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Passive particle tracking of diffusive paths in soft matter, coupled with analysis of the path data, is firmly

established as a fundamental methodology for characterization of both diffusive transport properties (the

focus here) and linear viscoelasticity. For either focus, particle time series are typically analyzed by

ensemble averaging over paths, a perfectly natural protocol for homogeneous materials or for

applications where mean properties are sufficient. Many biological materials, however, are

heterogeneous over length scales above the probe diameter, and the implications of heterogeneity for

biologically relevant transport properties (e.g. diffusive passage times through a complex fluid layer)

motivate this paper. Our goals are three-fold: first, to detect heterogeneity as reflected by the ensemble

path data; second, to further decompose the ensemble of particle paths into statistically distinct clusters;

and third, to fit the path data in each cluster to a model for the underlying stochastic process. After

reviewing current best practices for detection and assessment of heterogeneity in diffusive processes,

we introduce our strategy toward the first two goals with methods from the statistics and machine

learning literature that have not found application thus far to passive particle tracking data. We apply an

analysis based solely on the path data that detects heterogeneity and yields a decomposition of particle

paths into statistically distinct clusters. After these two goals are achieved, one can then pursue model-

fitting. We illustrate these heterogeneity metrics on diverse datasets: for numerically generated and

experimental particle paths, with tunable and unknown heterogeneity, on numerical models for simple

diffusion and anomalous sub-diffusion, and experimentally on sucrose, hyaluronic acid, agarose, and

human lung culture mucus solutions.
1 Introduction

So materials, especially biological ones, are oen heteroge-
neous on microscopic to macroscopic length scales. In some
cases, this heterogeneity is inherent, like the different
“compartments” inside of a living cell.1 In other cases it reects
a material's multi-functionality; for instance, a heterogeneous
mesh-size distribution in mucus barrier layers2 from lung
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airways may endow the material with the ability to simulta-
neously regulate and differentiate diffusive transport of a wide
range of inhaled particle sizes. Likewise, such a heterogeneous
mesh distribution may endow the material with the ability to
tune viscoelastic moduli across a wide frequency spectrum. In
response to disease conditions, biological materials such as
pulmonary mucus become modied,3–5 with consequences for
both diffusive and viscoelastic properties,6 and their degree of
heterogeneity is likewise expected to change. It would be valu-
able to have practical tools to detect and quantify material
heterogeneity, and to discern modications in these features as
a result of disease and disease progression. Our interest in this
paper is in the development of quantitative metrics for diffusive
heterogeneity of so matter at the micron to sub-micron scale
accessible by standard microscopy and particle tracking tech-
niques. We illustrate these tools on numerically generated data
for normal diffusive and sub-diffusive stochastic processes, and
on experimental data for four diverse uids: sucrose, hyaluronic
acid, agarose, and mucus.

Microrheology7–9 has emerged as a powerful experimental
tool for transport property characterization of so biological
materials at the microscale. For a discussion of experimental
Soft Matter, 2014, 10, 7781–7796 | 7781
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techniques encompassed by microrheology we point the reader
to the review article by Waigh.7 A class of microrheology
methods, based on the analysis of thermal motion of embedded
particles, is known as passive particle tracking microrheology
(PPTM). This technique uses video microscopy to track the
position time series of passive tracer particles to estimate the
viscous and elastic moduli of the medium.10 Traditionally,
characterization of the sample material is based on ensemble
averaging of the path data. For a homogeneous system, where
all the beads experience the same environment, the distribution
of increments (displacements between observations of bead
position) sampled by the ensemble arise from the same
stochastic process and the ensemble data is expected to t to a
single Gaussian curve. Material parameters are then inferred
from the variance of the tted Gaussian; e.g., the diffusion
coefficient for simple Brownian motion in viscous uids. In
materials that exhibit micro-heterogeneity, different particles
probe different environments, and although the step-size
distributions of individual paths are described by Gaussians,
the distribution of displacements across multiple paths will be
non-Gaussian. Accordingly, the presence of heterogeneity is
captured by deviations from Gaussian behavior. Several stan-
dard tests of Gaussianity are cited below from the PPTM liter-
ature. In the following sections we present methods from the
statistics and machine learning literature that simultaneously
detect heterogeneity and divide the path data into clusters of
statistically indistinguishable paths.

Finally, we are interested in predictive consequences of
heterogeneity beyond the timescales of the experimental
observations, which requires a nal model tting step. In the
best case scenario, there are rigorous theoretical models derived
from detailed molecular-scale knowledge of the physical and
chemical properties of the so matter system and the interac-
tion of the embedded probes with the molecular structure. In
such a scenario, one has candidate models to choose from, and
model selection methods can be applied11,12 to yield a best-t
model. The classical example is simple Brownian motion for
diffusion in a viscous uid, where there is a unique model and
model parameters.

For so matter systems, which, unlike simple viscous uids,
possess viscoelastic relaxation modes and thereby memory in
the diffusive path data, there are very few systems for which a
rigorous diffusive transport theory has been derived from rst
principles. The list shortens if one requires that the MSD
scaling behavior and other statistical properties are exactly
solvable. The rare model systems with these criteria are cele-
brated, including the Rouse model for dilute, monodisperse
polymer melts, and the Zimm model which couples solvent
hydrodynamic interactions to the Rouse model. The reader is
referred to the monograph of Rubinstein and Colby13 and the
work of Cai et al.14 for a detailed discussion, including addi-
tional scaling behavior associated with models for semi-dilute
and entangled polymers. These rst-principles models yield
anomalous, sub-diffusive, mean-squared displacement (MSD)
scaling behavior with exponents 1/2 or 2/3 on intermediate
timescales, followed by convergence to simple diffusion and
MSD exponent 1 for sufficiently long timescales.
7782 | Soft Matter, 2014, 10, 7781–7796
Complex uids in biology are typically mixtures of molecular
species of diverse molecular weights, and with attractive and
repulsive interactions between them. Electrostatic interactions
between the probe and so matter sample, likewise, can
signicantly alter particle diffusion (cf. MacKintosh15). This
observation has been extensively explored for drug particle
delivery through mucus barriers in the lung.2 For such biolog-
ical so matter systems, there is no rigorous theory to guide
model selection beyond the ideal systems noted above, whereas
PPTM data in biological uids such as pulmonary mucus (cf.
Hill et al.6) yields MSD exponents that span the entire interval
[0,1].

Thus, until such time that a rigorous theory exists of diffu-
sive properties of complex biological uids and the effects of
probe–uid interactions, even for homogeneous complex uids,
the analysis of the particle path data must be performed by
statistical methods with minimal assumptions of the under-
lying models to discern among different uids and different
particles in a given uid. That is the perspective taken in this
paper in regard to the rst two goals of heterogeneity detection
among the ensemble of paths and clustering of the paths.

There are, nonetheless, ad hoc stochastic models that share
several key features of the PPTM data in biological and biomi-
metic uids. These include fractional Brownian motion (cf. Kou
and coworkers16) and generalized Langevin equations with
special memory kernels (cf. Mason and Weitz,10 colloidal
diffusion,17,18 McKinley et al.19). The proper statistical approach,
given a candidate list of potential models, is to rank the likeli-
hood that the observed data arises from each candidate model.
A rigorous protocol for model selection is beyond the scope of
this paper, and will be presented elsewhere.12

Here, we will review the current best practices in PPTM, both
at the level of detection of statistically signicant heterogeneity
(without reference to a particular model) and at the level of
models and parameter tting. We emphasize that the tech-
niques of data analysis discussed in this paper are novel only in
their application to PPTM data. Thus we do not provide an
historical review of these statistical techniques, and refer the
reader instead to standard publications.20–23

Many research teams have used PPTM data analysis to infer a
degree of heterogeneity in so biological materials.24–33 These
efforts include two broad categories: one based on the “Gaus-
sianity” of the distribution of particle displacements and the
second on the statistics of the individual particle mean-
squared-displacements (iMSD). We propose a new protocol that
combines standard Machine Learning techniques, such as the
Expectation Maximization algorithm34 and hierarchical clus-
tering,35 to identify statistically distinct clusters based on the
distribution of particle path statistics, without reference to the
stochastic processes that generated the paths. In using these
techniques, we rely upon two relatively weak assumptions: that
each path has Gaussian increments, and, that the process
generating each path is stationary. The resulting semi-para-
metric protocol is consistent both with a large number of
stochastic processes and with current approaches to heteroge-
neity detection in the literature.
This journal is © The Royal Society of Chemistry 2014
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Once the particle paths have been assigned to statistically
distinct clusters, we then consider the inverse problem of tting
the ensemble of paths in each cluster to models for simple
diffusive and anomalous sub-diffusive processes. Unlike simple
diffusion where the mean squared displacement (MSD) grows
linearly in lagtime (s), anomalous subdiffusion is described by a
power law, MSD � sa, with 0 < a < 1. Anomalous subdiffusion
has been found in many biological contexts; diffusion of 1-
micron diameter particles in HBE mucus,6 diffusion of
biopolymers inside cells,36 bacteria chromosomal loci,37 move-
ment of lipids on model membranes,38 proteins diffusion in
organellar membranes39 and in the nucleoplasm.40 Model
tting of each cluster to candidate models for the underlying
stochastic process affords predictive power for elusive experi-
mental properties such as passage times, as illustrated in Hill
et al.,6 and addressed in detail in Lysy et al.12

In the next section, we start by summarizing existing metrics
for the detection and assessment of heterogeneity in PPTM. In
section 4 we describe our metrics that have precedent in the
statistics and machine learning literature and compare them
with best practices on numerically generated data. In section 5
we apply our metrics to numerically generated and experi-
mental data, beginning with systems where the heterogeneity is
controlled in order to illustrate the precision of our tools. We
close with application of these metrics to particle data in an
agarose solution, an o-used simulant for biological gels that is
typically non-homogeneous, and nally to particle data in
human bronchial epithelial cell culture mucus. In these last two
experiments, the degree of heterogeneity is not known a priori,
representing the typical scenario for application of these tools
for PPTM data on a so matter sample and probe particle of
interest.

2 Current metrics to detect
heterogeneity in PPTM data

Several groups24,28,30–32,41 use the van Hove correlation function,
P(Dx(s)),42 which is the probability distribution function con-
structed from the observed increments or displacements, Dx, at
lag time s, where

Dx(s) ¼ x(t + s) � x(t). (1)

For the majority of relevant stationary, stochastic increment
processes that have been used to model PPTM, including
normal diffusion, fractional Brownian motion, and generalized
Langevin equations, the corresponding van Hove correlation
function is Gaussian for each xed set of model parameters.
Paths generated from any of these classical stochastic processes
can be considered homogeneous if they arise from the same set
of model parameters, or within some small neighborhood of a
parameter set. The practical challenge for experimental path
data is to develop a test that does not rely on a priori knowledge
or assumptions about a model that generated the data. In a
heterogeneous environment, identical particles diffuse in
regions with different local properties. One may also consider
heterogeneity that arises from particles that are polydisperse in
This journal is © The Royal Society of Chemistry 2014
some aspect, e.g., diameter (which we will explore below) or
surface chemistry.

In the scenario of identical particles in a “sufficiently hetero-
geneous sample,” a single Gaussian, according to a well-dened
statistical metric, fails to t the ensemble-averaged van Hove
correlation function. Heterogeneity can then be measured by the
extent to which the van Hove correlation function deviates from a
Gaussian form; in other words, one can view the statistical metric
as an order parameter measuring departure from Gaussianity.
We refer to such metrics as “Stage 1 metrics” and note that they
are useful for detection of heterogeneity, but the metric itself is
not designed to make predictions beyond the observable data.

Whereas a Stage 1 metric implies the presence of statistically
signicant heterogeneity, one can proceed to probe further into
the underlying heterogeneity by binning the paths into disjoint
clusters, which we refer to as a “Stage 2 metric.” We rst survey
Stage 1 metrics and then address existing Stage 2 metrics. Our
approach is a Stage 2 metric that does not require a preliminary
Stage 1 step.
2.1 Stage 1 metrics for detection of heterogeneity in PPTM

� Rahman43 proposed a non-Gaussianity parameter NGs, which
measures the departure from an exact identity satised by the
second and fourth moments of a Gaussian distribution.
Namely, one takes these moments of the van Hove correlation
function, and constructs the metric NGs dened for each lag
time s by,

NGs ¼ hDx4ðsÞi
3hDx2ðsÞi2 �1: (2)

If the increments are Gaussian, NGs ¼ 0 for every lag time s,
whereas non-zero values of NGs denote a degree of heteroge-
neity. This parameter was later applied to the analysis of
colloidal systems by Kegel and van Blaaderen.31

� In the PPTM literature, Houghton et al.32 used the excess
kurtosis (ku) of the van Hove function, dened as

ku ¼

Xn

i¼1

ðxi � xÞ4

ðn� 1Þs4
� 3; (3)

to measure heterogeneity. Here �x is the mean and s is the
standard deviation of the van Hove correlation function. For a
Gaussian distribution ku¼ 0, and again non-zero values denote
a degree of heterogeneity.

� Savin and Doyle44 formulated estimators of the square of
the ensemble mean squared displacement M1(s), and of its
corresponding variance, M2(s). These estimators are derived
from a weighted average of the iMSD where the weights are
proportional to the length of the particle trajectory. This
prevents the results from being biased by more mobile parti-
cles. Rich et al.30 used these estimators to propose a heteroge-
neity ratio (HR), dened as

HR ¼ M2ðsÞ
M1ðsÞ2

: (4)
Soft Matter, 2014, 10, 7781–7796 | 7783
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Numerical simulations30 showed that the maximum value of
HR for a bimodal uid is 3. Lower and larger values of HR are
then used to quantify heterogeneity, see for example Rich et al.30

and Aufderhorts-Roberts et al.28

� Tseng et al.45 employed “bin partitions” of compliance
values to determine the degree of heterogeneity. The compli-
ance G(s), is related to the MSD by,46

GðsÞ¼ pa

kBT

�
Dr2ðsÞ�: (5)

Bin partitions of the compliance distributions were obtained
by comparing the relative contributions of the 10%, 25%, and
50% highest values of the individual compliance to the
ensemble mean compliance. The relative contributions of these
values to the ensemble compliance should be close to 1 for a
highly heterogeneous solution and close to 0.1, 0.25, and 0.50,
respectively, for a perfectly homogeneous solution.

� Another Stage 1 metric involves the calculation of iMSDs,
dened for a particle p as

Drp
2ðsÞ¼ 1

N �s

XN�s

i¼1

h�
xpðti þsÞ�xpðtiÞ

�2

þ�
ypðti þsÞ�ypðtiÞ

�2i
: (6)

Duits et al.27 constructed auto- and cross-correlation
matrices of the amplitude of iMSD, Ap, to detect both path-wise
and temporal heterogeneities. Here the amplitude is found by
tting eqn (6) to a power-law function,

Drp
2(s) y Aps

a. (7)

The authors used normalized variances, both with respect
to time and space, to quantify the heterogeneity in the
distribution of Ap. We note that this strategy mixes pure
path analysis with a presumed model for the scaling of
iMSD with lag time s. It is worthwhile to recognize that the
preponderance of passive microrheology applications
focuses on the power law exponent a in iMSD, rather than the
pre-factor Ap. In future publications, we will address model-
tting methods that justify assumptions such as the iMSD
scaling in eqn (7), as well as the benet in tting both scaling
parameters Ap and a to the iMSDs, rather than one or the
other.

We highlight one feature of this iMSD strategy that we will
adopt in our approach, namely that it is based on cross-corre-
lations among all particle paths, removing any reliance on
comparison of the ensemble with one representative path.
However, we seek a clustering strategy that does not rely on a
model for the underlying particle increment process. We choose
to defer any tting to parametric models aer decomposing
particle paths into clusters, using only statistics of the raw data
to cluster the ensemble. Aer clustering is complete, we then
entertain best-t models and parameter estimation for each
cluster.
7784 | Soft Matter, 2014, 10, 7781–7796
2.2 Stage 2 metrics for decomposition of paths into clusters

Stage 2 metrics aim to assign particle paths to statistically
distinct clusters.

� Valentine et al.24 compared the standard deviation of
individual particle step size distributions relative to one chosen
particle in the ensemble using the F-statistic,

fl;k ¼
sk

2
�
nk

sl
2
�
nl

; (8)

where sk
2 and nk are, respectively, the variance and the number

of statistically independent time steps in the van Hove function
(degrees of freedom) of particle k, and sl

2 and nl are the
statistics of the arbitrarily chosen reference particle l. Using a
95% certainty of difference for N particle paths, the F-test is
applied to all N(N � 1)/2 pairwise combinations of particle
paths. Clusters are then formed by merging statistically indis-
tinguishable paths based on the result of the F-statistic.

When designing our algorithm, we drew inspiration from the
two complementary methods proposed by Duits et al.27 and
Valentine et al.24 The former incorporates the cross-correlation
among all particles, making it robust to any individual outlier or
small perturbations among non-outlying points, but it also
requires a model for the underlying particle increment process
before heterogeneity could be quantied. In contrast, the
Valentine et al.24 method does not require a model to investigate
heterogeneity and separates particles into clusters, however it
does not uniquely cluster the data. Without a well-dened way
to determine the reference particle used at each iteration,
applying this algorithm to the same data set multiple times can
produce different results, see section 4.5 for further discussion.
Based on their work, we sought to construct a robust and
consistent semi-parametric method to assign particles to
statistically distinct clusters; for this, we turn to techniques
from the eld of Machine Learning.

It is common to assume that each particle path is best
described by a stationary stochastic process, i.e. the dynamics
are non-transient and do not change over the length of the path.
While analysis of particle paths that violate this assumption
pose an additional mathematical challenge, the results can
provide insight into temporal or spatial dependencies in a
particle's dynamics. Transient behavior has been observed in a
wide range of biological settings, including the movement of
secretory vesicles,47 viruses26 and membrane proteins,48,49 and
multiple approaches exist for the identication and character-
ization of non-stationary behavior.25,50 In this paper, we focus on
the analysis of paths exhibiting stationary dynamics. That is, we
assume that either each particle's behavior is stationary over the
length of the path or a path segmentation algorithm has already
been applied to the data to segment paths into stationary
intervals.
3 Materials and methods
3.1 Materials

A 2 molar sucrose solution was prepared by dissolving sucrose
(Sigma) in deionized, distilled (DI) water. We use this sucrose
This journal is © The Royal Society of Chemistry 2014
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solution as our experimental model for a Newtonian material.
Hyaluronic acid solutions (HA), with concentrations of 8 and 10
mgmL�1, were prepared from hyaluronic acid sodium salt from
Streptococcus equi (Sigma), dissolved in DI water and allowed to
mix at room temperature for 2 days while rotating at 20 rpm. 10
mg mL�1 HA solution is our experimental model for a homo-
geneous viscoelastic solution. HA is monodisperse in molecular
weight, therefore we expect the dynamics of embedded uniform
particles to bemonodisperse as well, as shown in the work of De
Smedt et al.51 Low melting point agarose (Fischer) samples were
prepared at 0.2% by weight (w/w) agarose mixed in PBS at 45 �C
for 24 hours. Human Bronchial Epithelial (HBE) cell culture 2.0
wt% mucus samples were prepared as described in Button and
Hill,52 and Hill et al.6 One and two micron diameter carboxyl-
ated uorescent beads (Life Technologies) were used in sucrose,
HA and agarose experiments, and 500 nm beads were used in
mucus experiments. The beads in all experiments were added
while the solution was at 45 �C and mixed for an additional 24
hours. Samples were then allowed to cool to room temperature.
All particles are added to stock solutions at a 0.001 volume
fraction and allowed to mixed on a 20 rpm rotator for 12 hours
prior to use to insure thorough mixing.
3.2 Particle tracking

A Nikon Eclipse TE2000-U at 40� magnication and standard
video microscopy techniques were used to collect video of
particles undergoing thermal diffusion. For all experimental
data, the total length of each video was T ¼ 30 s and the camera
frame rate was d ¼ 60 fps. The number of frames or time steps
in each particle path is then given by M ¼ Td. Video spot
tracking soware* extracts the position of each particle of
interest in the eld of view as a function of time. Only particles
with recorded positions at each of the 1800 time steps are
analyzed. While this has the potential to bias our results toward
slower moving particles that are more likely to remain in the
eld of view during video acquisition,44 the diffusivity of the
particles is such that very few particles could not be tracked over
the entire length of the video.
4 Mathematical protocol

Our Stage 2 analysis is based on the standard deviations of the
individual van Hove correlation functions. We do not draw any
inference at this stage, i.e., we skip the analog of Stage 1 metrics
described earlier, although we can easily apply metrics from eqn
(2)–(5) to assign a preliminary degree of heterogeneity. Hierar-
chical agglomerative clustering35 is used in our Stage 2
approach, primarily because the resulting dendrogram (dened
below) shows the hierarchical “relatedness” between each path
based on the statistic of choice.22 The issue of partitioning the
dendrogram to create a clustering of the data is solved by
employing the gap statistic.20 By comparing the data to multiple
null reference distributions, we are able to consistently and
uniquely assign particles to clusters. Finally, a model of the
underlying process is proposed for each cluster and the relevant
parameters are determined.
This journal is © The Royal Society of Chemistry 2014
4.1 Calculation of displacements and standard deviations of
individual step size distributions

Given N particle paths of length M, the particle positions are
denoted by {x(i, j),y(i, j)}M,N

i, j¼1. We calculate the van Hove corre-
lation functions for a specic lag h corresponding to a lag time s
¼ h/d, where 1/d is the time between successive camera frames.
The displacements are given by dx(i, j)¼ x(1 + ih, j)� x(1 + (i� 1)
h, j) and dy(i, j) ¼ y(1 + ih, j) � y(1 + (i � 1)h, j). Fitting each
column to a Gaussian gives the 1� N standard deviation vectors
of particle displacements for the N particles, sx(s) and sy(s).

The vectors sx(s) and sy(s) constitute the set of data used in
the following sections to separate particle paths into clusters.
4.2 Determining the number of clusters

In this section and without loss of generality, we consider the
distribution of standard deviations for a single lag time, s. The
goal is to partition the two-dimensional distribution of stan-
dard deviations into statistically distinct clusters. We choose
not to use standard clustering algorithms such as K-means53 or
K-medoids54 because these methods require prior knowledge of
the number of clusters in the data. Instead, we use agglomer-
ative hierarchical clustering55,56 using the average linkage
function and the standard Euclidean distancemetric; for details
see Hastie et al.22

4.2.1 Hierarchical clustering. The pairwise distances
between all scalar pairs (s jx(s),s

j
y(s)) is calculated using the

Euclidean distance metric and the distance between clusters is
determined by computing the average distance between all
points in both clusters, a metric known as the average linkage
function. In agglomerative hierarchical clustering, each data
point is initially its own cluster. The two closest clusters based
on the Euclidean distance in (s jx(s),s

j
y(s)) space (points 1 and 2 in

Fig. 1B) are then merged to form a new cluster (pink cluster).
This process is repeated (blue cluster containing points 1, 2 and
3, Fig. 1B) until all of the data points have been merged into a
single cluster (green cluster containing all points, Fig. 1B).
Recording the order in which clusters are merged allows one to
construct a dendrographic representation of the data (Fig. 1C),
showing the hierarchical similarity between clusters.35 The
height of each connection in the dendrogram is equal to the
average distance between the connected clusters, encoding a
hierarchical metric of cluster similarity based on their van Hove
correlation functions.

Aer all the distances are calculated (Fig. 1C), the number of
clusters, Ks, is determined by a cutoff value z that partitions the
dendrogram at resolution z. For instance, if we choose any z < 1
in Fig. 1, all particles remain in their own cluster, and there are
4 clusters at this resolution. For any 1 < z < 2.12, say z¼ 1.5 as in
Fig. 1C, the two points making up the pink cluster are now
indistinguishable. Thus we declare 3 clusters for this range of z.
Next, for 2.12 < z < 4.75, there are only 2 clusters, the blue cluster
and point 4, as shown in the gure for z¼ 3. Finally, for z > 4.75,
there is one cluster with that chosen degree of resolution, the
green cluster containing all points. In this way, the parameter z
solely determines the partitioning of the data, and as z varies
from the smallest to largest values, the number of clusters Ks
Soft Matter, 2014, 10, 7781–7796 | 7785
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Fig. 1 Example of hierarchical clustering. (A) The distribution of data
points to be clustered. Each data point is assigned to a cluster con-
taining only itself. The pairwise distances between all clusters are
calculated and the closest two clusters are merged to form a new
cluster. (B) This process is repeated until all data points are in a single
cluster. (C) A dendrogram shows the distances between each cluster
and the order in which they were merged. The solid lines at 3 and 1.5
show cutoff values that produce two and three clusters, respectively.
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spans 1 to N, where N is the number of observed particles. The
next critical step is to select the degree of resolution, i.e. the
value of z, and thus to determine the number of clusters Ks that
best delineates the ensemble of paths at lag time s.

4.2.2 Optimal number of clusters and the gap statistic. To
nd the optimal number of clusters, K*

s, we use a gap statistic.20

We start by dening the parameter WK as23

WKðKsÞ ¼
XKs

c¼1

1

2nc
Dc; (9)

where nc is the number of elements in cluster c and Dc is the
sum of the pairwise squared distances between all the elements
of cluster c. As z decreases, the number of clusters, Ks, increases,
which in turn results in a decrease of WK due to the increasing
mean intra-cluster density.

Next, we use these values of WK to compare the distribution
of standard deviations of the van Hove functions, which may or
may not contain statistically distinct clusters, to a null reference
data set containing only one cluster and with uniform density.
In order to ensure that the null reference data set only contains
a single cluster with uniform density, this data is generated
from a uni-modal uniform distribution. To match the input
data as closely as possible (apart from the number of clusters
present), the reference data set is created such that its cardi-
nality and domain are the same as the input data, i.e. the
distribution of (s j

x(s),s
j
y(s)). To remove the variability and arbi-

trariness associated with the comparison of the input data to a
single reference data set, it is common practice to compare the
input data to multiple reference data sets. We have determined
that 100 reference data sets suffices to consistently partition the
data.
7786 | Soft Matter, 2014, 10, 7781–7796
To illustrate this procedure, we numerically generate paths
of 150 1 mm diameter spherical particles diffusing via Brownian
motion in a heterogeneous medium with diffusion coefficients:
1.28 (50 paths), 1.49 (50 paths), 2.72 (49 paths), and 3.10 mm2

s�1 (1 path). This data set will be referred to as the “Numerically
Generated Heterogeneous Newtonian” (NGHN) data set. First
we t the van Hove correlation function of each particle path to
a Gaussian, doing so separately for each coordinate, and
thereby recording standard deviation of each particle's x and y
step size distributions. For particle diffusion in a viscous uid,
the van Hove correlation function in any direction has mean
0 and variance s(s) where sðsÞ ¼ ffiffiffiffiffiffiffiffi

2Ds
p

; and the diffusion coef-
cient is given by the Stokes–Einstein relation,

D ¼ kBT

6pha
; (10)

where a is the particle radius and h is the uid viscosity. In our
example, the resulting distribution of standard deviations,
(s j

x(s),s
j
y(s)), is shown in Fig. 2A. We next calculate WK for the

path data and Wref, which is the mean of the WK's calculated
using eqn (9) in each of the 100 reference data sets described
previously. These results are plotted in Fig. 2B as a function of
the number of clusters, Ks. A measure of the variability intro-
duced by the use of a nite number of reference data sets has
the form sK ¼ sdðKÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=B
p

, where sd is the standard devia-
tion of the reference data set and B the number of sets.20

We are interested in the change in log(WK) relative to
log(Wref) for increasing Ks. The difference between these data
sets, known as the gap statistic, was proposed by Tibshirani
et al.,20 to formalize the observation that the point at which the
rate of change of log(WK) signicantly increases is an indicator
of the “true” number of clusters in the data. We acknowledge
the alternative form of the gap statistic comparing WK and Wref

without the logarithm, but have opted not to use it because of
the documented decrease in performance when analyzing
overlapping clusters.23

The optimal number of clusters in the distribution of stan-
dard deviations of van Hove functions, for a given lag time, is
estimated as

K*
s ¼ argmin

Ks

�
Ks |GðKsÞ$GðKs þ1Þ� sKsþ1

	
; (11)

where argmin returns the value of the input argument that
minimizes the input function. This equation chooses K *

s to be
the smallest number of clusters such that the value of the gap
statistic at Ks clusters is greater than or equal to the lower bound
of the gap statistic when Ks + 1 clusters are present. In our
example, at this stage of the algorithm, three clusters are
identied (K *

s ¼ 3), as shown in Fig. 2C.
It is clear from these results that at this stage the algorithm

fails to distinguish between the two clusters that are closest
together. A question arises as to what is the minimal ‘separa-
tion’ in variances of the step size distribution between two
clusters so that they appear as distinct in this step. Recall that in
our example, this is the same as asking what minimum differ-
ence in diffusivities is distinguishable by these metrics. To
investigate this, we generated three heterogeneous Newtonian
This journal is © The Royal Society of Chemistry 2014
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Fig. 3 Test of the gap statistic test: numerical data with controlled
degrees of heterogeneity in the diffusion coefficients. Four hetero-
geneous Newtonian data sets are generated, where each data set
consists of 200 paths of particles of diameter 1 mm. For each data set,
the first 100 paths have diffusion coefficient D1 ¼ 1.61 � 10�2 mm2 s�1

while the next 50 paths have diffusion coefficient DD ¼ D1(1 + D) for D
¼ 5%, 7.5% and 10%. (A) As D increases, the ‘bend’ in the log(W) vs. Ks
plot at Ks ¼ 2 becomes more pronounced. (B) The gap statistic
correctly indicates two clusters for D $ 0.075. The number of clusters
selected by the gap statistic is indicated by a black �.

Fig. 2 First clustering step on the Numerically Generated Heteroge-
neous Newtonian (NGHN) data set. (A) Standard deviations of van
Hove functions for particles moving in a Newtonian, heterogeneous
fluid. The heterogeneity of the fluid is characterized by four different
diffusion coefficients. (B) Value ofW is given by eqn (9), the gap statistic
is calculated based on the differences between the reference and
input data. (C) Gap statistic calculated as described in section 4.2.2.
This statistic indicates that initially there are three clusters in the
sample.
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data sets of size N ¼ 200. Each data set contains two clusters:
particles belonging to the rst cluster have diffusivity D1 ¼
1.61 � 10�2 mm2 s�1, while particles in the second cluster
have diffusivity D2 ¼ D1(1 + D). The value D1 is the diffusion
coefficient of a one-micron particle diffusing in a medium with
viscosity 27 mPa s. We choose three values of D: 0.05, 0.075,
0.10. Our algorithm correctly identies the two clusters when D

$ 7.5%.We note that the NGs (eqn (2)) metric, the heterogeneity
This journal is © The Royal Society of Chemistry 2014
ratio (eqn (4)) and the percent contribution of the bin partitions
described by Tseng et al.45 steadily increase as D increases, as
expected for increasing heterogeneity. The Stage 2 metric of
Valentine et al.24 identies two to three clusters in each data set.
These results are given in Table S1 of the ESI.†

Given these results from other methods in the literature, we
now apply our method. Fig. 3A shows values of log(WK) vs. Ks for
each of the four data sets. As D increases, the ‘bend’ in the plot
at Ks ¼ 2 becomes more pronounced. Fig. 3B shows the gap
statistic as a function of Ks. The optimal number of clusters K*

s is
indicated by a black�. We see that for a Newtonian uid in this
range of diffusivities, the distribution of the standard devia-
tions of the van Hove correlation functions of two data sets with
diffusivities that vary by only 5% are indistinguishable. However
as the difference in the diffusivities increases to 7.5% and
beyond, the distributions become distinguishable by our
metrics and the correct number of clusters is successfully
recovered. It is important to point out that this 7.5% threshold
may not hold for different data sets and its value depends on,
among other variables, the total number of clusters, presence of
outliers, distribution of points within each cluster, and experi-
mental error.
Soft Matter, 2014, 10, 7781–7796 | 7787
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4.2.3 Optimization of initial clustering based on different
lag times. In section 4.2.2 we showed how to select the optimal
number of clusters for a given lag time, s. In this section, we
address the fact that the optimal number of clusters might
change as the lag time is varied. For this, the clustering process
introduced in section 4.2.2 is applied to each distribution of
standard deviations, (s j

x(s),s
j
y(s)), for a selected number of lag

times. Each set of lag times is obtained as a linear distribution
from s1 to s10 ¼ 100/d s, in increments of 10/d s. Here, s1 is the
smallest lag time on a given data set and d the frame rate (fps).

As s changes, the optimal number K *
s of clusters at a

particular lag time varies, and the cluster assignment of each
particle may therefore change as well. To choose among these
partitions of the data, we select the clustering with the smallest
value of s that maximizes K *

s. This value will be referred to as K†.
Recall that as s increases, the number of data points used in the
van Hove correlation decreases. By selecting the smallest value
of s that maximizes the heterogeneity, we are maximizing our
condence in each data point (s j

x(s),s
j
y(s)) and therefore our

condence in the accuracy of the clustering. Fig. 4A shows the
value of the gap statistic at K *

s for each lag time s, while Fig. 4B
shows the number of clusters K *

s found at each lag time. In these
gures, K† is indicated by a red circle and corresponds to a lag
time of 0.067 s. From this point forward, any further division of
the data will be performed using the van Hove correlation
function corresponding to s† ¼ 0.067 s.
Fig. 4 Optimization of initial clustering based on different lag times for
the Numerically Generated Heterogeneous Newtonian data set
(section 4.2.3). (A) The value of the gap statistic at K*

s is shown for each
lag time. (B) The optimal number of clusters is determined from the
smallest lag time that gives the largest number of clusters (red dot).

7788 | Soft Matter, 2014, 10, 7781–7796
4.2.4 Cluster rening. Aer the main clusters are identi-
ed, we repeat the hierarchical clustering and gap statistic steps
for each cluster c ¼ 1,.,K†. The rst clustering steps (sections
4.2.1–4.2.3) serve to identify well-separated clusters while the
second round of clustering, introduced here, inspects each
previously identied cluster for the presence of sub-clusters.
The nal number of clusters Knal is the total number of clusters
found aer applying the clustering algorithm to each of the
previously identied K† clusters. This two-pass clustering is
robust to outliers that normally causes single-pass clustering to
fail. Fig. 5A shows the three clusters previously identied (K† ¼
3). The clustering steps described in sections 4.2.1–4.2.3 are
repeated for each individual cluster with size nc > 3 and the
resulting gap statistics are shown in Fig. 5B.

From Fig. 5B it is clear that Cluster 3 is composed of two sub-
clusters giving a total of four clusters (Knal ¼ 4), shown in
Fig. 6A. Fig. 6B shows the resulting division of cluster 3 into two
sub-clusters.

4.3 Cluster distribution tting

Once the data has been fully partitioned, i.e., we have Knal, we
assume that the distribution of standard deviations of the van
Hove correlation functions, (s j

x(s
†),s j

y(s
†)) can be described by a

Gaussian mixture model21 where the data points within each
cluster are normally distributed. To ascertain the statistical
Fig. 5 Cluster refining on the Numerically Generated Heterogeneous
Newtonian data set (section 4.2.4). (A) Resulting clusters from initial
clustering step. (B) The clustering algorithm is applied to each indi-
vidual cluster to identify any sub clusters. In this example, Cluster 3 is
subdivided into two groups, while Cluster 2 remains a single group.
Cluster 1 contained a single point, therefore no further analysis is
needed.

This journal is © The Royal Society of Chemistry 2014
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Fig. 7 Gaussian mixture fitting on the Numerically Generated
Heterogeneous Newtonian data set. (A) 2-D probability distribution of
the center of each cluster. (B) Isoclines of each Gaussian component
and cluster centers (black �) overlaid on 2D distribution of standard
deviations of individual van Hove functions.

Fig. 6 Final number of clusters for the Numerically Generated
Heterogeneous Newtonian data set. (A) Total number of clusters
identified by the algorithm described in section 4.2. Note that Cluster 1
is identified as an outlier, since it contains less than 3 points. (B)
Detailed view of Cluster 3 and 4. Since the data is simulated, it is easy to
check whether points are placed in the wrong cluster. These points are
indicated in the figure by a black �. Six points out of 150 were
misclassified.

Paper Soft Matter

Pu
bl

is
he

d 
on

 2
1 

A
ug

us
t 2

01
4.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

So
ut

h 
C

ar
ol

in
a 

L
ib

ra
ri

es
 o

n 
10

/2
5/

20
23

 2
:3

2:
55

 A
M

. 
View Article Online
signicance of each cluster, i.e., the probability that each point
is a member of a given cluster and the parameters that describe
the Gaussian mixture model, we employ an iterative machine
learning algorithm known as an Expectation-Maximization
(EM) algorithm.34 The EM algorithm is chosen because it is
numerically stable and the computation time per iteration is
relatively small. We initialize the EM algorithm by calculating a
vector of means m and a covariance matrix G for each cluster.
Each component of the Gaussian mixture is of the form,

f ðs | m;GÞfexp



� 1

2
ðs� mÞ0G�1ðs� mÞ

�
; (12)

where s is shorthand for the N� 2 vector of standard deviations
of the van Hove distribution [s j

x(s
†),s j

y(s
†)]. The EM algorithm

determines the parameters of the Gaussian mixture that best
ts the data by maximizing the log likelihood of generating the
data given a set of parameters. For further description of the EM
algorithm the reader is referred to the works of Hastie et al.22

and Bishop.21 In addition, any cluster with fewer than three
points is not considered during the EM phase. In our extended
example on the NGHN data, this means we only apply the EM
algorithm to the ensemble of clusters 2, 3 and 4, omitting the
single point which forms Cluster 1. Fig. 7A shows the three-
component 2D probability distribution resulting from the EM
This journal is © The Royal Society of Chemistry 2014
algorithm. Given the location of the center of each cluster, the
Gaussian parameters for each component can be used to
measure the relative strength of each particle's cluster assign-
ment, i.e., the probability that any given point is a member of
each cluster.

While two points may be assigned to the same cluster, the
probability that such an assignment is correct depends on the
location of that point relative to the cluster center. This is
illustrated in Fig. 8 for two points. Given the stochastic nature of
particle diffusion, it is possible to erroneously assign particles
to a cluster (see for example Fig. 6B). Therefore, determining
these probabilities is an important step to evaluate the use of a
given particle path in the analysis of a specic cluster's prop-
erties. Certainly, the level of renement required depends on
the particulars of the application.
4.4 Algorithm to simulate numerical data

For the purpose of validating the protocol described in sections
4.1–4.3, we perform simulations of particles moving both by
regular Brownian motion and by fractional Brownian motion
(fBm). fBm57,58 is a self-similar Gaussian process with stationary
increments and mean squared displacement given by,

hDr2(s)i ¼ 2dDfBms
a, (13)
Soft Matter, 2014, 10, 7781–7796 | 7789
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Fig. 8 Detail of Cluster 3 and Cluster 4 from Figure 7 and the
Numerically Generated Heterogeneous Newtonian data set. With the
EM algorithm explained in section 4.3, the probability that each point is
a member of each cluster is calculated by evaluating all Gaussian
components of the Gaussianmixturemodel at each point, (sjx(s

†),sjy(s
†)).
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where a is the power law exponent 0 # a # 2, DfBm is the
generalized diffusion coefficient with dimensions L2/ta and d is
the dimensionality of the data. In the probability literature, the
exponent a is replaced by H ¼ 2a and called the Hurst param-
eter. The autocorrelation function for fBm has long-range
correlations,

hxa(0)xa(t)i z a(a � 1)ta�2, (14)

where xa is the fractional Brownian noise. This class of
processes generalizes regular Brownian motion, which corre-
sponds to a ¼ 1, the only value for which the motion is
uncorrelated. For 0 < a < 1 the pre-factor in eqn (14) is negative
so that the increments are negatively correlated, rendering the
associated process sub-diffusive. Conversely, when a > 1 the
motion is persistent (positively correlated), resulting in super-
diffusion in which successive steps are biased toward follow in
the same direction. Subdiffusive fBm has been used to model a
variety of processes including diffusion of 1-micron diameter
particles in HBEmucus,6 diffusion of biopolymers inside cells,36

monomer diffusion in a polymer chain,59 bacteria chromosomal
loci,37 polymer translocation,60 and diffusion in crowded
uids.61 We have selected fBm as a model based on its ability to
describe the autocovariance observed in the displacements of
particles undergoing passive thermal diffusion in a wide range
of both simple and complex uids (see for example ESI Fig. S1†).

4.4.1 Generating particle paths. Given the covariance
matrix

Li; j ¼ 1

2

�
tai þ taj �



ti �tj


a�;

for i, j ¼ 1,.,M, dene R2 ¼ L. A particle path is generated as
X ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2DfBm
p ðuRÞ, where u is a 1 � M vector of normally

distributed random numbers with zero mean and unit vari-
ance.62,63 The distribution of step sizes dxi ¼ x(1 + is)� x(1 + (i�
1)s) has standard deviation, ss, explicitly given by

ss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DfBmsa

p
: (15)
7790 | Soft Matter, 2014, 10, 7781–7796
Note that in simulations for regular Brownian motion, we
only need to calculate the vector u, sinceL becomes the identity
matrix.

The mean fBm parameters, DfBm and a, are calculated on a
per-cluster basis for each of the Knal clusters. A built-in MAT-
LAB solver for constrained nonlinear optimization is used to
estimate DfBm and a using eqn (15). It is important to emphasize
that while Knal is determined at a particular value of s, the
tting procedure must be carried out over multiple values of s.
This is due to the fact that for a given s and ss, there is a one-
dimensional curve of (DfBm, a) pairs which satises eqn (15).
4.5 Metric comparison

When our algorithm is applied to the numerically generated
heterogeneous Newtonian (NGHN) data set (Fig. 2–8), we nd
three main clusters corresponding to the three clusters gener-
ated with mean diffusivities 1.28, 1.49, and 2.72 mm2 s�1. The
outlying point, generated with D ¼ 3.10 mm2 s�1, was also
correctly identied. Following section 4.4 we assume fBm as the
underlying process, and t DfBm and a for the three main
clusters. Themean error in the predicted value of DfBm across all
clusters is 2.8%. The mean error in the predicted value of a

across all clusters is 0.96%. To compare the performance of our
algorithm with the metrics described in section 2, we applied
those metrics to this same set of data.

All Stage 1 metrics presented in section 2.1 correctly indi-
cated that the simulated data set was heterogeneous. The non-
Gaussianity parameter (eqn (2)), excess kurtosis (eqn (3)), and
heterogeneity ratio (eqn (4)), are 0.19, 0.58 and 13.0, respec-
tively. The relative contributions of the 10%, 25% and 50%
highest values of the individual compliance to the ensemble
mean compliance were 17%, 38% and 64%, respectively.
Finally, the mean spatial relative standard deviation in the
iMSD amplitudes was 1.02.

The Stage 2 metric of Valentine et al.24 described in section
2.2 was applied to the simulated data set multiple times.
Clusters were formed by randomly selecting “representative”
particle paths of the particles not yet clustered and assigning all
particle paths to a cluster based on the results of an F-test. In
each instance, the data was correctly determined to be hetero-
geneous while the number of statistically distinct clusters
within the data predicted by the algorithm varied between 6 and
7. However, particle assignments to these clusters varied
(Fig. 9), demonstrating sensitivity to the choice of the repre-
sentative particle path. We note that this is one of the main
advantages of our algorithm, in our case particles are uniquely
assigned to a cluster.
5 Results and discussion

We set out to test our methods on a variety of simulated and
experimental data sets exhibiting various degrees of heteroge-
neity. In each instance, the simulated data was generated with
parameter values comparable to the measured values for the
corresponding experimental data set. This provides a way to
This journal is © The Royal Society of Chemistry 2014
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Fig. 9 Sample results of the metric proposed by Valentine et al.24 for
the Numerically Generated Heterogeneous Newtonian dataset. The
choice of order in which the particles are compared results in different
numbers of clusters and cluster distributions. For example, six clusters
were found in A, while in B seven clusters were identified.
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distinguish the error inherent in our algorithm from experi-
mental error.64
5.1 Homogeneous data: numerical and experimental

5.1.1 Newtonian paths and data analysis
(a) Numerical. 100 particle paths were generated with a ¼ 1

and DfBm ¼ 1.61 � 10�2 mm2 s�1. These values of DfBm and a

were chosen to match the expected values for the experimental
homogeneous sucrose data. See Table S2† for the resulting best
t values of a and DfBm and their corresponding 95% con-
dence intervals.

(b) Experimental. Position time series were collected for 100
1 mm diameter particles undergoing passive thermal diffusion
in a 2 molar sucrose solution. The viscosity of the 2 molar
sucrose solution was calculated to be 0.027 Pa s based on the
MSD of embedded tracer particles. See Table S3† for the
resulting best t values of a and DfBm and their corresponding
95% condence intervals.

The results from our clustering algorithm and subsequent
tting to eqn (15) for the homogeneous numerical and experi-
mental Newtonian data sets are shown in Fig. 10A and B for a
and DfBm, respectively.

The 95% condence intervals (CI95) for a in the x direction
was (0.933, 0.998) for the simulated data compared to (0.961,
1.00) for the experimental data. Similarly, the CI95 for the x
component of DfBm is (1.59 � 10�2, 1.62 � 10�2), while the
This journal is © The Royal Society of Chemistry 2014
experimental CI95 is (1.36 � 10�2, 1.38 � 10�2). Condence
intervals for all other data sets can be found in the ESI.†

For the data presented here, as well as in section 5.2.1, a
modied tting procedure for DfBm was implemented. Once a

was determined to be sufficiently close to 1, that is the process is
indistinguishable from simple Brownian motion, DfBm was
calculated with a xed at exactly 1. The resulting diffusion
coefficients yield the viscosity of the uid through the Stokes–
Einstein relation, eqn (10). For the homogeneous data, the
expected values of DfBm were comparable, DfBm,x ¼ 1.37 � 10�2

mm2 s�a and DfBm,x ¼ 1.36 � 10�2 mm2 s�1 for non-xed and
xed a cases, respectively. However, because of the decrease in
the degrees of freedom in the tting process that occurs when a

is xed, the 95% condence interval is larger when a is xed
(Table S4†).

5.1.2 Viscoelastic paths and data analysis
(a) Numerical. 175 particle paths were generated with a ¼

0.576 and DfBm ¼ 9.30� 10�5 mm2 s�a. These values of DfBm and
awere chosen tomatch the inferred experimental values of DfBm

and a for homogeneous HA path data. See Table S5† for the
resulting best t values of a and DfBm and their corresponding
95% condence intervals.

(b) Experimental. Position time series were collected for 175
1 mm particles undergoing passive thermal diffusion in a 10 mg
mL�1 HA solution. See Table S6† for the resulting best t values
of a and DfBm and their corresponding 95% condence
intervals.

The results for the experimental viscoelastic data (Fig. 11A
and B) indicate the presence of two clusters, even though only
one cluster was expected. Further inspection shows that the
second cluster in the experimental data (Exp. C2) contains 14
data points representing 18% of the particles. Fig. 11D shows
the standard deviations sx, sy of the x and y components of these
paths. Whereas the protocol for preparation of the HA solution
is expected to yield a homogeneous mixture, the data analysis
reveals a likelihood of imperfect mixing and therefore a mildly
heterogeneous uid.
5.2 Heterogeneous data: numerical and experimental

5.2.1 Newtonian paths and data analysis
(a) Numerical. 90 particle paths were generated with a ¼ 1

and DfBm ¼ 8.05 � 10�3 mm2 s�1 and combined with 100
particles generated with a ¼ 1 and DfBm ¼ 1.61 � 10�2 mm2 s�1.
These values of DfBm and a were chosen to match the expected
values for the heterogeneous experimental sucrose data con-
taining 1 mm and 2 mm diameter beads. See Table S7† for the
resulting best t values of a and DfBm and their corresponding
95% condence intervals.

(b) Experimental. Position time series were collected for 90 2
mm diameter particles in 2 molar sucrose solution and
combined with the 1 mm experimental data presented in section
5.1.1. See Table S8† for the resulting best t values of a and DfBm

and their corresponding 95% condence intervals.
For both the simulated and experimental Newtonian data,

the correct number of clusters (2) was found. Aer the experi-
mental data were processed, by cross referencing the cluster
Soft Matter, 2014, 10, 7781–7796 | 7791
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Fig. 10 Simulated and experimental (sucrose) homogeneous Newtonian data. Panels A and B show the expected and inferred fBm parameters, a
and DfBm. The distribution of standard deviations of the van Hove correlation functions for the simulated and experimental data are shown in
panels C and D, respectively. The squares in panel D indicate points that have been classified as outliers.
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assignments with the le that the data came from, we were able
to determine that 7 out of the 190 data points (Fig. 12D) were
assigned to the wrong cluster.
Fig. 11 Simulated and experimental (hyaluronic acid) homogeneous v
coefficient distributions. (C) Standard deviations of simulated data. (D) Sta
acid data, themain cluster (denoted Exp. C1) contains 161 data points and
data points and is shown in green (open squares). One statistically distin

7792 | Soft Matter, 2014, 10, 7781–7796
5.2.2 Viscoelastic paths and data analysis
(a) Numerical. 180 particle paths were generated with a ¼

0.64 and DfBm ¼ 1.00 � 10�4 mm2 s�a and combined with 180
iscoelastic data. (A) Power law exponent and (B) fractional diffusion
ndard deviations of experimental data. For the experimental hyaluronic
is shown in blue (open circles). The second cluster (Exp. C2) contains 14
ct outlier was also found (gray circle).

This journal is © The Royal Society of Chemistry 2014
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Fig. 13 Simulated and experimental (hyaluronic acid) heterogeneous viscoelastic data, where heterogeneity is controlled by use of identical 1
micron particles in two different concentrations, 8 and 10 mg mL�1, hyaluronic acid. (A) Power law exponent and (B) fractional diffusion
coefficient distributions. (C) Standard deviations of simulated data. (D) Standard deviations of experimental data. The data points that have been
assigned to the wrong cluster are indicated with an orange star. Two statistically distinct outliers were found (triangles).

Fig. 12 Simulated (Sim.) and experimental (sucrose) (Exp.) heterogeneous Newtonian data arising in both datasets from bi-disperse particle
diameters of 1 and 2 microns as a proxy for bi-disperse fluid viscosities. (A) Distributions of power law exponent and (B) fractional diffusion
coefficient. (C) Standard deviations for the simulated data. (D) Standard deviations for the experimental data. The data points that have been
assigned to the wrong cluster are indicated with an orange star. One statistically distinct outlier was also found (triangle).

This journal is © The Royal Society of Chemistry 2014 Soft Matter, 2014, 10, 7781–7796 | 7793
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Fig. 15 Clustering of experimental HBE mucus data. 0.5 mm diameter
beads diffusing in 2% w/w HBE mucus.

Fig. 14 Experimental Agarose data: position time series in physical
space and results of cluster analysis. 1 mm diameter beads diffusing in
0.2% w/w agarose. (A) Particle paths in two space dimensions of the
microscope focal plane, with color coding inserted after cluster
analysis. (B) Results from the clustering algorithm, revealing four
clusters. Cluster assignments are then carried back to the physical
locations in the focal plane in A.
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particle paths generated with a ¼ 0.72 and DfBm ¼ 4.20 � 10�4

mm2 s�a. These values of DfBm and a represent the best-t values
for the two experimental data sets on HA just below, taken from
Table S11.† Table S10† provides the resulting best t values of a
and DfBm aer clustering for these numerically generated paths,
and their corresponding 95% condence intervals.

(b1) Experimental (HA solutions). The 175 1 mm diameter
particles in 10 mg mL�1 HA solution presented in section 5.1.2
were combined with data for 188 1 mm particles undergoing
passive thermal diffusion in a 8 mg mL�1 HA solution. Table
S11† provides the resulting best t values of a and DfBm aer
clustering these experimental paths, and their corresponding
95% condence intervals.

The algorithm correctly resolved the number of clusters in
each data set. All paths were correctly classied in the simulated
data while 11 out of 363 experimental paths were misclassied,
including two outlier paths, Fig. 13D. Comparison of the best-t
fBm parameters in this experimental-numerical exercise with
hyaluronic acid solutions reveals the uncertainty associated
with experimental noise or outliers, and with choosing an ad
hoc model to t to the data.

We now apply our clustering algorithm to path data from two
putatively heterogeneous complex uids with unknown
heterogeneity. To our knowledge, there is no guidance in the
literature for a quantitative heterogeneous characterization of
agarose solutions or HBE cell culture mucus.

(b2) Experimental 0.2% w/w agarose. Position time series
were collected for 38 1 mm particles undergoing passive thermal
diffusion in a 0.2% agarose solution. See Table S12† for the
resulting best t values of a and DfBm and their corresponding
95% condence intervals.

The results from a 0.2% w/w agarose solution are shown in
Fig. 14. It is clear from Fig. 14A that the ensemble of particles
exhibit a range of diffusive behavior, from relatively mobile to
nearly immobile. These disparities in diffusive behavior are
resolved with our clustering methods into four distinct clusters,
Fig. 14B. The path data for each cluster is then t to fractional
Brownian motion, with the results shown in Table S12 in ESI.†
The highest percentage of paths belong to cluster one (18 paths)
while clusters two, three, and four have 7, 5, and 8 paths,
respectively. We note that cluster 4 has a z 1 which indicates
those beads are moving in a Newtonian environment, and DfBm

z 0.1 mm2 s�1 indicates that this environment has an effective
viscosity of 4.4 mPa s. Clusters 1–3 reect sub-diffusion with a <
1; in particular, cluster 1 has an fBm exponent a ¼ 0.1 indi-
cating that these beads are effectively immobilized.

(b3) Experimental (2.0% w/w HBE cell culture mucus). Posi-
tion time series were collected for 282 0.5 mm particles under-
going passive thermal diffusion in a 2.0% HBE mucus. See
Table S13† for the resulting best t values of a and DfBm and
their corresponding 95% condence intervals. The resulting
clusters are shown in Fig. 15.

The protocol reveals three clusters. The resulting power law
exponents and pre-factors are given in Table S13 of the ESI.†
These results reveal that all probes exhibit sub-diffusive motion
with the majority of beads (215 in cluster 3) having a z 0.6 and
7794 | Soft Matter, 2014, 10, 7781–7796
DfBmz 2.4� 10�4 mm2 s�0.6. Clusters 2 and 3 have, respectively,
13 and 59 paths each.
6 Conclusions

A protocol for analysis of path data from passive particle
tracking microrheology, is presented that yields a quantitative
characterization of diffusive heterogeneity in complex uids.
This protocol is based on methods adapted from the statistics
and machine learning literature. The rst goal is to design an
algorithm to quantify the observed heterogeneity based on the
primitive path data, without reliance on a presumed model of
This journal is © The Royal Society of Chemistry 2014

https://doi.org/10.1039/c4sm00676c


Paper Soft Matter

Pu
bl

is
he

d 
on

 2
1 

A
ug

us
t 2

01
4.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

So
ut

h 
C

ar
ol

in
a 

L
ib

ra
ri

es
 o

n 
10

/2
5/

20
23

 2
:3

2:
55

 A
M

. 
View Article Online
the underlying stochastic process, beyond the minimal
assumption that the increments of single paths are stationary
and Gaussian. The second goal is to have a technique that yields
unique, reproducible clustering of the given ensemble of paths.
Similar to other approaches discussed in section 2, our algo-
rithm is applied to the position time series of passive particles
in simple or complex uids. Specically, we partition the paths
into clusters whose step-size distributions are statistically
distinct, which may arise either due to differences in particle
characteristics or complex uid characteristics, or both. Using
the standard deviation of the van Hove correlation function as
our metric of interest and two-pass hierarchical clustering with
the gap statistic to partition the data, our algorithm yields a
robust and consistent method for the detection and quanti-
cation of heterogeneity in complex uids. The method to this
point is weakly parametric, only relying on the assumption that
each path is stationary and the increments are Gaussian. Aer
the clustering step is complete, our protocol ts the parameters
of a proposed model on a per-cluster basis, which we have
illustrated for simple Brownianmotion and fractional Brownian
motion, on both numerical and experimental data.

To benchmark our algorithm, we created data sets containing
known, discrete levels of heterogeneity. We analyzed experi-
mental data with “articial” heterogeneity using two methods.
For analysis of heterogeneity in Newtonian uids, we embedded
particles of two different diameters in a homogeneous solution
(section 5.2.1). For analysis of heterogeneity in viscoelastic uids,
identical particles were embedded in two hyaluronic acid solu-
tions of different concentrations and then the path data was
combined into one dataset (section 5.2.2). For Newtonian uids,
doubling particle diameter is a proxy for doubling viscosity, or
equivalently halving the diffusion coefficient. In addition to
controlling the degree of heterogeneity in the paths, combining
dissimilar data sets provides us with a way to test the accuracy of
our particle–cluster assignments. Finally, we applied our protocol
to monodisperse particles in two putative heterogeneous
complex uids, an agarose gel and mucus derived from human
bronchial epithelial cell cultures. The data analysis reveals that
both uids are heterogeneous, and indicates a quantitative
variability in sub-diffusive behavior that would have strong
implications for passage times through mucus barriers.

The accuracy of our method, the small necessary volume of
uid, and the short collection times required to quantify the
heterogeneous composition of viscous and viscoelastic
samples, combine to make our methods promising for a wide
range of applications in PPTM.
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