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Abstract

Volume limitations and low yield thresholds of biological fluids have led to widespread use of passive microparticle rheology. The
mean-squared-displacement (MSD) statistics of bead position time series (bead paths) are either applied directly to determine the
creep compliance [Xu et al., Rheol. Acta 37, 387–398 (1998)] or transformed to determine dynamic storage and loss moduli [Mason
and Weitz, Phys. Rev. Lett. 74, 1250–1253 (1995)]. A prevalent hurdle arises when there is a nondiffusive experimental drift in the
data. Commensurate with the magnitude of drift relative to diffusive mobility, quantified by a P!eclet number, the MSD statistics are
distorted, and thus the path data must be “corrected” for drift. The standard approach is to estimate and subtract the drift from
particle paths, and then calculate MSD statistics. We present an alternative, parametric approach using maximum likelihood
estimation that simultaneously fits drift and diffusive model parameters from the path data; the MSD statistics (and consequently the
compliance and dynamic moduli) then follow directly from the best-fit model. We illustrate and compare both methods on simulated
path data over a range of P!eclet numbers, where exact answers are known. We choose fractional Brownian motion as the numerical
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model, because it affords tunable, subdiffusive MSD statistics consistent with typical 30 s long, experimental observations of
microbeads in several biological fluids. Finally, we apply and compare both methods on data from human bronchial epithelial cell
culture mucus. VC 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4943988]

I. INTRODUCTION

The primary application that motivates the methods pre-
sented here is the determination of diffusive transport prop-
erties and linear viscoelastic properties (dynamic storage and
loss moduli or creep compliance) of biological soft matter,
and human mucus, in particular, based on passive particle
tracking (PPT) microrheology. These viscoelastic inferences
arise directly from the mean-squared displacement (MSD) of
particle position time series (which we refer to as “paths”).
For dynamic moduli, the Mason-Weitz protocol [1–3] or
subsequent corrections [4] are applied to ensemble-averaged
transforms of the MSD statistics. The creep compliance fol-
lows directly from the time-domain MSD statistics [5].
Video microscopy in combination with PPT has been used to
explore the physical properties of a wide range of mucus bio-
gels, including cervicovaginal [6–8] pulmonary [9,10] and
gastrointestinal [11–13] mucus.

The issue motivating this paper is that often in PPT experi-
ments, the observed particles exhibit drift: A persistent, inad-
vertent, driven motion potentially due to the light source
[10], movement of the optical stage [14,15], or some other
source [16]. We refer to [17] for analysis of static and
dynamic errors in PPT data that improve the accuracy of
MSD statistics and thereby inferences of material viscoelas-
ticity. For this paper, we restrict ourselves to persistent linear
drift over the duration of each particle position time series.
Thus the particle observations are a superposition of drift and
diffusion. In active biological fluids such as living cells
where endogenous deoxyribonucleic acid (DNA) domains
are fluoresced and tracked, cell translocation and active cellu-
lar processes induce additional nondiffusive motion. In viral
trafficking within cells, the virus may hijack directed motion
along microtubules. Since drift can significantly alter the
MSD of tracked particles, and thereby distort the inference of
the dynamic moduli or compliance as well as distort the
inferred diffusive mobility, the question naturally arises as to
how drift should be accounted for in the analysis of PPT data.

In the case of optical stage drift, each particle in the field
of view exhibits the same magnitude and direction of move-
ment. Thus, if enough particles are present, the driven
motion may be removed by estimating the ensemble average
movement of the particles within the field of view and sub-
tracting this drift from each particle path [18]. Other scenar-
ios pose a more difficult challenge due to the potential for
temporal and spatial heterogeneity in the drift component of
the motion. In highly heterogeneous biological fluids such as
mucus, regions of high elasticity, due to high local mucin
concentrations, may cause some particles to appear immobile
while neighboring particles undergo net transport due to
some local flow. In this or analogous scenarios where drift is
nonuniform across observed particle paths, if one were to
subtract the ensemble-averaged movement of the particles in
the field of view from each particle path, one would be add-
ing directed motion to the less mobile particles while

subtracting directed motion from the more mobile particles.
In [19] the authors introduce a "detrending" method for
Brownian motion in heterogeneous fluids which is applied to
each particle path individually, where the data are reduced
by half through restricting analysis to the movement orthog-
onal to the estimated drift direction. Here, we also analyze
individual paths, allowing for independent drift per path, for
both Brownian and fractional Brownian motion. The reader
is referred to a large body of work by Klafter, Metzler,
Barkai and collaborators on fractional Brownian motion as
well as other sub- and superdiffusive stochastic processes;
see the review article by [20]. In [21] a detrending method
is applied to a larger class of diffusive and subdiffusive
processes with drift in two space dimensions, where the full
2D observations are used to simultaneously estimate the
diffusive or subdiffusive model parameters and the drift.
The present article aims to introduce and illustrate the
parametric, maximum likelihood estimation approach in
one-dimensional PPT data; for a more rigorous treatment,
including comparisons of competitive models on the basis of
the available data, see [21].

We point out that the debate over the optimal way to
remove drift tacitly assumes that directed motion must be
removed prior to analyzing the path data. Historically, this
assumption is natural because of the focus on the scaling of
the ensemble particle MSD due to purely diffusive dynamics
[22–25], a statistic that can be extremely sensitive to drift
[26]. In this article, we take a different approach and show
that deterministic drift does not need to be removed a priori
from particle path data to determine the MSD statistics if
one posits and exploits a fully parametric statistical model
for the underlying drift-diffusion process. In particular, we
focus on fractional Brownian motion (fBm), a parametric
statistical model for subdiffusive processes that has been
shown to accurately describe diffusion in mucus gels [9,21]
and other biological soft matter [27,28]. For other systems
where the particle paths do not exhibit relatively uniform
power law MSD behavior, our current methods would not be
applicable. We are currently considering extensions of our
parametric statistical model to other candidate subdiffusive
stochastic models, e.g., generalized Langevin equations that
resolve transient subdiffusion and convergence at long times
to normal diffusion. Other types of path properties, such as
jumps between different modes of diffusion within a single
tracked path, remain for future development.

Using numerical simulations of drift coupled with subdif-
fusive fractional Brownian motion (consistent with data
from mucus gels), we show that one can easily and accu-
rately estimate the diffusive or subdiffusive model parame-
ters by maximum likelihood estimation (MLE)—for a wide
range of deterministic drift, and without removing the drift a
priori as is typically done to estimate the MSD statistics of
single or ensemble paths. The advantage of MLE arises
because drift is treated as a model parameter to be estimated

380 MELLNIK et al.

 2
5
 O

c
to

b
e
r 2

0
2
3
 0

1
:2

3
:3

5

http://dx.doi.org/10.1122/1.4943988


jointly with the diffusive or subdiffusive parameters rather
than sequentially, thereby increasing the precision of all pa-
rameter estimates. With all parameters thus estimated jointly,
it is then straightforward to use fBm parameter estimates to
generate the MSD of the purely diffusive dynamics and
thereby infer the dynamic viscoelastic moduli or the creep
compliance. We illustrate the procedure for a range of P!eclet
numbers, which we define through a dimensionless ratio of
the drift (advection) component relative to the diffusive mo-
bility, for both normal and subdiffusive processes.

The benefit of numerical simulation is that the exact diffu-
sive parameters and viscoelastic properties are known, so
that the error (in MSD and properties derived from it)
induced by relative drift (parametrized by P!eclet number),
for any method of estimating these quantities, can be directly
measured and compared to any other method. We are thus
able to compare the errors in the inference of diffusive
process parameters and drift, in dynamic storage and loss
moduli, and in creep compliance, among our proposed para-
metric maximum likelihood estimation method and the
standard approach in the passive microrheology literature
(based on a least-squares estimate of the MSD after removal
of drift). We also show, for posterity, the dramatic errors in
the diffusion parameters and viscoelastic properties if one
simply ignores the presence of drift. Finally, for experimen-
tal illustration purposes, we apply the MLE and standard
drift-subtracted MSD estimate approaches to PPT data from
human bronchial epithelial (HBE) cell culture mucus.

The structure of the article is as follows. First, we discuss
drawbacks of MSD-based approaches and cursory drift re-
moval. We then introduce a canonical model (fractional
Brownian motion) for tunable particle diffusion or subdiffu-
sion with drift and provide details on how to simulate parti-
cle paths in accordance with this model. Next, we review
MSD-based approaches to the recovery of diffusive parame-
ters and present our MLE method. The methods are then
compared using simulated data sets for a practical range of
P!eclet numbers. Finally, we illustrate the methods on data
from human lung cell culture mucus.

II. MEAN SQUARED DISPLACEMENT STATISTICS

Given ðM þ 1Þ observations Xð0Þ; XðDtÞ; Xð2DtÞ;…;
XðMDtÞ of a particle’s position, the MSD statistic is calcu-
lated as

hrsii
2 ¼ 1

M % iþ 1

XM%i

j¼0

X si þ jDtð Þ % X jDtð Þ½ '2; (1)

where si ¼ iDt is called the lag time and Dt is the time
between observations. Note that for larger lag times, the
number of observations decreases, limiting the statistical
significance of the MSD. For many diffusive processes,
theory and observation suggest that the MSD of particles
undergoing diffusion exhibits a power law scaling over a
range of lag times for which there are sufficient observations
[6,4,9,29–31]

E½hrsi2' ¼ 2dDsa; (2)

where the prefactor D is the “diffusivity” by analogy with
simple diffusion, a is a real number in the interval ½0; 2', d is
the dimensionality, and E½…' is notation for the “expected
value.” For standard Brownian motion without drift, the
power-law exponent is a ¼ 1. From an accurate estimation

FIG. 1. Pathwise MSD for simulated particles from the Brownian motion
(Bm) (a) and fractional Brownian motion (fBm) (b). MSD curves for 40 repre-
sentative data sets are shown for varying drift characterized by the P!eclet
number (Pe), the ratio of the advective and diffusive transport rates [Eq. (13)].
The color scheme represents increasing P!eclet from Pemin ¼ 0 (blue) to
Pemax ¼ 0:73 (red), for the Bm data set, and from Pemin ¼ 0 (blue) to
Pemax ¼ 0:52 (red) for the fBm data set. The upper and lower black dashed
lines indicate slopes of 2 (ballistic motion) and 1 (normal diffusion), respec-
tively. The fBm paths (b) are simulated with a ¼ 0:6; the “diffusivity” prefac-
tor is chosen to have the same numerical value in the two data sets.
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of D one infers the fluid viscosity g from the Stokes-Einstein
relation. [26] illustrated via simulated Brownian motion that
linear (i.e., constant) drift causes the log-log plot of MSD
versus lag time s to tend toward a slope of 2 at large lag
times (Fig. 1). That is, as s increases, a! 2 and the larger
the drift velocity, the smaller the lag time at which this tran-
sition occurs.

When one attempts pathwise correction for directed
motion by subtracting the mean increment from each path,
i.e., the mean of the step-size distribution at the shortest lag
time (Fig. 2), one inadvertently changes the structure of the
entire particle path. That is, every such modified path is con-
strained to begin and end at the same spatial position. To
see this, consider a one-dimensional Brownian path, where
Xi ¼ XðiDtÞ is the location of the particle at time iDt with
i ¼ 1; 2; 3…M. The increments of this process are given by

xi ¼ Xiþ1 % Xi: (3)

For Brownian motion, the xi are normally distributed with
mean lDt and variance 2DDt; where l is the drift velocity.
When no drift is present, the sample mean of xi,

"x ¼ 1

M % 1

XM%1

i¼1

xi; (4)

converges to zero as the number of particle positions
increases, i.e., as M!1. The fact that the distribution of xi

is symmetric with "x converging to zero intuitively indicates
that the particle is expected to make an equal number of
steps to the left and right. This, however, is not to say that a
particle diffusing via Brownian motion never travels a net
distance. The mean incremental displacement is "x, and when
we subtract "x from each increment, xi, we “snap” the distri-
bution of XM to zero, inadvertently stipulating that the first
and final positions of the particle are the same. Indeed, sup-
pose that "x is subtracted from each increment to “remove
drift,” centering the distribution of increments at zero. The
resulting modified position process is computed by taking
the cumulative sum of the shifted increments, denoted by ~Xi,

~X1 ¼ X1

~X2 ¼ X1 þ ðx1 % "xÞ
~X3 ¼ X1 þ ðx1 % "xÞ þ ðx2 % "xÞ
~X4 ¼ X1 þ ðx1 % "xÞ þ ðx2 % "xÞ þ ðx3 % "xÞ

..

.
: (5)

Following this pattern, we collect terms and write the final
position ~XM as

~XM ¼ X1 % ðM % 1Þ"x þ
XM%1

i¼1

xi; (6)

which can be simplified further

~XM ¼ X1 % M % 1ð Þ 1

M % 1

XM%1

i¼1

xi þ
XM%1

i¼1

xi; (7)

~XM ¼ X1 %
XM%1

i¼1

xi þ
XM%1

i¼1

xi; (8)

~XM ¼ X1; (9)

FIG. 2. Impact of drift-subtraction on the distribution of increments and
MSD for a representative subdiffusive fractional Brownian motion path with
true parameter values a ¼ 0:60 and D ¼ 4:67( 10%4 lm2s%a. The esti-
mated parameter values based on a simple least-squares fit to the drift sub-
tracted MSD are a ¼ 0:53 and D ¼ 5:30( 10%4 lm2s%a. The distribution of
increments (a) is shown at s ¼ 5s for a single particle path with Pe ¼ 0:5
before (blue) and after (red) drift subtraction. Before drift subtraction, the
mean of the distribution of increments (solid blue line) is 9:40( 10%3 lm.
Subtracting drift centers the distribution at zero (solid red line). The MSD is
also shown for this path before and after drift subtraction (b).
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and thus we see that the final position has been constrained
to the initial position (Fig. 3). It is worth noting that a stand-
ard Brownian motion constrained to have predetermined ini-
tial and final positions is called a Brownian bridge [32],
which has completely different correlation structure than the
unconstrained motion. While this does not make a difference
in the estimation procedure if the paths are from a standard
Brownian motion (because the increments are independent),
it becomes relevant when the paths are from any stochastic
process where the increments may be highly correlated, and
in particular, subdiffusive processes typical of biogels.

An additional drawback of an MSD-based approach to
diffusive parameter estimation is the unreliability in the
MSD at large lag times. As the lag time increases, the num-
ber of increments included in the mean of the squared incre-
ments decreases and thus becomes less stable. [26] estimate
that only the initial two-thirds of the MSD is statistically reli-
able. Due to experimental factors (particles exiting the focal
plane of the microscope) limiting the ability to collect data
over long time scales, the uncertainty in the MSD for large
lag times can have a pronounced impact on the accurate re-
covery of diffusive and viscoelastic properties.

III. FRACTIONAL BROWNIAN MOTION AND DRIFT

Recently, [21] considered fractional Brownian motion
(fBm) as a model for the movement of micron-scale particles
over a 30 s observation time at 60 frames per second tempo-
ral resolution in HBE mucus. Under this model, the particle’s
position process XðtÞ in one dimension is written as the sum
of a deterministic term representing the drift and a stochastic
term representing the particle’s thermally activated diffusive
movements

XðtÞ ¼ ltþ
ffiffiffiffiffiffi
2D
p

WaðtÞ; (10)

where WaðtÞ is a continuous Gaussian process with mean
zero and covariance

cov Wa tð Þ;Wa sð Þ
" #

¼ 1

2
jtja þ jsja % jt% sja
$ %

0 < a < 2:

(11)

For a ¼ 1, Eq. (10) reduces to Brownian motion with drift,
and the increment process is uncorrelated: cov½xi;xiþk'¼DDt.
For a 6¼1, the increment process for fBm has correlation

cov½xi; xiþk' ¼ DDtaðjk þ 1ja þ jk % 1ja % 2jkjaÞ: (12)

For fBm processes, the MSD has the same scaling relation as
Brownian motion [33], i.e., hrsi2 ) Dsa, although, unlike
Brownian motion, the power-law exponent is not necessarily
unity. When a < 1, the fBm increments are negatively corre-
lated and the position process exhibits subdiffusive behavior.
When a > 1, the fBm increments are positively correlated
and the position process exhibits superdiffusive behavior.

Calculating the increments xi provides a simple way to
estimate the drift exhibited by a particle since the mean, or
expected value E½…', of the increments is E½xi' ¼ lDt, for
both Brownian and fractional Brownian processes. To gener-
alize our analysis, we characterize results in terms of a
P!eclet number (Pe), a dimensionless ratio of the advective
and diffusive transport rates. Given the increments of a parti-
cle path computed for a given lag time Dt, we introduce an
approximate P!eclet number that is derived directly from the
data collected in drift-diffusion microrheology experiments
where one does not a priori know either the fluid velocity
or the fluid diffusivity, and furthermore where fractional
diffusivities arise. Namely, at the observation timescale

FIG. 3. Sample Brownian path with drift (a) and after the drift has been
removed by subtracting the mean displacement from each increment (b).
The beginning and end of the path have been marked with an x and a circle,
respectively.
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(Dt ¼ 1=60 s), from the observed data, we define an approxi-
mate P!eclet number as the ratio of the mean increment of the
particle path, E½xi' or the expected value of xi, and the stand-
ard deviation SD½xi' of the increments

Pe *
E xi½ '
SD xi½ '

: (13)

This definition is not a “pure” P!eclet number for all particle
tracking experiments. The numerator includes a lower order
contribution from apparent diffusive drift due to a finite num-
ber of observations. The denominator will include the stand-
ard deviation in the advection process if the drift per
increment is not identical (due to nonconstant drift or mea-
surement error). Nonetheless, this is a reasonable P!eclet num-
ber based purely on the data, which one could correct later
from the results of the MLE method. (G.F. thanks Ian Seim
for a discussion of this issue.)

IV. METHODS

A. Simulation

To generate a particle path exhibiting linear drift and frac-
tional or normal Brownian dynamics, we first generate the
increment process for an fBm path without drift, and then
add the desired drift to the path. To generate fBm observa-
tions X1,…, XM for a particular choice of a, we first construct
the covariance matrix S of the increment process according
to Eq. (12). That is, the i; jth elements of S is

Si;j ¼ cov½xi; xj' (14)

for i; j ¼ 1; 2; …M. Let LL0 ¼ S be the Cholesky decom-
position of S and let u be a vector of M independent
and identically distributed draws from a standard normal
distribution. A simulated particle path is generated as

x¼ðx1;…;xMÞ0¼
ffiffiffiffiffiffi
2D
p

Lu; Xj¼
Pj

i¼1 xi. Using this method,

two sets of simulated data are generated. The first set is

subdiffusive with a¼0:6 and D¼4:67(10%4 lm2s%a,
mimicking the estimated parameter values based on
experimental observations of 1 lm diameter particles in
4 weight percent HBE mucus [9]. The second data set
exhibits standard Brownian motion, i.e., a¼1, with diffu-

sivity D¼4:67(10%4 lm2 s%1 corresponding to a 1lm
diameter particle in a fluid with viscosity of 1:86Pas at
23+C. Each simulated path is generated with a temporal
resolution of 5 frames per second and a length of
M¼2;992 steps, mimicking experimental conditions for
the experimental data presented in Sec. VII.

Linear drift is added to the simulated paths by calculating
the increments, adding directed motion, then taking the cu-
mulative sum of the result. We simulate both fractional and
normal diffusive paths for P!eclet numbers in the range
½0; 0:73' for Brownian motion and ½0; 0:52' for fractional
Brownian motion, chosen such that we match the range of
drift relative to diffusion as defined in Eq. (13) for the
observed experimental data (Sec. VII). A position process
with linear drift is given by

Xj ¼
Xj

i¼1

ðxi þ KÞ; (15)

where K is a scaling factor with units of lm. We generate
100 simulated paths with drift for K spanning the interval
½0; 9:34( 10%3' in increments of 2:3( 10%4 lm, resulting in
4100 simulated fBm paths ða ¼ 0:6Þ and 4100 simulated
Brownian paths ða ¼ 1Þ. These data sets will be referred to
as the fractional Brownian motion (fBm) and Brownian
motion (Bm) data sets, respectively.

B. Experimental

Mucus harvested from HBE cell cultures has proven to be
a useful model system for the study of the role of mucus in
pulmonary physiology. Briefly, cells are obtained from
excess surgical tissue that is procured by the UNC Tissue
Core Facility. Cells are then seeded on 0.4 lm Millicell
(Millipore, Billerica, MA) coated with collagen. Cells are
grown using air liquid interface media as previously
described [34]. After 3 weeks of growth, cells are confluent
and are ready for mucus harvest as previously described
[9,35–37]. Biochemically, the composition of mucus har-
vested from HBE cultures is highly conversed with human
sputum [38] and reproduces the osmotic pressure [39] and
rheological properties of sputum [9]. Physiologically, HBE
mucus has been used to ascertain the role of mucus concen-
tration in pathological bacterial biofilm formation [36],
reduced neutrophil activity and motility [35], and clearance
[40]. Finally, the concentration of HBE mucus, a simple bio-
chemical property of mucus, has been shown to be correlated
with disease states and severity [9,36,39,40].

We selected 1 lm diameter polystyrene particles with car-
boxyl surface chemistry (Fluospheres, Fisher Scientific) for
use in our assays. This particle size is substantially larger than
the length scales of the mucin mesh network [9,41–44].
Further, the carboxyl functionalization rather than an amine
surface chemistry was chosen as previous studies have shown
that amine treated beads have impaired diffusion in sputum
[45]. Polyethylene glycol (PEG) surface chemistries, which
enhance the diffusion of smaller particles (200 nm and
smaller) [41,46] in mucus have little effect on the diffusivity
of larger (>500 nm diameter) particles [46]. These factors
lead us to use 1 lm diameter particles with carboxylic acid
functionalization. Particles of this size will more faithfully
mimic linear macroscopic rheology [43,47]. Further, by using
HBE mucus prepared to concentrations prescribed by physio-
logically relevant states, we are able to avoid the 100 fold var-
iations in reported literature values that were evident in earlier
mucus macroscopic assays [48].

V. APPROACHES TO PARAMETER ESTIMATION

We consider three approaches to diffusive parameter
estimation.

A. Simple least squares

Noting that the subdiffusive MSD is linear on the log-log
scale
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lnðE½hrsii
2'Þ ¼ lnð2DÞ þ alnðsiÞ; (16)

a longstanding approach to estimate D and a is to minimize
the least squares (LS) objective function

XM

i¼1

ðyi % c% atiÞ2; (17)

in terms of c and a where

yi ¼ ln½hrsii2'; c ¼ ln½2D'; ti ¼ ln½si': (18)

Recall that M is the number of particle positions. The mini-
mum of Eq. (17) is obtained at ~a ¼

PM
i¼1 yiti=

PM
i¼1 t2

i and
~c ¼ "y % ~a"t.

B. Drift-subtracted least squares

The drift-subtracted least squares (DLS) approach sub-
tracts "x, the mean increment [Eq. (4)], from each xi [Eq. (3)],
centering the distribution of increments at zero, dictating the
equivalence of the initial and final position, before applying
the approach described above for least squares estimation.

C. Full model MLE

This approach applies maximum likelihood estimation
(MLE) to Eq. (10) to estimate l, D, and a directly from
the raw data without first estimating the MSD statistic. The
fBm model in Eq. (10) specifies that the increments x
¼ ðx1;…; xMÞ0 have a multivariate Gaussian distribution
with mean E½xi' ¼ lDt and variance matrix S given in
Eq. (14), denoted

x ) N ðlDt; SÞ: (19)

Let S ¼ r2Va, where r ¼ 2D and Va is a matrix independ-
ent of D. The likelihood of a set of model parameters
h ¼ ðl; r; aÞ, given a set of observations x, is given by the
likelihood function

L hjxð Þ ¼ exp % 1

2

x% lDtð Þ0V%1
a x% lDtð Þ

r2
% 1

2
ln jr2Vaj
$ %

& '
;

(20)

which, up to a factor of ð2pÞ%M=2, is the probability density
function (PDF) of the multivariate Gaussian specified in
Eq. (19). The MLE of the parameters is

ĥ ¼ argmaxhLðhjxÞ; (21)

the value of h that maximizes LðhjxÞ. The three-dimensional
optimization problem in Eq. (21) can be reduced to a one-
dimensional problem by maximizing in ðl; rÞ for fixed a.
That is, let

y ¼ ya ¼ ½Va'%1=2x; and z ¼ za ¼ Dt½Va'%1=21M; (22)

where 1M ¼ ð1; 1; …1Þ0. Then the y ¼ ðy1;…yMÞ0 are inde-
pendent Gaussians with common variance r2, so that

yi )
indN ðlzi; r2Þ ; (23)

such that for fixed a, the two-parameter likelihood function
Laðl; rjxÞ is

La l; rjxð Þ ¼ exp %M ln rð Þ %
XM

i¼1

yi % lzið Þ2

2r2

" #

: (24)

The values ðl̂a; r̂aÞ that maximize Laðl; rjxÞ are

l̂a ¼

XM

i¼1

ziyi

XM

i¼1

z2
i

; r̂a ¼

XM

i¼1

yi % l̂azið Þ2

M

0

B@

1

CA

1=2

: (25)

The MLE of a for Eq. (10) is thus obtained by maximizing
the one-dimensional profile likelihood function [49]

LprofðajxÞ¼def Lðl̂a; r̂a; ajxÞ: (26)

Specifically, by substituting Eq. (25) into Eq. (24), we find
the â that maximizes

‘profðajxÞ ¼ lnðLprofðajxÞÞ þ C (27)

¼ % 1

2
Mln r̂2

a

$ %
þ ln jVajð Þ

" #
: (28)

The resulting parameter estimates ĥ ¼ ðl̂â ; â; r̂âÞ are pre-
cisely those that maximize the full likelihood LðhjxÞ,
thereby reducing the numerical optimization problem
from three parameters to one. Moreover, we note that
for arbitrary variance matrix V, the linear systems in
Eq. (22) are solved in OðM3Þ operations. However, since
Va is a Toeplitz matrix [50], the systems can be solved
in OðM2Þ operations using the Durbin-Levinson algo-
rithm [51,52].

The MLE was implemented in MATLAB, except the
Durbin-Levinson algorithm which was implemented
in Cþþ. While the DLS estimate is much faster to
compute, both algorithms scale as OðM2Þ. For 2D paths
of length M ¼ 3000; 5000; 10000, each MLE took
0:3; 0:8; 3:3 s to evaluate on a personal computer.
Pseudocode for the MLE of fBm with drift can be found
in the Appendix.

Much like the least squares approach involving the sam-
ple MSD, the maximum likelihood approach we have
described hinges on the minimization of a quadratic objec-
tive function. However, whereas the least squares approach
estimates the drift only once, the MLE estimates the "opti-
mal" drift and diffusivity for every value of a. That is, the
least squares estimate of the drift by "x would be optimal if
the increments were uncorrelated, whereas the MLE
approach estimates the drift by a weighted average of the
increments, l̂a that accounts for their correlation. Indeed,
l̂a ¼ "x only when fBm reduces to ordinary diffusion with
a ¼ 1.
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VI. RESULTS

A. Simulated data

For each simulated path, we compute the pathwise MSD
given in Eq. (1). To estimate the viscous and elastic moduli,
we follow [1] where the complex modulus is

G, xð Þ ¼ ixg, xð Þ ¼ G0 xð Þ þ iG00 xð Þ ¼
kBT

paixF hrsi2
( ) ;

(29)

where FfgðsÞg ¼
Ð

gðsÞe%xi-sds denotes the Fourier trans-
form. Note, the dynamic viscosity g0ðxÞ is related to the vis-
cous modulus via xg0ðxÞ ¼ G00ðxÞ. We note further that for
fBM and our experimental data, the MSD curves are highly
uniform. For data where the MSD curves are nonuniform,
corrections to (20) should be used, cf. [5].

Figure 4 shows pathwise estimates of the diffusivity D
and the power-law exponent a as a function of the P!eclet
number (Pe) over the range Pe ¼ ½0; 0:73' using the three
methods described in Sec. V. The solid red line in each panel
is the value used to generate the simulated data, which is rea-
sonably recovered by each technique when no drift is pres-
ent, i.e., Pe ¼ 0. For Brownian paths when drift is present,
ignoring drift completely leads to dramatically incorrect
results. In Fig. 5, the relative error in the estimation of the
viscosity for the Bm data found by applying the Stokes-
Einstein relation is reported for each estimation approach.
The mean relative error in the estimation of the viscosity
when not accounting for drift is 39.5%. When applying a
drift-subtracted least squares (DLS) approach and a paramet-
ric MLE approach, the mean relative error is 11.1% and
3.6%, respectively.

Figure 6 illustrates the impact of drift on the pathwise
estimates of G0 and G00 for the fBm data for various values of
Pe. In Fig. 7, the ensemble average estimates G0 and G00 are
compared when applying Eq. (29) to the empirical MSD
when ignoring drift and subtracting drift, and applying
Eq. (29) to the parametric scaling of the MSD predicted by
our MLE approach for K ¼ 9:34( 10%3 lm, corresponding
to Pe ¼ ½0:48; 0:52' for the fBm data. The ensemble average
relative error in the estimation of G0 and G00 for the fBm data
set is reported for the DLS and MLE approaches in Fig. 8.
This figure shows that the MLE method more accurately

FIG. 4. Estimated values of a (a) and D (b) ignoring drift (black circles),
subtracting drift (blue circles) and our maximum likelihood method (violet
circles). The true values of a and D are shown in solid red lines. The true
values of each parameter are a ¼ 1 and D ¼ 4:67( 10%4 lm2s%1.

FIG. 5. Relative error in estimates of the viscosity (g) given by the Stokes-
Einstein relation based on the three approaches for the Brownian motion
data set as a function of the P!eclet number (Pe). The mean error in the esti-
mation of g when not accounting for drift is 39.5%. When applying a drift-
subtracted least squares approach and a parametric approach, the mean error
is 11.1% and 3.6%, respectively.
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recovers the exact G0 and G00, uniformly over all frequencies,
whereas the DLS method leads to errors in the low frequency
range. The global distortion of individual paths by drift sub-
traction, the so-called Brownian bridge, foreshadows the
modification of path statistics over long lag times, and there-
fore at low frequencies in transform space.

We now turn to the underlying challenge to estimate the
diffusivity D and the power-law exponent a when the data
indicates fractional Brownian motion as a good model. The
LS, DLS, and full model MLE estimates are shown in Fig. 9
as a function of the P!eclet number. Recall, the true values of

each parameter are a ¼ 0:6 and D ¼ 4:67( 10%4 lm2 s%a.
Failing to account for drift when drift is present leads to
highly erroneous results. As Pe increases, a converges to
2, as expected based on the simulation results presented in
Fig. 1. Drift has a nonlinear impact on the estimate of D, ini-
tially underestimating, and later overestimating the parame-
ter value. In contrast, both the DLS and MLE estimates of
D and a are independent of drift and exhibit a similar level
of accuracy, however, the parametric approach is the more
precise estimator due to the decreased spread about the mean
predicted parameter values.

FIG. 6. Pathwise dynamic storage, G0ðxÞ (a), and loss, G00ðxÞ (b) moduli
for the fBm data found by transforming the pathwise MSD without account-
ing for drift. The change in color of the data corresponds to a transition from
Pemin ¼ 0 (blue) to Pemax ¼ 0:52 (red). The true values of G0 and G00 are
indicated by the black dashed lines.

FIG. 7. Ensemble averaged dynamic storage, G0ðxÞ (a), and loss, G00ðxÞ
(b) moduli for the fBm data with subdiffusive exponent a ¼ 0:6 by
applying Eq. (29) to the empirical MSD when ignoring drift (circles) and
subtracting drift (circles), and applying Eq. (29) to the parametric scaling
of the MSD predicted by our maximum likelihood method (circles).
Exact G0ðxÞ and G00ðxÞ are shown in solid red lines. The ensemble-
averaged results over 100 paths are shown for Pe values in the range
DLS.
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B. Experimental data

Here, we analyze 22 representative 1 lm diameter par-
ticles in 4 weight percent HBE mucus using the previously
outlined methods. Each path consists of 2992 increments
with a temporal resolution of 0.2 s (five observations per
second). The MSD for each experimental path is shown in
Fig. 10. The ensemble-averaged storage and loss moduli
are calculated when ignoring drift, subtracting drift by
applying Eq. (29) to the empirical MSD, and applying
Eq. (29) to the parametric scaling of the MSD of the pure
fBm process determined from our maximum likelihood
method (Fig. 11).

The three estimation methods for D and a were applied to
the experimental particle paths. Figure 12 shows the least
squares (LS) and drift-subtracted least squares (DLS) esti-
mates relative to the full model maximum likelihood estima-
tion approach (MLE). The estimates for a are presented in
Fig. 12(a). The MLE predictions of a are shown along the
x-axis, and the LS and DLS estimates are shown on the
y-axis. The domain of each axis is from 0, representing stuck
particles, to 1, representing normal diffusion exponents. A

FIG. 8. Ensemble averaged relative error in the storage modulus, G0ðxÞ (a),
and loss modulus, G00ðxÞ (b) for the fBm data with subdiffusive exponent
a ¼ 0:6 when applying Eq. (29) to the empirical MSD after subtracting drift
(blue) and applying Eq. (29) to the parametric scaling of the MSD predicted
by our maximum likelihood method (violet). The ensemble average is com-
puted using all 4100 simulated paths.

FIG. 9. Estimated values of a (a) and D (b) ignoring drift (black
circles), subtracting drift (blue circles) and our maximum likelihood
method (violet circles). The true values of a and D are shown in solid
red lines. The true values of each parameter are a ¼ 0:6 and
D ¼ 4:67( 10%4 lm2s%a.
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dashed line indicates the diagonal. Each data point represents
the predicted parameter value for one of the 22 experimental
paths. A data point falling on the diagonal indicates that the
MLE and LS (or DLS) approaches agree for that particle
path. A data point above the diagonal indicates that the LS
(or DLS) approach overestimated a compared to the MLE
approach. Conversely, a data point below the diagonal indi-
cates that the LS (or DLS) approach underestimated a com-
pared to the MLE approach. The size of each data point is
directly proportional to the calculated drift for the corre-
sponding particle.

In Fig. 12(a), the DLS and MLE approaches exhibit
strong agreement in their predictions of a, as evidenced by
the distribution of data points (blue) along the diagonal
dashed line. In contrast, the LS estimates of a (black) fall
above the diagonal, indicating an overestimation of a rela-
tive to the MLE approach. The amount of overestimation is
directly proportional to the amount of drift in the experi-
mental data (larger markers are further from the diagonal
than smaller markers).

Figure 12(b) presents the estimates of the diffusivity (D).
All data points fall above the diagonal, thus both the LS and
DLS approach estimate larger values of D compared with
the MLE approach. Here, the amount of overestimation is
inversely proportional to the amount of drift (larger markers
are closer to the diagonal). We note that this is not a sce-
nario observed in the simulated data. Returning to Fig. 9,
we see that the only time the LS estimates of D are in
increasing correspondence to the MLE values with increas-
ing drift is when the LS method underestimates D and
0:1 < Pe < 0:3. Furthermore, according to Fig. 9, the DLS
estimate of D relative to the MLE values should be inde-
pendent of Pe. We hypothesize that these incongruences
between the simulated and experimental data may be the
result of nonlinear drift, an interesting issue but beyond the
scope of the present paper.

VII. DISCUSSION

Persistent linear drift over the course of a particle path is
compounded at large lag times, resulting in an asymptotic
(long lag time) bending of the MSD curve toward a slope of
2. The use of MSD curves for inference of mobility, creep
compliance, or linear viscoelastic moduli, without recogniz-
ing there is drift and accounting for it, is obviously prob-
lematic. We use a simple calculation of the mean and
standard deviation of the step size distribution for a given

FIG. 10. Pathwise MSD for the 22 experimental particle paths. The dashed
line indicates a slope of 1, corresponding to normal diffusion.

FIG. 11. Estimates of the dynamic storage modulus, G0ðxÞ, left figure, and
loss modulus, G00ðxÞ, right figure, for experimental data for 3 approaches:
Applying Eq. (29) to the empirical MSD ignoring drift (circles) and subtract-
ing drift (circles), and applying Eq. (29) to the parametric scaling of the
MSD predicted by our maximum likelihood approach (circles).

389MLE IN MICRORHEOLOGY DATA

 2
5
 O

c
to

b
e
r 2

0
2
3
 0

1
:2

3
:3

5



experimental or numerical particle path to estimate the
drift relative to diffusion, defining an approximate P!eclet
number Pe.

When Pe increases, the slope of the pathwise MSD
approaches 2 at increasingly smaller lag times, causing the
least squares (LS) estimate of the power law exponent, a, to
converge to 2. By subtracting the mean increment of each
particle from the particle’s path, the least squares (DLS)
estimate of each parameter is more stable. However, the
unanticipated correlation in the increment process induced
by drift subtraction over increasingly large lag times leads
to an error in the estimation of the diffusive parameters
that is on the order of 10%. Accordingly, these discrepan-
cies at large lag times produce errors in creep compliance

at those lag times and in the dynamic moduli at low
frequencies.

To address this issue, we advocate for a parametric maxi-
mum likelihood estimation (MLE) approach that identifies the
best-fit drift parameter l simultaneously while estimating D
and a. We demonstrate on numerically generated particle
paths, with physically relevant diffusive parameters from
HBE mucus studies, that the use of the parametric maximum
likelihood approach results in approximately a 2/3 reduction
in the error in the exact fractional Brownian motion parame-
ters D and a compared to the standard drift-subtraction least
squares approach. Such diffusive mobility parameters are rou-
tinely used in drug delivery to compare various drug delivery
particle formulations for passage through mucosal layers [7,8,
10]. With respect to inference of linear viscoelasticity from
the MSD statistics of particle paths, we have illustrated that
accuracy in storage and loss moduli deteriorates at low fre-
quencies for the standard drift-subtraction, least squares meth-
ods. The gains in accuracy by the MLE method have been
shown for fractional Brownian numerical data typical of
experimentally observed data in mucus gels. Furthermore, we
note that the statistical properties of the MLE method are well
understood in the statistics community, and have further value
beyond that illustrated here, e.g., for testing model assump-
tions against experimental data as in [21].

To close, the MLE, least squares and drift-subtracted least
squares parameter estimation approaches were applied to ex-
perimental paths of 1 l m diameter beads in HBE cell culture
mucus [9]. Relative to the parametric maximum likelihood
approach, the drift-subtracted least squares method predicts a
higher elasticity above )0:3 Hz (thus biasing toward more
gel-like properties at these frequencies [53]), and a lower
viscosity for all frequencies. The comparison of the MLE
approach with macrorheology data for inference of the creep
compliance or dynamic moduli of HBE culture mucus is a
current project of interest. The sensitivity of HBE mucus to
weight percent solids [9] and the extremely low stress thresh-
olds for linear response (unpublished data) make this macro-
micro rheology comparison more intricate than for other
systems such as actin filament networks [5].
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APPENDIX: MAXIMUM LIKELIHOOD CALCULATION
FOR FBM WITH DRIFT

Pseudocode for computing the one-dimensional profile
likelihood to be maximized in Sec. V (see the Supplementary
Material) [54].

FIG. 12. Ratio of the LS and DLS predictions to the MLE predictions of the
power-law exponent a (a) and the prefactor D (b) for experimental data. The
LS estimates of both a and D are higher than the MLE estimates. The DLS
estimates agree with the MLE estimates for a but are larger for D. The size
of the marker is proportional to the amount of drift experienced by the
particle.
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