 mM CPyCl/NaSal solutions to
small amplitude oscillations #$0+0.3! at temperatures T over the range of 20–50 °C.
The results are presented in terms of reduced storage and loss moduli Gr!+iGr"
=Gr

!#"r ,Tref!= #Tref /T!GT
!#" ,T! and the reduced angular frequency "r=aT"T, where the

reference temperature is Tref=22 °C. The viscoelastic stress response superposes well
across the range of temperatures measured and the shift factor aT "Fig. 1#b!$ is well
described by a classical Arrhenius dependence:

aT = exp(,H

R
) 1

T
−

1
Tref

*+ , #1!

where ,H is the activation energy for flow and R is the molar gas constant. For our
micellar solution, ,H /R=1.77-104 K. It should be noted that such a high activation
energy indicates that the physical properties of the micellar solution can vary greatly with
small temperature fluctuations.

For frequencies "+5 rad s−1, the data at 22 °C show good agreement with a single-
mode Maxwell fluid with a relaxation time !=0.64 s, an elastic modulus of
GN

0 =22.6 Pa, and a zero-shear-rate viscosity &0=!GN
0 =14.5 Pa s. These values are in

good agreement with previously reported data for similar concentration CPyCl/NaSal
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solutions at similar temperatures "Berret et al. #1993!$. The best fit value of
GN

0 =22.6 Pa was estimated using a Cole–Cole representation of the LVE data, as shown
in Fig. 2; in this form, a Maxwellian fluid exhibiting mono-exponential relaxation de-
scribes a semi-circle with a diameter equal to GN

0 . Only data up to the maximum mea-
sured value of G" #i.e., data at low frequencies, !".1! were used for fitting purposes, as
this is the range of frequencies over which single exponential relaxation behavior is
expected. In this region the breaking time !br of the micelles is very small compared to
the time-scale of the applied deformation, and the location and orientation of individual
micellar segments within the network are quickly “forgotten” resulting in a purely expo-
nential relaxation. As discussed by Turner and Cates #1991!, the data represented on a

G
' re

d
,G

''
re

d
[P

a]

red [rad s-1]

a
T

1/T - 1/295 [K
-1 x 10

-4
]

∆H/R = 1.77 x 104 K

(a)

(b)

FIG. 1. #a! Reduced values of the storage #hollow! and loss #filled symbols! moduli Gred! and Gred" of the 100
mM/50 mM CpyCl/NaSal solution as a function of reduced angular frequency "red="aT for temperatures in the
range 18–50 °C reduced with respect to T0=22 °C. #b! Evolution in the shift factor and determination of the
Arrhenius activation energy ,H=1.47-105 J /mol for the CpyCl/NaSal solution.
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Cole–Cole plot can also be used to help to understand the response of the micellar
network to high frequency deformations. As the time-scale of the applied deformation
approaches that of !br, deviation from a single-mode Maxwell model is observed and the
stress relaxation occurs increasingly through reptation processes, indicated by a line of
slope '1 on linear axes. Further increases in frequency lead to the onset of breathing
modes of stress relaxation and eventually Rouse modes. In the Cole–Cole representation,
the latter modes are signified by a change in sign of the gradient. Hence, we estimate the
Rouse time !R of this micellar network from the reciprocal of the frequency at which the
gradient becomes positive at high frequencies in the Cole–Cole diagram, !R
%1 / #40 rad s−1!=0.025 s.

Predictions of length and time-scales of the micellar network can be obtained by
combining results from the reptation-reaction model of Cates #1987! with those from
classical reptation theory. The ratio of the entanglement length le to the average length of
a micellar chain L̄ is given by "Granek and Cates #1992!$:

Gmin"

GN
0 &

le

L̄
, #2!

where Gmin" is the value of G" at the local minimum observed at intermediate frequencies
!−1.".!R

−1. From the reptation model "Doi and Edwards #1986!$, we can find le from
the relationship:

le & /5/3b−2/3, #3!

where the correlation length is /= #kBT /GN
0 !1/3=55 nm and the persistence length is

b&15 nm "Berret et al. #1993!$. Combining Eqs. #2! and #3!, we find that the average
micellar length is L̄&1.2 0m and the distance between entanglements is le&0.13 0m.

The apparent relaxation time ! is related to the breaking time !br and the reptation
time !rep by != #!br!rep!1/2 "Cates #1987!$. We use the quantity 1̄=!br /!, as defined in
Turner and Cates #1991!, and the ratio of GN

0 /G2 to calculate the breaking time. For this
we use Fig. 2 in Turner and Cates #1991! in which the diameter of the fitted semicircle to
the Cole–Cole plot is related to the parameter 1̄. For our system GN

0 =22.6 Pa and the

16

14

12

10

8

6

4

2

0

G
''
[P
a]

302520151050

G' [Pa]

Maxwell model fit: G0 = 22.6 Pa

VCM model: G0 = 23.4 Pa

FIG. 2. Cole–Cole plot, T=22 °C.
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elastic modulus for very quick displacements is G2=24.0 Pa. Note that in a multispecies
model, the plateau modulus GN

0 and G2 are not identical because the latter quantity also
captures elastic contributions of the shorter chains and G2 is estimated using the results
from step strain experiments presented in Sec. III B. Now, taking DFS=0.94 as the
ordinate value in the Fig. 2 of Turner and Cates #1991!, we find 1̄%0.15. Finally, taking
the value !=0.64 s from SAOS experiments, we find !br%0.10 s and !rep%4.10 s.

In Fig. 1#a!, we have also plotted the prediction of the VCM model for the loss and
storage moduli. In the LVE regime, this model behaves as the superposition of two
Maxwell modes with relaxation times ! and !B, respectively. The latter #shorter! time-
scale is the relaxation time of the shorter species and is responsible for the upturn in G!
and G" predicted at higher frequencies. This upturn in the loss modulus is a direct
consequence of the breakage of chains at high frequencies and the dynamics of the
system happening on time-scales comparable to Rouse relaxation times, i.e., relaxation of
shorter species. Note that this upturn in the loss modulus at high frequencies is usually
captured in one-species models by the addition of an unphysically large solvent viscosity.
As discussed in Vasquez et al. #2007!, to determine the value of the model parameters, we
use regression to both SAOS and step strain data. From those fittings, we find !
=0.63 s and !B=0.0011 s. Predictions from the model agree well with experimental
data at low and high frequencies; however, the quality of the fitting decreases at inter-
mediate frequencies. This lack of agreement is a consequence of “lumping” together all
long species into a single elastically active network segment #species A! and all short
species into species B. From the fittings, after we determine 0=10, we find that the
longest relaxation time of the elastic strands is !A=6.3 s. As expected, this is of the same
order as the reptation time in the original Cates #1987! model. In the VCM model, the
effective relaxation time is reduced from the relaxation time of the long strands #even in
the absence of any flow! due to the additional processes of worm scissions such that

1
!

=
1

!A
+ cA eq! , #4a!

or equivalently

! =
!A

1 + cA eq! !A
, #4b!

where the breaking rate at equilibrium is determined from the fitting to be cA eq!
=1.4286 s−1.

B. Step strain

In Fig. 3#a!, we show the time evolution of the elastic modulus G#t!=%xy#t! /$0 after a
step strain $0. For small strains, the stress decays exponentially and fitting a Maxwell
relaxation model to the data, G#t!=G2 exp#−t /!!, gives !=0.63 s and G2=24 Pa. These
values are in excellent agreement with those found in SAOS; G2=24 Pa found in step
strain is consistent with the SAOS data at "%20 rad s−1, where G! is slightly larger than
the stress plateau value GN

0 =22.6 Pa. At long times after the applied strain, a single
exponential stress relaxation with a constant relaxation time is seen for all applied strains,
suggesting that the stress relaxation process at long times is independent of $0. This is
clearly illustrated in Fig. 3#b! where the measured modulus is scaled to ensure superpo-
sition at t=!. For long times t3!, the experimental data show that stresses relax in a
similar manner regardless of the applied strain. At short times t(!, however, the stress
relaxation is strongly dependent on the magnitude of the applied strain. As noted in
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Sec. III A, at high frequencies #short times!, both Rouse and reptation modes of stress
relaxation are observed. After step strains of $031, the residual memory of the initial
configuration of the network is significant and these relaxation mechanisms dominate at
short times. The initial configuration of the micellar network is forgotten after t*!br
=0.1 s due to the continual breaking and reforming of the network segments and the
stresses subsequently relax exponentially. The initial decrease in modulus at large applied
strains is commonly referred to as strain-softening.

Calculations of the VCM model under step strain were performed imposing a strain
history given by

G
(t

)[
Pa

]

t [s]

γ 0 = 0.05 ; VCM ; Maxwell

γ 0 = 0.8

γ 0 = 3.0

γ 0 = 6.0 ; VCM

γ 0 =10.0

γ 0 =12.4 ; VCM

(a)

(b)

� � � � �

� � � �

� � �

�

� �

G
(t)
/[
G
∞
h(

γ 0)]

� � � � � �

t / λ

0.05 ; VCM
0.8
3.0
6.0 ; VCM
10.0
12.4 ; VCM
Maxwell model fit:

G∞ = 24.0 Pa, λ = 0.64 s, h(γ0) = 1

FIG. 3. Stress relaxation as a function of time after a step strain is applied at t=0 s to a sample initially at rest.
#a! Elastic modulus G#t!=%xy#t ,$! /$0 versus time and #b! normalized elastic modulus G#t! / "G2h#$0!$ versus
time.
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$#t! = $0#1 − #1 + bt!e−bt! , #5!

where the parameter b is obtained through fitting to the experimental motor response of
the controlled strain rheometer. The effects of varying b were explored in Zhou et al.
#2008!. For all the calculations in this paper, b=62 s−1 which approximately captures the
response of the ARES rheometer. The parameter b controls the duration of the ramp of
the applied strain, so that in Fig. 3#a! the time tmax at which the local maximum in the
shear stress is observed corresponds approximately to the maximum in the prediction
from the model, tmax=1 /b.

The amount of strain-softening is a function of the relaxation mechanisms of the
different elastic strands within the network. To see this, we first consider the non-
breaking limit #cA eq! =0!. In the framework of polymer reptation theory, at long times,
relaxation occurs mainly through reptation. In contrast, at much shorter times retraction
of the chains within their tubes is the dominant mechanism. The degree of retraction
depends on how rapidly the deformation is applied, i.e., on the strength of the external
flow. As a result, partial retraction determines the amount of strain-softening "Larson et
al. #1999!$. In wormlike micellar systems, in addition to reptation and Rouse relaxation,
relaxation occurs due to the continuous rupture of the wormlike micelles. For such
systems, strain-softening is a function of the Rouse-like relaxation of shorter chains,
reptation of the longer chains, and the chain breakage rate. In the VCM model, the
rupture processes are captured by the enhanced breaking rate:

cA = cA eq +
1
3

/0)!̇:
A
nA
* . #6!

Regression of the model predictions to step strain experiments thus allows us to deter-
mine the value of the non-linear breakage parameter /. Numerical calculations show that
the best description of the data is obtained for /=0.5.

Inspection of Fig. 3#a! shows that the VCM model provides a good qualitative de-
scription of the short time dynamics and can quantitatively describe the long time single
exponential character of the stress decay. The model under-predicts the extent of strain-
softening observed at very large strains $036. The lack of qualitative agreement at short
times is to be expected because of the lumping of the shorter chain contributions into a
single species B.

The shift factor necessary to collapse the elastic modulus measurements in Fig. 3#b! at
long times t4! is called the damping function h#$0! #here calculated to ensure superpo-
sition at t=!!. The variation in the damping h#$0! as a function of the applied strain is
shown in Fig. 4. The damping function for the CPyCl/NaSal solution is fitted with the
approximate form predicted by the single-mode PEC tube model assuming an infinitely
fast step strain "Larson #1988!$,

h#$0! =
1

1 + /!$0
2/3

, #7!

and a value of /!=0.52 closely predicts the observed strain-softening. Over the range of
experimental data, the agreement is striking, although reasonable: strain-softening in the
micellar network is principally due to chain disentanglement at t.0.2 s and processes
other than breaking of the micelles dominate. These features can be well captured in
models such as the PEC model describing non-affine deformation of a polymeric net-
work. However, although the values of the damping function are well predicted by the
PEC model, this model fails to capture the full behavior of the relaxation modulus in
time, i.e., Fig. 3#a!. The mechanisms involved in the strain-softening process for worm-
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like micellar solutions are similar to those observed in polymeric systems, but the exact
response of the full breaking dynamics in which a single long chain can reptate or break
with equal probability along its length cannot be captured by a single species model.

We note that for applied strains $0.1 and $035, the behavior observed for the
CPyCl/NaSal solutions is similar to that described by Brown et al. #1997! for a cetyltri-
methylammonium bromide #CTAB! system; however, at intermediate strains 1.$0.5
the CPyCl/NaSal solutions do not show the strain-stiffening reported in Brown et al.
#1997!. Inhomogeneous flow calculations with the PEC model "Zhou et al. #2008!$ pre-
dict that spatial shear-banding will occur over a range of intermediate strains. Thus
predictions of the full inhomogeneous VCM model in large amplitude step strains will be
different than the viscometric predictions.

In Fig. 5#a!, we present measurements of the stress ratio N1#t! /%xy#t! #i.e., the ratio of
the first normal stress difference to the shear stress! after a step strain $0 is applied. For
rapid stretching of an ideal Gaussian network, the Lodge–Meissner rule gives
N1#t! /%xy#t!=$0. For step strains $0.8, the ratio N1 /%xy measured experimentally fol-
lows the imposed motor response function given by Eq. #5! and then remains constant
after O#0.1 s!. For larger step strains, the response shows a maximum at t&0.1 s, after
which the relative decrease in N1 compared with %xy indicates that the first normal stress
difference strain softens more strongly than the shear stress. At very large strains
$0310, N1 /%xy shows a weak overshoot and becomes independent of $0. This can be
seen clearly in Fig. 5#b! in which the value of the stress ratio N1 /%xy at t!=0.2 s is plotted
as a function of $0. The time t! is selected to be longer than the response time of the
motor but shorter than the effective relaxation time b−1. t!.!. The Lodge–Meissner
prediction for affine network deformations, N1 /%xy =$0, holds for strains up to $0=8,
which is clearly well into the non-linear deformation regime. As discussed in Larson
#1988!, this is commonly observed for concentrated polymer solutions and indicates the
strongly elastic component of the response to step strains.

� � � �

� � �

�

h
(γ
0)
[-]

� � � � � � � � � �

γ0 [-]

Experimental data
Best fit with ξ ' = 0.52
Doi Edwards, ξ = 0.6
VCM

FIG. 4. Damping function h#$0! as a function of the applied strain amplitude in a step strain experiment. Note
that increasing the value of cB eq will improve the prediction from the VCM model. Further refinement of the
model, including variations of cB with the flow conditions, can be studied.
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The predictions of the VCM model are shown in Fig. 5 by the lines. We see that the
values of the stress ratio at large strains calculated from the viscometric VCM model are
significantly smaller than those measured experimentally. As discussed by Zhou et al.
#2008!, considering a homogeneous flow a priori results in a decrease in the magnitude
of predicted first normal stress difference, and this can be clearly seen in Fig. 11#b! of
Zhou et al. #2008!. Calculations for smaller deformations below the anticipated onset of
banding $0+2 are consistent with experimental measures and satisfy the Lodge–
Meissner relationship. Further investigations for inhomogeneous flows are required to
reveal if the discrepancies between model and observation at very large strains are re-

N
1/τ

xy

t [s]

γ 0 = 1 ; VCM

γ 0 = 2

γ 0 = 4

γ 0 = 6 ; VCM

γ 0 = 8

γ 0 = 10

γ 0 = 12 ; VCM
N

1/τ
xy

γ0 [−]

Experimental data
N1/τxy = γ0
VCM

(b)

(a)

FIG. 5. After applying a step strain to the sample: #a! time evolution of the ratio of the first normal stress
difference and shear stress N1 /%xy after a step strain; #b! N1 /%xy at t=0.2 s as a function of applied strain.
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duced when the kinematic conditions are no longer assumed to be viscometric #homoge-
neous!.

C. Steady-state response in shear flow

The evolution in the steady-state shear stress %xy of the micellar solution due to an
imposed shear rate $̇0 is shown in Fig. 6#a!. These experiments were performed using the
ARES controlled strain instrument and #as will be discussed in greater detail in Sec. III E!

(a)

� � �

�

� �

τ x
y
,G
''[
Pa
]

� � � � � � � � �

Shear rate [s-1], ω [rad·s-1]

�

τxy : ; VCM
G'' : ; VCM
η0 x shear rate :

(b)

� � � �

� � �

�

� �

� � �

� � � �

N 1
,2
G
'[
Pa
]

� � � � � � � � �

Shear rate [s-1], ω [rad·s-1]

�

N1 : ; VCM
2G' : ; VCM
Stated minimum of
N1 transducer :

FIG. 6. Steady flow-curves and comparison with viscometric properties in small amplitude oscillatory shear:
#a! shear stress versus shear rate and #b! first normal stress difference versus shear rate.
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steady-state flow was achieved for all measurements after 120 s. At low shear rates, the
measured stress increases linearly with applied shear rate implying a constant viscosity
&0=%xy / $̇0, indicated by the solid line in Fig. 6#a! with a value consistent with the
limiting value obtained from SAOS data at low frequencies "(1 /!. At shear rates above
$̇0&1 /!, the onset of shear-thinning is observed and for shear rates 3+$̇0+100 s−1,
strong apparent shear-thinning is present, giving rise to a “plateau” in the measured
steady-state flow-curve. The value of %xy at which this plateau occurs is approximately
0.8GN

0 which is similar to the value reported elsewhere in the literature for this system at
similar concentrations "Berret et al. #1994!$. Although not presented here, independent
verification has shown that the empirical Cox–Merz rule over-predicts the measured shear
stress %xy#$̇! in the plateau region, in close agreement with previous work "Berret et al.
#1994!$. As we have noted, the plateau region is associated with the development of an
inhomogeneous shear-banded flow "Britton and Callaghan #1999!; Manneville et al.
#2005!; Miller and Rothstein #2007!$. Thus homogeneous calculations with the VCM
model should not be expected to quantitatively capture this plateau.

Although shear-induced demixing transitions are not anticipated in this system "Berret
et al. #1994!$, at very high shear rates $̇0*150 s−1, large normal stresses cause the
sample to foam at the air-sample interface and the behavior of this micellar system at
very high rates is largely unexplored. Recently, measurements from a narrow gap parallel
plates geometry and straight microchannels have been used to investigate the steady-state
flow-curve of this system and a CTAB in sodium nitrate #NaNO3! solution up to shear
rates of $̇0&104 s−1 "Pipe et al. #2008!; Nghe et al. #2008!$. The resulting flow-curves
indicate that the shear stress continues to increase weakly after the plateau region al-
though more detailed investigations are needed to understand the behavior at shear rates
$̇031000 s−1.

The steady-state first normal stress difference N1 as a function of applied shear rate $̇0
measured using the ARES normal stress transducer is shown in Fig. 6#b!. At low rates, N1
increases quadratically with $̇0 to within experimental error, indicating a constant normal
stress coefficient 51. Simple fluid theory predicts that at low deformation rates $̇0
+!−1, the storage modulus G! is related to N1 in the following way:

lim
$̇0→0

N1#$̇!
$̇0

2 = lim
"→0

2G!#"!
"2 . #8!

Within experimental uncertainty, this is valid for $̇061 s−1 "Fig. 6#b!$.
As $̇0 increases above 1 s−1, N1 continues to increase but less rapidly than quadrati-

cally. It should be noted that the degree of shear-thinning of 51 is not as dramatic as
observed for the shear viscosity and no plateau in the normal stress flow-curve is seen.
This observation provides a useful discrimination between many empirical constitutive
equations proposed for wormlike micellar solutions.

It is now well understood that a non-monotonic viscometric flow-curve is a sufficient
condition for a constitutive equation to be able to model shear-banding behavior, for
recent reviews see Dhont and Briels #2008! and Olmsted #2008!. In contrast to existing
models "with the exception of that proposed by Spenley and Cates, Spenley et al. #1993!$,
the non-monotonic behavior in the VCM model arises exclusively from the breaking and
reforming of strands, and hence it can directly connect the dynamics of the shear-banding
process with the interaction of the different species present in these wormlike micellar
systems. The forms of the non-monotonic viscometric flow-curve predicted by the VCM
model for %xy and N1 are shown in Fig. 6 #with all parameters determined from small
amplitude and step strain data!. Note that, as pointed out before, assuming viscometric
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flow results in an under-prediction of the stresses for shear rates $̇031 s−1. For an
inhomogeneous #non-viscometric! flow, we would expect a closer agreement between the
model and experiments with N1 growing monotonically with shear stress, the gradient of
the curve depending on the breaking and reformation of the different species. Represen-
tative inhomogeneous calculations in the non-breaking limit for the simpler PEC+M
model also show a monotomic variation in N1#$̇! "Zhou et al. #2008!$.

We now investigate the behavior of the second normal stress difference N2 in a cone-
and-plate configuration using a microfabricated pressure sensor array "Baek and Magda
#2003!$. The static pressure at the plate 788#r! is monitored as a function of shear rate at
eight radial locations across the diameter. Viscometric flow calculations with the CEF
model show that the total static excess pressure should decrease logarithmically with
radius in a cone- and-plate fixture "Bird et al. #1987!$:

788 − pa = − #N1 + 2N2!log) r

R
* − N2, #9!

where r is the radial coordinate and R is the radius of the cone-and-plate geometry.
Extrapolating this expression radially to r=R to provide an estimate of the thrust at that
location "788$R allows the second normal stress coefficient 52 to be calculated:

52 =
pa − "788$R

$̇2 , #10!

where pa is the atmospheric pressure. Typical measurements of 788#r!− pa are shown in
Fig. 7#a! for 10+$̇0+150 s−1 and fits used to calculate "788$R− pa in Eq. #10! are shown
as dotted lines. A positive intercept with the line r=R gives a negative value of 52 and
the error in finding the intercept is about 920%. For shear rates up to $̇0=50 s−1, the
data are well described by Eq. #9! and the local thrust varies logarithmically across the
stationary lower fixture of the rheometer. However, at higher shear rates, the radial
dependence becomes more complex. As shown in Britton and Callaghan #1997!, shear-
banding of a micellar solution in a cone-plate fixture is a function of radial location as
well as shear rate and this effect may be expected to result in a non-logarithmic radial
static pressure profile "Lee et al. #2002!$. Extrapolation of Eq. #9! to r=R is thus of
limited utility beyond $̇0%50 s−1.

The first normal stress coefficient 51 can also be calculated from these measurements
using Eq. #9! and the values found from the pressure sensor array agree with the values
measured using the normal force transducer of the ARES to within the error of the
technique for rates $̇0+50 s−1. For these experiments, we were unable to control the
temperature of the CPyCl/NaSal sample because the experimental configuration pre-
cluded the use of a temperature control system. Measurements were performed at T
=21.390.3 °C and within a single experimental run, the temperature varied by less than
0.1 °C. Therefore, although there will be some uncertainty introduced by changes in
temperature between data points, it should not be significant.

The ratio of the normal stress coefficients −52 /51 is shown in Fig. 7#b!. At low shear
rates, the relative error is large because values of the thrust are small. However, −52 /51
appears to be larger than the value that is predicted by the Doi–Edwards model
#−52 /51=0.28! for a reptating polymer network and we find −52 /51%0.4 up to shear
rates $̇=50 s−1. This implies that the zero-shear second normal stress coefficient 52 0
%4 Pa s2. The large error bars highlight that values of 52 presented here are susceptible
to error because small variations in the slope fitted to 788#r! can potentially lead to
significantly different values of 51 and 52. We emphasize that all data used to calculate
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the second normal stress coefficient 52#$̇! presented here are well into the steady-state
shear-banding regime #i.e., !$̇031!; the velocity field in a cone-and-plate apparatus may
thus be radially inhomogeneous "Britton and Callaghan #1999!$ rendering Eq. #10! and
subsequent calculations of 52 inaccurate.

The nonlinear Giesekus model, which describes anisotropic drag on network segments
#through a single nonlinear coefficient :!, does predict nonzero second normal stress
differences and the ratio −52 /51→: /2 in the limit $̇→0. This suggest a value of :

2/
1

(a)

(b)

FIG. 7. #a! Total stress acting normal to the plate as a function of radius r for a range of shear rates; the dashed
lines indicate linear fits to the data. The pressure sensing device is symmetric about the center and data from the
left hand side #hollow! and the right hand side #filled symbols! are presented. #b! Ratio of second to first normal
stress coefficient −52 /51 as a function of shear rate. For these data T=21.290.3 °C.
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%0.8 which is consistent with previous fits of the Giesekus model to measurements of
the shear viscosity &#$̇! and normal stress N1#$̇! in wormlike micellar solutions "Fischer
and Rehage #1995!; Yesilata et al. #2006!; Helgeson et al. #2009!$.

Experiments by Lee et al. #2002! show that for a shear-thickening and dilute CTAB
wormlike micellar solution, the normal stress coefficient ratio is −52 /51=0.16,
which—in contrast to the CPyCl/NaSal system used in the current study—is smaller than
the prediction from the Doi–Edwards model #although the authors suggested that the
results showed reasonable agreement to within experimental error!. It was also shown
that the measured value of −52 /51 was constant over the shear-rate range for which a
logarithmic profile could reasonably be assumed. Furthermore, the emergence of a non-
logarithmic radial static pressure profile was found to occur well after the transition to
inhomogeneous flow. These observations agree qualitatively with the results reported
here. It should be noted that because of the assumed affine deformation of the individual
Hookean elastic strands, the VCM model predicts a second normal stress coefficient
52=0 Pa s2 at all deformation rates.

D. Start-up and cessation of steady shear flow

We continue to examine the response of the micellar network to non-linear deforma-
tions by investigating the transient stress response during the start-up of steady shear
flow. For times t.0 s, $̇0=0 s−1 and the fluid is in equilibrium, and at t=0 s a step
increase in the shear rate $̇0 is applied. We show the experimental measurements of the
evolution in shear stress %xy and normal stress difference N1 following the start-up of
steady shear flow in Figs. 8#a! and 8#b!, respectively. It should be noted that the stresses
are represented on a logarithmic scale because of the wide dynamic range in the data.
Figure 8#a! shows that for small shear rates the shear stress response %xy#t! of the network
is well described by that of a Maxwell fluid with !=0.63 s and GN

0 =22.6 Pa. This
description holds for $̇060.8 s−1, corresponding to !$̇060.5. However, as the applied
shear rate is increased two principal deviations from Maxwellian behavior are observed.
First, the onset of non-linear viscoelasticity manifests itself with the presence of a stress
overshoot at short times #t.!!, which is followed by subsequent stress under-and over-
shoots for sufficiently large steps in shear rate, similar to those reported by Ganapathy
and Sood #2008! for a cetyltrimethylammonium tosylate #CTAT! micellar system. Sec-
ond, as is well known for concentrated entangled solutions of wormlike micelles, the
steady-state viscosity &#$̇! is strongly shear-thinning and the steady-state value of %xy at
long times does not increase linearly with $̇0; at large rates $̇033 s−1, the presence of a
stress plateau in the shear stress attained at long times can be seen.

Figure 8#b! shows that after applying a step increase in shear rate from rest, the first
normal stress difference N1#t! is also well represented by a Maxwell fluid for small
deformation rates $̇060.8 s−1. For larger values of shear rate, N1 also exhibits an over-
shoot at short times t.3! as well as a shear-thinning first normal stress coefficient
51#$̇0!. However, as previously noted, there is no evidence of a plateau in the first
normal stress difference at high shear rates.

The homogeneous VCM model is able to capture quantitatively the transient response
of both the shear stress and first normal stresses at moderate shear rates
!$̇0=0.64 s-5 s−1=3.2, close to the beginning of the shear stress plateau. However, at
the highest shear rates, the predictions of the homogeneous calculations differ signifi-
cantly from the measured data. Qualitative features such as the rapid rise in the stress at
very short times followed by a sharp overshoot and more rapid approach to steady-state
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are captured. However, the quantitative magnitudes are substantially under-predicted.
This is not unexpected when the predicted steady viscometric response shown in Fig. 6 is
reconsidered. If a homogeneous flow is assumed a priori, then the VCM model predicts
a non-monotonic response for shear rates $̇035 s−1. In addition, the stress overshoots
predicted by the VCM model are observed for shear rates above $̇0&5 s−1, which is the
same point at which the constitutive prediction for the steady-state flow-curve starts to
decrease.

In addition to the startup of steady shear flow, we also examined the rheological
response upon cessation of steady shear flow: for t.0 s, $̇= $̇0 and the flow is at
steady-state, then at t=0 s, the applied deformation is abruptly ceased. In Fig. 9, we see

t [s]

τ xy
[P

a]

t [s]

N
1

[P
a]

(b)

(a)

FIG. 8. Stress growth as a function of time after the inception of steady shear flow at time t=0 s to a sample
initially at rest: #a! shear stress %xy versus time and #b! first normal stress difference N1 versus time.
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that after cessation of steady flow, the shear stress %xy decays in a mono-exponential
manner for $̇065 s−1 and the behavior shows good agreement with the Maxwell model.
For consistency, we choose to use the values of ! and GN

0 calculated independently in the
SAOS experiments; however, we note that slightly improved agreement at very low
stresses can be obtained using a relaxation time approximately 10% larger. At high shear
rates corresponding to the shear-banding régime #30+$̇0+150 s−1!, cessation of steady
shear flow shows that faster modes of stress relaxation dominate the short time response
at t.0.2 s, while at longer times a mono-exponential relaxation is observed. This more
rapid rate of stress relaxation is observed and is indicative of a change in the elastic
network structure at large deformations. This can be well described in an empirical
manner, as shown by the solid black line in Fig. 9, by a two-mode relaxation process:

%xy % Ae−t/!1 + Be−t/!2, #11!

with A=4.7 Pa, B=17.4 Pa, and !1=0.64 s, !2=0.062 s for $̇0=150 s−1. The shorter
time constant is close to the value for the breaking time of a micelle !br%0.10 s calcu-
lated in Sec. III A. This two-mode picture is consistent with the initial configuration of
the micellar network controlling the stress decay at large deformation rates and short
times until this is forgotten due to local breaking/reformation events and the network
reverts toward its equilibrium configuration.

E. Slow transients in start-up of steady shear flow

There has been considerable discussion of slow transient shear stresses in controlled
rate #CR! flows of wormlike micellar systems and how they can be best described "Grand
et al. #1997!; Porte et al. #1997!; Hu and Lips #2005!$. These slow approaches to steady-
state flow lasting hundreds of viscoelastic relaxation times are observed over a narrow
range of stresses #here 19–22 Pa, see Figs. 11 and 12! near the onset of inhomogeneous
flow and have been described variously as resulting from a mechanical flow instability
"Spenley et al. #1996!$, concentration fluctuations "Schmitt et al. #1995!$, or a flow-

τ xy
[P

a]

t [s]

0.1 s-1 : ; Maxwell ; VCM
0.8 s-1 :
2 s-1 : ; VCM

30 s-1 :
150 s-1 : ; VCM ; Double exponential fit

FIG. 9. Shear stress %xy versus time after a flow is turned off at t=0 s.
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induced phase transition "Porte et al. #1997!$, although the description offered by Hu and
Lips #2005! is more complex. Figures 10#a! and 10#b! show the long time stress response
to the step strain rate experiments described in Sec. III D using an ARES CR rheometer
and an AR-G2 controlled stress #CS! rheometer, both operating in controlled rate mode.
Long transients are indeed present for the CPyCl/NaSal micellar system studied here,
with a slow approach to steady-state %xy occurring over times O#100!!. The measure-
ments were performed using similar geometries with the CS and CR instruments, a 50
mm, 2.4° cone-and-plate fixture with the ARES and 60 mm, 2° cone-and-plate fixture
with the AR-G2; hence it is reasonable to expect similar shear stress responses in the two

τ
τ

(a)

(b)

FIG. 10. Shear stress %xy versus time after a step strain rate is applied at time t=0 s to a sample initially at rest:
#a! experiment performed using a controlled rate rheometer #ARES! and #b! experiment performed using a
controlled stress rheometer #AR-G2!.
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devices, even in transient flows. Indeed the shear stress signatures are qualitatively simi-
lar, both showing long times to reach equilibrium for step shear rates near the onset of the
shear-banded flow #$̇0=3 s−1! and stress undershoots for higher step rates #$̇0=10 s−1!.
However, even though the steady-state values of %xy agree to within 1%, the time needed
to reach steady-state with the CS instrument is 1 order of magnitude greater than with the
CR device. The CS device achieves a specified deformation rate by controlling the stress
acting on the rotating fixture and using a proportional-integral-differential #PID! type
control loop to measure and adjust the applied rate of rotation. By contrast, in the con-
trolled rate device, a constant rotation rate is achieved in less than 40 ms. For wormlike
micellar solutions in which there are large transient stresses at short times, followed by a
shear stress plateau that leads to pronounced sensitivity to small changes in the applied
stress, it is not surprising that a PID feedback algorithm may not perform as effectively in
achieving a specified rate of shearing as it does for less nonlinear materials.

F. Start-up of flow with a steady applied stress

After examining the slow stress transients associated with the development of shear-
bands in controlled shear-rate experiments, the question arises of how the rate of defor-
mation evolves to steady-state during start-up of controlled stress flow. Figure 11 shows
that at stresses below the onset of the steady-state shear stress plateau
#226%xy,plateau623 Pa!, the measured shear rate reaches its steady-state value within a
few viscoelastic relaxation times. However, as the applied stress reaches the stress plateau
value, slow transients in the measured shear rate with time constants O#1000!! are
observed. This is illustrated in Fig. 12 which shows the equilibration time required to
reach 99% of the final shear rate te as a function of the constant applied stress %xy0. At low
deformation rates #Wi.1!, the fluid exhibits a Maxwellian response and the flow quickly

1

10

100

S
h
ea
r
ra
te
[s
-1
]

300250200150100500

t [s]

18.5 Pa

20.5 Pa

21.5 Pa

22 Pa
22.5 Pa

23 Pa

24 Pa

24.5 Pa

FIG. 11. Evolution in the apparent shear rate $̇ versus time after a step increase in the shear stress %xy0 is
applied at time t=0 s to a sample initially at rest.
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reaches steady-state with little fluctuation in the measured rate of shearing. At stresses
corresponding to the steady-state stress plateau, very large times te*1000! are necessary
to attain the final state, analogous to the long transients observed in shear-rate-controlled
flow. Indeed for the measurements 20.5+%xy0+21.5, no steady-state shear rate was
achieved within the duration of the experiment #300 s!.

At higher imposed stresses, the system evolves more rapidly to the higher shear-rate
branch of the flow-curve, although long time-scales &10–100! are still required. Again
this highlights the slow evolution of shear-banded flow toward a steady-state. At high
values of the imposed shear stress %xy0324 Pa, pronounced fluctuations are seen in the
instantaneous shear rate $̇#t!. Unsteady flow in the high shear branch of the flow-curve is
consistent with the results for concentrated wormlike micellar systems reported elsewhere
"Nghe et al. #2008!$.

The trends observed here agree well with those observed by Hu and Lips #2005! in a
cylindrical Couette geometry. They described two processes in the evolution of the ve-
locity profile: “shear tilting” in which the shear rate varies continuously across the gap
and shear-banding consisting of a constant rate region connected to a region with a
continuously varying shear rate. These two distinct behaviors may account for the two
different rate responses observed here; with shear tilting corresponding to the slow in-
crease in rate and shear-banding to the more rapid evolution of $̇. The results in Figs. 11
and 12 can also be interpreted in terms of nucleation and growth of a local shear-induced
phase transition "Porte et al. #1997!$ at a critical stress %xy,crit%21–22 Pa.

G. Transient flow-curve

Finally, we present data on the transient approach to the steady flow-curve "Fig. 13#a!$
measured using a CR rheometer. The steady-state flow-curve "indicated by the solid line

350

300

250

200

150

100

50

0

t e
[s
]

242322212019

!
xy 0
[Pa]

Steady-state flow

No steady-state flow

attained within 300 s

FIG. 12. Time required to reach steady-state flow te versus applied shear stress %xy0 is applied at time t=0 s to
a sample at rest. The filled circles indicate that steady-state flow was reached; the hollow triangles indicate that
no steady-state flow was attained after 300 s; the dashed line is an exponential decrease to guide the eyes.
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in Fig. 13#a!$ may be considered an attractor for this non-linear rheological system. The
basin of attraction for this steady-state can be explored by observing the transient re-
sponse in the shear stress to step increases in $̇0 from rest "Fig. 13#b!$ as well as the

0.1

1

10

100

! x
y
[P
a]

0.01 0.1 1 10 100

Shear rate [s
-1
]

Steady state flow curve

Maximum stress overshoot

Minimum stress undershoot
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t [s]
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! x
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14121086420

t [s]

Shear rate

t
t=0

t < 0 s: Shear rate = 150 s
-1

t > 0 s: Shear rate = 5 s
-1

Minimum stress undershoot

Steady-state stress

(a)

(b)

(c)

FIG. 13. #a! Flow curve envelope showing maximum and minimum measured shear stress after a step in shear
rate. #b! Shear stress growth as a function of time after the inception of steady shear flow at time t=0 s to a
sample initially at rest. #c! Shear stress evolution as a function of time after decreasing the steady shear rate
from 150 to 5 s−1 at time t=0 s.
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transient response to step decreases in the imposed shear rate from a large value of
150 s−1, corresponding to the right hand branch of the flow-curve "Fig. 13#c!$. Within the
language of nucleation and growth theories, these “jump” experiments may be considered
as analogous to “undercooled” or “superheated” thermal states of the material. By plot-
ting the maximum/minimum stress over-/undershoots in response to steps in shear rate
#hollow symbols!, an envelope containing the range of accessible shear stresses attainable
in the system can be mapped out.

The hollow circles in Fig. 13#a! show the maximum shear stress measured during step
increases in deformation rate as exemplified by Fig. 13#b!. The magnitude of this stress-
overshoot increases approximately linearly with deformation rate and the stress then
relaxes toward an apparent steady-state over a time constant consistent with the effective
relaxation time of the network !. However, as we have seen in Fig. 10, additional slow
transients are present at long times associated with stress-induced diffusion of the banded
structures.

The corresponding “step-down” experiments are shown by the hollow triangles in
Figs. 13#a! and 13#c!. When the deformation rate is decreased from a value of 150 s−1

#corresponding to the upper limit of the stress-induced plateau! down to a lower value, a
pronounced antithixotropic-like response is observed. The stress initially drops substan-
tially before recovering to a value consistent with the steady-state flow-curve. This com-
plex behavior is due to the transient response of the microstructure and rearrangement of
the shear-bands as they adapt to the lower value of the externally imposed shear rate.

IV. CONCLUSIONS

We have presented a comprehensive comparison between the viscometric flow predic-
tions of the VCM network scission model described in Vasquez et al. #2007! and experi-
mental measurements of the steady and transient rheology of a concentrated wormlike
micellar system. A brief overview of how the calculations from the model compare to the
experimental measurements of the CPyCl/NaSal system is provided in Table II. The
two-mode VCM model accurately captures the linear response of the CPyCl/NaSal solu-
tion in small amplitude oscillatory shear and small amplitude step strain experiments, as
well as the initial non-linear response in homogeneous flows. The single effective relax-
ation time ! observed experimentally corresponds to the reptation time of the long A
chains, appropriately reduced due to the effects of chain scission.

The sensitivity of the micellar network to changes in temperature is probed experi-
mentally using small amplitude oscillatory shear measurements for temperatures
18–50 °C. A large Arrhenius activation energy ,H=1.47-105 J /mol is measured,
which for a 3 °C increase in temperature corresponds to a 50% decrease in viscometric
properties, such as viscosity and relaxation time.

In step strain experiments for strains $036, the measured damping function h#$0! is
over-predicted by the VCM model using the parameter set determined independently
from oscillatory measurements. Further refinement of this two-mode model to better
capture the scission/recombination processes #e.g., allowing the recombination rate cB eq
to vary with flow conditions or the presence of a broader spectrum of species! remains
the subject of future study.

Experimental measurements of the first normal stress difference after a step strain
show that the Lodge–Meissner rule N1#t! /%xy#t! is obeyed well by this CPyCl/NaSal
solution up to large strains $0%8 into the strain-softening regime. This is consistent with
the picture that for step strains $0.8, the micellar network exhibits elastic rubberlike
behavior. While the homogeneous flow calculations with the VCM model deviate from
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the Lodge–Meissner rule for $032, inhomogeneous flow calculations predict a higher
first normal stress difference at large strains and may describe the experimentally ob-
served response more closely "Zhou et al. #2008!$.

For steady shearing flow, experimental measurements show a Newtonian viscosity &0
at low shear rates $̇0.!−1 followed by a shear stress plateau occurring at %xy %0.8GN

0 for
shear rates $̇03!−1. This strongly shear-thinning region is associated with the develop-
ment of shear-bands and is consistent with previous results reported for this system
"Berret et al. #1994!$ as well as local velocimetric measurements "Miller and Rothstein
#2007!$. The homogeneous calculations with the constitutive model predict a non-
monotonic flow-curve at shear rates $̇0*!−1. The critical conditions for onset of the
stress plateau for the VCM model are controlled by the magnitude of the single non-
linear model parameter /. By contrast, in simpler non-linear “toy models,” this value is
fixed as a function of viscoelastic properties "Spenley et al. #1996!$. In the present study,
the value of / is selected to agree with step strain measurements and then held fixed. This
is found to accurately predict the range of shear rates for onset of the stress plateau in
steady shear flow, indicating that the model is self-consistent. Accordingly, inhomoge-
neous calculations for a limiting case of the VCM model were considered in Zhou et al.
#2008! and a representative calculation with the value of / deduced from step strain

TABLE II. Overview comparing the results calculated from the VCM model with those measured for the
CPyCl/NaSal system.

Flow investigated Comparison of numerical and experimental results

Small amplitude oscillatory shear,
G!#"! ,G"#"!

Model fitted to this set of experimental data and provid-
ing accurate description of G! and G" over 4 decades of
applied frequencies #"=0.01–200 rad s−1!.

Shear stress relaxation after step strain, G#t! Model accurately captures stress relaxation at long times
for all step strains. Beyond $0=6 the strain-softening at
short times is under predicted compared to the experi-
mental data.

Normal stress relaxation after step strain,
N1#t! /%xy#t!

Lodge–Meissner rule followed by VCM model up to
N1 /%xy =2, compared with N1 /%xy =8 for the experimental
system.

Shear stresses in steady shearing flow, &#$̇! Good agreement of %xy between model and experiments
below the stress plateau. Above this, the assumption of
homogeneous kinematics fails to describe the onset of
the stress plateau observed experimentally. This can be
captured by more detailed inhomogeneous flow
calculations #see Fig. 14!.

Normal stress differences in steady shearing flow,
N1#$̇! ,N2#$̇!

Good agreement for N1 at shear rates before onset of
inhomogeneous flow; non-monotonic flow-curve
calculated for higher shear rates in contrast to
monotonically increasing N1 measured experimentally.
Model unable to predict a nonzero value of N2.

Start-up of shearing flow, &+#$̇! The model closely depicts stress growth for shear rates
below the onset of inhomogeneous flow. Model also
capable of predicting overshoots in shear stress %xy at
large step strain rates observed in experiments.

Cessation of steady shearing flow, &−#$̇! The rate of stress relaxation is well described at long
times for all shear rates. For shear rates above the
critical rate for onset of inhomogeneous flow the model
does not accurately capture the stress relaxation at short
times.
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measurements is presented in Fig. 14. This more accurate description of the local kine-
matics gives rise to a plateau in the flow-curve in good agreement with the experimental
data. Thus there is a reasonable expectation that considering inhomogeneous velocity
fields will lead to improved agreement with experimental results in the stress plateau
region.

The first normal stress coefficient measured in steady flow is constant at low shear
rates $̇.!−1, and both the model and the measurements satisfy the asymptotic limit
51#$̇!=2G!#"! /"2, consistent with a single-mode Maxwell fluid. However, while the
first normal stress difference flow-curve shows considerable shear-thinning of 51 for
$̇3!−1, no plateau value is observed in the shear-banding region. We have also been able
to measure the second normal stress difference as a function of the imposed deformation
rate for the first time in a shear-thinning micellar fluid: we find that for shear rates up to
50 s−1 #well into the inhomogeneous banded flow region!, the stress ratio
−52 /51%0.4. At high shear rates $̇350 s−1, the experimentally measured radial pres-
sure profile no longer varies logarithmically, suggesting the onset of strongly inhomoge-
neous flow at high shear rates $̇&100 s−1.

The VCM model is capable of predicting a nonzero first normal stress difference in
steady shearing flow, in contrast to certain phenomenonological models "e.g., Bautista et
al. #1999!$, and accurately represents the experimental data prior to the onset of shear-
banding. Although the homogeneous flow calculations are not expected to reliably de-
scribe an inhomogeneous flow, it should be noted that our calculations for inhomoge-
neous shearing flows also show a marked plateau in the first normal stress coefficient at
the inner wall coinciding with the shear stress plateau "Zhou et al. #2008!$. The VCM
model does not predict a second normal stress difference because of the scalar isotropic

τ xy
[P

a]

Shear rate [s
-1

]

FIG. 14. Comparison of experimental steady flow-curve with inhomogeneous model. The inset figures are
profiles of the non-dimensional velocity #ordinate! plotted as a function of the non-dimensional radius #abscis-
sor! computed for a narrow gap Couette cell, and correspond to the indicated points of the flow-curve. Calcu-
lations of inhomogeneous VCM model courtesy of Zhou et al., 2008. The parameters for these calculations are
0=10, ;=10−4, /=0.45, cA eq=9, cB eq=14.0184, and !=0.63 s.
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form of the nonlinear network rupture term cA. Providing an accurate description of the
first and second normal stress differences in inhomogeneous shear flow remains an open
challenge for models of wormlike micellar networks.

The slow shear stress transients %xy#t! after the start-up of steady shearing flow with
shear rate $̇0 are explored using both controlled rate and controlled stress rheometers.
Both devices show that long transients O#100!! are present near the onset of shear-
banding. In contrast to previous work "Grand et al. #1997!$, we observe that the measured
response is strongly dependent on whether the rheometer imposes a true controlled rate
flow or whether the rate control is only imposed using a feedback routine, with the latter
approach giving rise to transient time-scales an order of magnitude longer. Considering
the highly non-linear transient response of the fluid, it is not surprising that a PID
feedback algorithm may encounter difficulties imposing ideal controlled rate conditions
in a constant stress rheometer.

Finally, we have investigated the evolution in the instantaneous shear rate $̇#t! for an
imposed constant shear stress %xy0. As in the corresponding measurements of the stress
response after the start-up of steady shear flow, we see that imposing stresses near the
value of the stress plateau #associated with the onset of shear-banded flow! leads to slow
transients on time-scales of O#1000!!.

In summary, we have shown that global #i.e., spatially integrated! rheometric measure-
ments at constant stress or deformation rate can certainly offer a useful tool for investi-
gating the transient evolution of shear-banding flows. However, there is plenty of scope
to investigate local measures of the conformation, concentration, and velocity profiles to
provide a deeper understanding of the constitutive response of the micellar network. For
nonlinear viscoelastic fluids such as wormlike micellar solutions that exhibit complex
deformation-dependent microstructures, quantitatively describing transient responses to
non-linear deformations remains a challenge for experimentalists, theorists, and numeri-
cists alike.

APPENDIX: AN OVERVIEW OF THE VCM MODEL

The details of the VCM family of models developed in Vasquez et al. #2007! are
briefly summarized here. The entangled wormlike micellar fluid is reduced to a network
consisting of two elastically active species, labeled A and B. Each species is modeled as
a Hookean elastic segment of length L and L/2, respectively. The A species continuously
breaks and the B species continuously reforms so that A!2B. This two-species model
incorporates breakage and reforming dynamics in a discrete version of Cates’ ‘living
polymer’ model "Cates #1987, 1990!$. The evolution equations for the number density
#nA,nB! and stress #A ,B! associated with each species are derived systematically from
the number density equations formulated in configuration space. The resultant nonlinear
number density and constitutive equations #in dimensionless variables! are

0
DnA

Dt
− 2<A!2nA + <A ! !:A =

1
2

cBnB
2 − cAnA, #A1a!

0
DnB

Dt
− 2<B!2nB + 2<B ! !:B = − cBnB

2 + 2cAnA, #A1b!

0A#1! + A − nAI − <A!2A = cBnBB − cAA , #A2a!
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;0B#1! + B −
nB

2
I − ;<B!2B = − 2;cBnBB + 2;cAA , #A2b!

where cA and cB are the breaking and reformation rates of species A and B, respectively.
In Eqs. #A1! and #A2!, cB=cB eq is constant and cA=cA eq− #/ /3!$̇ :A, where cA eq is
constant and / is a parameter controlling stress-induced micelle breakage. Thus the
breakage rate depends on the scalar product of the local stress and shear rate which
provides a quantitative measure of the local rate of energy dissipation. In viscometric
flow predictions, these constitutive equations are solved assuming the kinematics are
known, specifically that the shear rate is spatially uniform and is the average shear rate
imposed across the gap #homogeneous flow! with no slip at the walls.

The following non-dimensionalization of the governing equations is employed:

r =
r!
d

, t =
t!
!

, v = v!
!

d
, ,QQ-: =

HA,Q!Q!-:

nA!
0kT

, n: =
n:!

nA!
0 , #A3!

where :=A,B, r! is the radial coordinate, v! is the local velocity, d is a macroscopic
characteristic length, Q! is the end to end vector of an individual chain, 'nA!

0kT /HA is a
microscopic characteristic length scale, HA is the spring constant of species A, k is the
Boltzmann constant, T is the temperature, and nA!

0 is the dimensional value of the equi-
librium number density of the long species A. With this scaling the non-dimensional
parameters of the model are given by

; =
!B

!A
, 0 =

!A

!
= 1 + cA eq, <A =

De
Pe

, <B =
1
3;

De
Pe

, #A4!

with the Deborah number De=!v! /d and the Peclet number Pe=v!d /DA, where DA is
the diffusivity of species A. The parameter 0−1 represents the reduction in the overall
effective relaxation time of the network ! from the #longest! relaxation time of the elastic
chains !A as a result of the additional chain rupture mechanism.

Ultimately for full inhomogeneous flow predictions, these equations must be coupled
to the equations of conservation of mass and of momentum:

" · v = 0, #A5a!

E−1Dv
Dt

= " · # , #A5b!

where #=A+2B is the total stress in the system and E=!&0 / #=d2! is the elasticity
number. It is this coupling that generates the spatial inhomogeneities and shear-banding.
The formulation of the model and the analysis for viscometric flows #in which the kine-
matics are specified! is developed in Part I of this work "Vasquez et al. #2007!$.

In the case of viscometric flow, the derivatives of the stress are zero, so that there are
five parameters in the model which physically represent equilibrium breakage and re-
forming times, the relaxation time of each species in the absence of breakage, and the
single nonlinear parameter #/! controlling the stress/shear-rate induced breakage. Strate-
gies for determining these five parameters in the model #; ,0 ,cA eq,cB eq,/! are outlined
in the previous paper "Vasquez et al. #2007!$. The loss of homogeneous flow and forma-
tion of shear-bands lead to coupling between spatial inhomogeneities and diffusion of
micellar species. The width of the shear-bands and the dynamics of evolution are con-
trolled by the diffusivities <A and <B. These aspects are considered by Zhou et al. #2008!
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where the full inhomogeneous flow of a simpler model, the PEC model, a limiting case of
the VCM model, is examined in time-dependent shear-rate-controlled experiments and in
step strain experiments.
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