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ABSTRACT
State-of-the-art techniques in passive particle-tracking microscopy provide high-resolution path trajecto-
ries of diverse foreign particles in biological !uids. For particles on the order of 1 µm diameter, these paths
are generally inconsistent with simple Brownian motion. Yet, despite an abundance of data con#rming
these #ndings and their wide-ranging scienti#c implications, stochastic modeling of the complex particle
motion has received comparatively little attention. Even among posited models, there is virtually no litera-
ture on likelihood-based inference, model comparisons, and other quantitative assessments. In this article,
we develop a rigorous and computationally e$cient Bayesian methodology to address this gap. We ana-
lyze two of themost prevalent candidatemodels for 30-sec paths of 1µmdiameter tracer particles in human
lung mucus: fractional Brownian motion (fBM) and a Generalized Langevin Equation (GLE) consistent with
viscoelastic theory. Our model comparisons distinctly favor GLE over fBM, with the former describing the
data remarkably well up to the timescales for which we have reliable information. Supplementarymaterials
for this article are available online.

1. Introduction

Over the last two decades, advances in microscopy have pro-
vided unprecedented observations of the !uctuating dynamics
of microparticles in biological !uids. An important and ubiqui-
tous "nding frommany experiments is that microparticle di#u-
sion in biological !uids is not well described by simple Brownian
motion. The most prominent gauge for the departure from the
Brownian regime is the mean squared displacement (MSD) of a
particle’s trajectory X (t ):

〈X2(t )〉 = E
[(
X (t ) − X (0)

)2]
, t ≥ 0.

While the MSD of “ordinary” viscous di#usion scales linearly
with time, 〈X2(t )〉 ∝ t , there is now a preponderance of biolog-
ical examples of sublinear MSD growth,

〈X2(t )〉 ∼ tα, (1)

for 0 < α < 1 and t ranging over some experimental time
frame. This MSD scaling behavior is known as subdi!usion.
Examples of this behavior include: Adeno-associated viruses in
cytoplasm (Seisenberger et al. 2001); lipid granules in living
"broblasts (Caspi andGranek 2000) and living yeast cells (Tolić-
Nørrelykke et al. 2004; Jeon et al. 2011; Verdaasdonk et al. 2013);
tracer particles in F-actin networks (Wong et al. 2004); RNA
in E. coli (Golding and Cox 2006); telomeres in the nucleus of
mammalian cells (Bronstein et al. 2009); tracers in a Dextran
solution intended to mimic di#usion in a crowded environment
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(Ernst et al. 2012); and passivemicron diameter beads in human
bronchial epithelial cell culture mucus (Hill et al. 2014).

Subdi#usion can be due to several physical mechanisms: the
frequency-dependent viscous and elastic moduli of a complex
!uid medium (Mason and Weitz 1995); hindered motion in a
crowded environment (Ernst et al. 2012); long-term trapping
events that result from binding with a physically constrained
substrate in the !uid (Saxton 2007); and caging events that
occur due to particle movement within and between pores in an
immersed mesh structure (Wong et al. 2004). Therefore, care-
ful stochastic modeling and statistical inference can have an
important scienti"c impact—not only for investigating the basic
mechanism of microparticle movement, but also for its applica-
tion to diagnosis of disease (Georgiades et al. 2014), monitoring
of disease progression (Hill et al. 2014), and engineering of drug
delivery vehicles (Lai et al. 2007; Cone 2009; Ensign et al. 2012;
Schuster et al. 2015).

Mucus is a particularly important and challenging biological
!uid to understand. Thinmucosal layers line the eyes, nasal cav-
ity, lung airways, gut, and female reproductive tract, and stand
as the body’s "rst line of defense against foreign toxins, par-
ticulates, and pathogens. However, our understanding of how
these foreign bodies interact with and move through mucus
remains far from complete. The microstructure of human
lung mucus, our motivating biological !uid, is strikingly com-
plex. By weight, mucus is mostly water (92–98 wt%). The
remaining portion consists of diverse small molecules includ-
ing proteins, immunoglobulins, salts, and contents of dead cells
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(e.g., DNA), along with a family of huge polymeric molecular
species calledmucins (Carlstedt et al. 1982; Carlstedt, Lindgren,
and Sheehan 1983a; Carlstedt et al. 1983b; Carlstedt and Shee-
han 1984; Thornton and Sheehan 2004). These species collec-
tively assemble in the water solvent to create a heterogeneous
three-dimensional mesh, with repulsive or attractive interac-
tions speci"c to the mucus microstructure, and to the size and
surface chemistry of the observed particle. The theoretical chal-
lenge of rigorous, physical modeling of microparticle dynamics
in such complex molecular systems is daunting, and not likely
to be overcome soon. Nevertheless, strong signals in particle-
tracking data have been repeatedly observed. For example, small
entities like antibodies (5 nm e#ective radius) and virions (up to
60 nm) have weak interaction with the mucin network, and are
well described by simple Brownianmotion (Saltzman et al. 1994;
Olmsted et al. 2001; Chen et al. 2014). On the other hand, larger
amine-modi"ed and carboxylated particles (200 nm to 5 µm
radius) exhibit distinctly subdi#usive behavior (Dawson,Wirtz,
and Hanes 2003; Lai et al. 2007; Suk et al. 2007; Hill et al. 2014).

1.1. The Problem

While a sublinear MSD is a clear indicator of non-Brownian
movement, the MSD is merely a summary statistic, and does
not preserve other important information contained in the data.
To be speci"c, biological !uids such as mucus are consider-
ably heterogeneous, due to their diverse molecular composi-
tion. Particle-tracking microrheology provides unprecedented
information about this heterogeneity by analyzing particle paths
in di#erent spatial locations within the same !uid (Valentine
et al. 2001; Mellnik et al. 2014). To this end, several groups have
adopted a path-by-path estimate of the MSD that is calculated
from discrete observations X0, . . . ,XN of X (t ) at equal time
intervals of length"t . This pathwiseMSD estimate is de"ned as
(e.g., He et al. 2008; Lubelski, Sokolov, and Klafter 2008; Didier,
McKinley, Hill, and Fricks 2012)

〈X̂2(t )〉 = 1
N − k + 1

N−k∑

n=0
(Xn+k − Xn)

2, t = k · "t. (2)

However, even within a homogeneous medium, the MSD alone
does not su$ce to characterize the dynamics of X (t ). That is
to say, while it might be su$cient within a parametric family of

statistical models, it is not su$cient between models, and this
often leads to invalid model selection procedures if one fails to
account for ancillary information (Robert et al. 2011).

Many modeling e#orts in the recent particle-tracking liter-
ature ignore this subtle point, focusing exclusively on match-
ing the MSD and other summary statistics to the observed data
rather than modeling the complete stochastic process that pro-
duces X (t ). Unfortunately, such an approach has important sci-
enti"c and biomedical limitations. Indeed, a primary objective
in mucus biology is to predict "rst-passage times of foreign
microparticles through protectivemucosal layers. If a pathogen’s
passage times are shorter/longer than the time for clearance of
the mucus barrier, then those pathogens do/do not pose a threat
to the underlying tissue. However, it can be shown that two pop-
ular models in particle tracking—fractional Brownian Motion
(fBM) (Mandelbrot and Ness 1968) and the continuous-time
randomwalk (CTRW) (Metzler andKlafter 2000)—both exhibit
uniform subdi#usion, 〈X2(t )〉 ∝ tα , but have, respectively, "nite
and in"nite mean escape times from a bounded interval
(Rangarajan and Ding 2000; O’Malley, Cushman, and Johnson
2011). Thus, "rst-passage time estimates depend critically on
model features that are not captured by the MSD alone.

1.2. Our Contribution

While microparticle displacement data continue to proliferate,
the development of statistical methods to compare and evaluate
di#erent models for these data is an open area of research. Our
principal aim in this article is to perform rigorous likelihood-
based comparisons between two key models of subdi#usion:
fBM and a Generalized Langevin Equation (GLE) with tun-
able subdi#usive range described in Section 2.Originally formu-
lated in one dimension, both of these models are adapted here
to two-dimensional particle trajectories, with inference strate-
gies speci"cally designed to control the computational burden
(Section 3).

The data we examine is an ensemble of 76 trajectories of
1 µm diameter polystyrene “tracer particles” in 2.5 wt% mucus
(Hill et al. 2014). This collection of paths exempli"es the essen-
tial problem of particle heterogeneity, as illustrated in Figure 1.
In this dataset, the physical environment is controlled to be as
homogeneous as is feasible for a mucus sample, with essentially
identical immersed microparticles. Despite these controls, the
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Figure . (a) Ensemble of pathwise MSD estimates for  tracer bead paths in .wt% human bronchial epithelial culture mucus. (b) Pathwise MSDs for  simulated paths
from a “homogeneous” fBM model. That is, all paths are simulated from a common parameter value, that of the MLE fitted to the  trajectories in (a). (c) Pathwise MSDs
for simulated paths from a hierarchical fBMmodel, with each path having its own set of parameters. The distribution from which these parameters are drawn is described
in Section .
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distribution of pathwise MSD estimates (Figure 1(a)) is con-
siderably more widely spread than one would expect from an
independent and identically distributed (iid) sample from a uni-
form population (Figure 1(b)). This spread in pathwise MSDs
has been widely observed for particles in biological !uids and
is often referred to as ergodicity breaking (Lubelski, Sokolov,
and Klafter 2008). This terminology owes to the fact that time-
averaged statistics within individual paths do not converge to
those of the ensemble average.

In Section 4, we performmodel comparisons that harness the
full power of the likelihood by computing Bayes factors. A com-
mon criticism of this approach is its sensitivity to the choice of
prior distributions, which can in!uence considerably the prefer-
ence for onemodel over the other. To address this issue, we use a
data-driven prior obtained by embedding our collection of sam-
ple paths within a hierarchical model. We present an e$cient
method for approximately "tting suchmodels by conducting the
bulk of the computations in parallel. Our calculations indicate
that the GLE model is a better "t, owing to distinct evidence of
nonuniform subdi#usion over the experimental timeframe.

Our secondary aim in this article is to assess which features
of the data our posited models capture and which ones they do
not. This is done with a variety of Bayesian predictive checks
(Section 5). In particular, we examine a set of Bayesian model
residuals, which are both easily calculable and extremely sensi-
tive to model misspeci"cation. We "nd a remarkable agreement
between theoretical and empirical MSDs at short timescales (2–
5 sec), after which the data provide signi"cantly less reliable
information.

An important tracer particle model we have not analyzed
here is the CTRW. A CTRW attempts to model particle con"ne-
ment via normal di#usion interspersed with periods of immo-
bilization. When the distribution of the immobilization times is
heavy-tailed, CTRW models produce subdi#usive behavior. In
terms of empirical evidence, the principal argument in favor of
CTRW is that it exhibits ergodicity breaking, whereas GLE and
fBM trajectories generated from a single parameter set do not
(Lubelski, Sokolov, and Klafter 2008; Metzler et al. 2009; Jeon
and Metzler 2010; Burov et al. 2011; Jeon et al. 2011; Meroz,
Sokolov, and Klafter 2013). However, a hierarchical fBM or
GLE model with a distribution of parameters induces ergodicity
breaking by de"nition, and can e#ectively capture the between-
path heterogeneity displayed by our data (Figure 1(c)). We con-
clude in Section 6 with a discussion of these results and direc-
tions for future work.

2. Overview of Candidate Models

Fractional Brownian motion and the GLE are stochastic,
continuous-time models that both have been independently
posited and applied to the analysis of subdi#usive behavior. Both
models feature stationary Gaussian increments and continuous
sample paths, with some additional properties given below.

2.1. Fractional BrownianMotion

A simple model for subdi#usion in the particle displacement
process X (t ) is given by

X (t ) = BH (t ), (3)

where the fBM process BH (t ) is a zero-mean Gaussian process
with covariance

cov
(
BH (t ),BH (s)

)
= 1

2
(
|t|2H + |s|2H − |t − s|2H

)
,

0 < H < 1.

The Hurst parameter H is used to describe fBM’s long-range
dependence. That is, let xn = X (n"t + "t ) − X (n"t ) be par-
ticle trajectory increments of time length "t . Then

cov(xn, xn+k) = 1
2
("t )2H

(
|k + 1|2H + |k − 1|2H − 2|k|2H

)
.

(4)
While the xn are not independent, (4) shows that they are
stationary. For H = 1/2, fBM reduces to standard Brownian
motion. For H '= 1/2, fBM has long-range memory e#ects, in
the sense that (4) has power law decay. It is noteworthy that fBM
is the unique stochastic process having (i) continuous paths, (ii)
stationary (but dependent) increments, and (iii) possessing the
self-similarity property: BH (at ) D= |a|HBH (t ). Moreover, fBM is
the only Gaussian process with (i) and (ii) exhibiting uniform
subdi!usion: 〈X2(t )〉 = tα for all t > 0, with subdi#usion coef-
"cient α = 2H < 1.

2.2. A Generalized Langevin Equation for Viscoelastic
Subdi#usion

Our second candidate model for a subdi#usive tracer particle is
constructed directly from principles of statistical mechanics and
viscoelastic theory. Thismodel for the trajectoryX (t ) admits the
explicit path representation (McKinley, Yao, and Forest 2009)

X (t ) = C0B0(t ) +
K−1∑

j=1

CjYj(t ), (5)

where B0(t ) is Brownian motion, and dYj(t ) = −r jYj(t ) dt +
dBj(t ) are independent Ornstein-Uhlenbeck (OU) processes
independent of B0(t ). The stationary Gaussian increments of
X (t ) have autocorrelation

cov(xn, xn+k)

= C2
0"tδk −

K−1∑

j=1

C2
j
(
e−r j"t|k+1| + e−r j"t|k−1| − 2e−r j"t|k|),

(6)

expressions forC0,Cj, and r j are provided in the online supple-
mentarymaterials (sec. 1), as functions of two parameters γ and
τ . Together with K, these produce an MSD with tunable subdif-
fusive range as we describe momentarily.

The GLE was originally proposed as a model for viscoelastic
dynamics by Mason and Weitz (1995), founded on the classic
work by Kubo (1966). A detailed account of the GLE aimed for
a statistical audience is given by Kou (2008). A GLE takes the
form of a stochastic integro-di#erential equation for the particle
velocityV (t ) = Ẋ (t ):

V̇ (t ) = −
∫ t

−∞
φ(t − s)V (s) ds + F(t ), (7)
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where V̇ (t ) is the particle acceleration, and F(t ) is a stationary
mean-zero Gaussian process with cov (F(t ), F(s)) ∝ φ(|t − s|)
(see sec. 1 in the online supplementary materials for details).
Several authors have discussed formulations of the “memory
kernel” φ(t ) for which the GLE exhibits subdi#usion (Morgado
et al. 2002; Kou and Xie 2004; Kneller 2011). Here, we follow
McKinley, Yao, and Forest (2009) and employ the generalized
Rouse kernel

φ(t )=φK (t; γ , τ )= 1
K

K∑

k=1

exp(− |t| /τk), τk=τ · (K/k)γ .

(8)
The decomposition of φ(t ) into a sum of exponentials is a
long-standing model in linear viscoelastic theory (e.g., Sous-
sou, Moavenzadeh, and Gradowczyk 1970; Ferry 1980). Fur-
thermore, for particles like ours with negligible mass, such a
decomposition provides the otherwise intractable GLE with the
explicit solution (5).

Each τk in (8) corresponds to a distinct “relaxation time”
of the viscoelastic system. However, unconstrained relaxation
times for all but very small K cannot be estimated reliably from
the typical amount of data at hand (Fricks et al. 2009).Moreover,
for larger K it is natural to think of the τk as approximating a
continuous relaxation spectrum, which can be parameterized
parsimoniously. Indeed, McKinley, Yao, and Forest (2009)
showed that the GLE with Rouse kernel (8) exhibits transient
subdi!usion:

〈X2(t )〉 ∼
{
tα t0 < t < t1,
t t > t1.

(9)

The subdi#usion coe$cient is given by α = 1/γ . The process
“transitions” to ordinary di#usion for t > t1, with t1 → ∞ as K
increases. The parameter τ is the timescale of “shortest mem-
ory”: the smallest timescale at which the particle interacts with
its environment. It also prescribes a time-scaling law for the
MSD via 〈X2(t ) | γ , τ 〉 = 〈X2(t/τ ) | γ , 1〉. Thus, the subdi#u-
sive range (t0, t1) is implicitly determined by K and τ .

3. Data Collection andModel Fitting

3.1. Data Collection

Our data collection methods are fully detailed in Hill et al.
(2014). To summarize, 1 µm polystyrene particles with car-
boxyl surface chemistry were placed in 1 cm discs, each con-
taining 5µL ofmucus harvested fromprimary human bronchial
epithelial (HBE) cell cultures. The bead surface treatment was
chosen to minimize binding and repulsion a$nities between
the beads and mucins in the !uid environment. The motion
of the beads was recorded at 60 frames per second for 30
sec each. Subsequently, the bead position within each cam-
era frame was determined by the Video Spot Tracker software
(http://cismm.cs.unc.edu/downloads/).

Experimental particle trajectories were obtained for various
levels of mucus concentration, ranging from 1 wt% to 5 wt%.
Motion in 1 wt% mucus (very dilute) was similar to Brownian
motion, while particle paths in 5 wt% mucus exhibited a wide

range of behaviors. The most uniform group showing persis-
tent non-Brownian behavior was for 2.5 wt% mucus, and so we
used this group for the analysis that follows. A total of 76 two-
dimensional trajectories in 2.5 wt% mucus were recorded, 10 of
which are displayed in Figure 2.

3.2. Model Fitting

Let X (t ) = (X1(t ),X2(t )) denote the particle’s two-
dimensional position at time t , and X = (X0, . . . ,XN) denote
the recorded observations with Xn = X (n"t ), "t = 1/60, and
N = 1800. We embed our candidate subdi#usion models in a
location-scale model of the form

X (t ) = µt + !1/2Z(t ), (10)

where µ = (µ1, µ2) accounts for linear drift, ! = [ σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

]
is a variance matrix, and Z(t ) = (Z1(t ),Z2(t )) are iid copies of
either the fBM model (3) or the GLE model (5). The measure-
ment error in our observations was found to be negligible (see
sec. 3 in the online supplementary materials), and therefore we
assume that the recorded data are actual particle positions.

Both the fBM and GLE models are nonstationary but have
stationary increments. That is, xN×2 = (x1, . . . , xN ) with xn =
Xn − Xn−1 are observations of a discrete-time stationary Gaus-
sian process. The increments have a matrix-normal distribu-
tion

x ∼ NN×2 ("tµ,V ϑ,!) , (11)

for which the log-likelihood is

)(µ,!,ϑ | x) = −1
2

{
tr

[
V−1

ϑ (x − "tµ)′!−1(x − "tµ)
]

+N log |!| + 2 log |Vϑ|
}
, (12)

where "tN×1 = ("t, . . . ,"t ), and ϑ are the parameters of the
subdi#usion models. Speci"cally, Vϑ is the Toeplitz variance
matrix corresponding to the fBMautocorrelation (4), or theGLE
autocorrelation (6), such that ϑfBM = H and ϑGLE = (γ , τ ).
Working with the stationary increments x instead of positionsX
reduces the cost of each log-likelihood evaluation from O(N3)

to O(N2) via the Durbin-Levinson algorithm (e.g., Brockwell
and Davis 2009).

To estimate the parameters of (10) in a Bayesian setting, we
employ the prior distributions

πfBM(H) ∝ 1 πGLE(1/γ ) ∝ 1

πfBM(µ,! |H) ∝ |!|3/2 , log(τ ) | γ ∼ N (−6.91, 2.682)
πGLE(µ,! | γ , ν) ∝ |!|3/2 .

(13)

The noninformative priors on (µ,!) are independence-Je#reys
priors (Sun and Berger 2007), and a Lebesgue prior is given to
the subdi#usion parameters αfBM = 2H and αGLE = 1/γ on the
range α ∈ (0, 2). The informative prior on τ , the timescale of
shortestmemory, was chosen after examining a host of improper
priors, which all led to improper posteriors. Based on scien-
ti"c considerations, τ was set to have 99% probability a priori
of falling between 10−6 sec and 1 sec.

http://cismm.cs.unc.edu/downloads/
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Figure . Displacements curves X (t ) for  representative bead trajectories with . wt% mucus concentration. The trajectories have been shifted to have mean zero
and rotated such that PC1 and PC2 are the orthogonal directions of greatest and least movement (principal components). The top two rows display two-dimensional
trajectories, while the bottom rows display the movement along PC1 as a function of time.

The priors in (13) are members of the conjugate family

ϑ ∼ π (ϑ),

! | ϑ ∼ Inv-Wishart($ϑ, νϑ)

µ | !,ϑ ∼ N2(λϑ,!/κϑ), (14)

where$ϑ , νϑ , λϑ , and κϑ can each depend on the value of ϑ. For
this family of priors, the posterior distribution is

ϑ | x ∼ π (ϑ) × -($ϑ, νϑ)

-($̂ϑ, ν̂ϑ)
× κϑ

κ̂ϑ |Vϑ|

! | ϑ, x ∼ Inv-Wishart($̂ϑ, ν̂ϑ)

µ | !,ϑ, x ∼ N2(λ̂ϑ,!/κ̂ϑ), (15)

where expressions for -(·, ·), $̂ϑ , ν̂ϑ , λ̂ϑ , and κ̂ϑ are provided
in sec. 2 (in the online supplementary materials). Thus, we were
able to compute our models’ subdi#usion parameter posteriors
p(ϑ | x) using one- and two-dimensional grids.

Figure 3(a) displays posterior means and 95% credible
intervals for the subdi#usion parameter α = 1/γ and shortest
memory parameter τ for the GLE model with K = 200 modes
(hereafter GLE-200). This choice of K was made after very
similar results were obtained with K = 100. Figure 3(a) reveals

that τ is well below"t = 1/60 sec, and thus di$cult to estimate
precisely. Higher frequency trajectories are therefore required
to identify the timescale of shortest memory.

Figure 3(b) displays posterior means and 95% credible inter-
vals for the subdi#usion parameters of the fBM and GLE-200
models: αfBM = 2H and αGLE = 1/γ . Both fBM and GLE-200
provide strong evidence against ordinary di#usion, with almost
no credible intervals containing α = 1. However, GLE-200 pro-
vides consistently lower estimates of α, except in the vicinity of
α = 1.

To investigate this pattern, Figure 4 displays the MSDs
〈Z2(t )〉 of the iid subdi#usive processes used in (10). These
model-based MSDs are evaluated at the posterior parameter
means of two representative particle trajectories, for fBM and
GLE models with K = 2, 10, 50, and 200 modes (recall that
GLE-2 is the sum of Brownian motion and a single indepen-
dent OU process). All subdi#usive models report near-identical
MSD slopes at short timescales. As fBM has uniform subdi#u-
sion, it extends this slope to all timescales (straight line on the
log-log scale). TheGLEs on the left agreewith fBMat intermedi-
ate timescales as well, e#ectively "tting t0 ≈ 0 for the onset of the
subdi#usive range in (9). However, the GLEs on the right exhibit
noticeably lower subdi#usion after an initial period, hence the
lower estimate of α for t ∈ (t0, t1). We note that, aside from
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Figure . (a) Posterior mean and % credible intervals for α and τ of the GLE-model. White circles correspond to the  datasets in Figure . The dotted line indicates
the subdiffusion threshold α < 1. (b) Posterior mean and % credible intervals for the subdiffusion coefficient α of the fBM and GLE- models. The dashed ° line
indicates identical posterior estimate.

GLE-2, the transition to ordinary di#usion (α = 1) occurs near
or beyond the 30-sec observation period. We hypothesize that
this is likely not a scienti"cally meaningful "nding, but rather
an artifact of short timescales driving the model "t. Evidence to
support this claim is o#ered in Section 5.

4. BayesianModel Comparisons

In the Bayesian framework we have adopted, a natural quanti-
tative approach to model selection is through the use of Bayes
factors (Je#reys 1961; Green 1995; Kass and Raftery 1995).
Bayes factors have been widely used to compare complex and
nonnested models of biological systems (Lartillot and Philippe
2006; Vyshemirsky and Girolami 2008; Toni et al. 2009; Li and
Drummond 2012), and, recently, to analyze MSD curves of par-
ticle motion in live cells (Monnier et al. 2012). However, the
strategy adopted by these last authors consists of least-squares
"tting to empiricalMSD curves. As these are subject to consider-
able sampling variation, a great deal of selection power is lost by
renouncing a fully parametric likelihood-based approach. Fur-
thermore, the approach relies solely on summary statistics (the
pathwiseMSD and its variants), inwhich case a great deal of care
must be employed to insure that Bayesian model selection leads
to statistically valid results (Robert et al. 2011).

Suppose that wewish to compare twomodelsM1 andM2 that
assign distributions p(x | θi,Mi) to the observed data x, where
θi denotes the parameter vector of model Mi. Then for proper

priors π (θi |Mi), the posterior probability of modelMi is

p(Mi | x) = qi fi(x)
q1 f1(x) + q2 f2(x)

, (16)

where qi is the prior probability forMi (such that q1 + q2 = 1),
and

fi(x) = p(x |Mi) =
∫

p(x | θi,Mi)π (θi |Mi) dθi

is the marginal likelihood under Mi. The Bayes factor (BF) is
de"ned as a ratio of posterior to prior model odds,

BF = p(M1 | x)/p(M2 | x)
q1/q2

= f1(x)
f2(x)

,

which can be used to assess the relative plausibility ofM1 toM2.
An attractive feature of this measure is that it does not depend
on qi. Equivalently, the Bayes factor is simply the posterior odds
p(M1 | x)/p(M2 | x) when a lack of preference between either
model is expressed as equal prior probabilities q1 = q2 = 1

2 . In
this case we have the monotone transformation p(M1 | x) =
BF/(1 + BF), which we have used here to interpret the Bayes
factor calibration on a probability scale.

A major criticism of the Bayesian model selection approach
is that the choice of prior distribution π (θi |Mi) can have a con-
siderable impact on the posterior probabilities in (16) (see, for
instance, Lindley 1957; Kass and Raftery 1995; Berger and Per-
icchi 1996; and many other references in Vanpaemel 2010). For

Time (s)
10− 1 100 101 102

Z
(t
)2

Path 1

GLE-2 (ˆ α = 0 .27)
GLE-10 (ˆ α = 0 .47)
GLE-50 (ˆ α = 0 .59)
GLE-200 (ˆ α = 0 .64)
fBM (ˆα = 0 .67)
BM ( α = 1)

Time (s)
10− 1 100 101 102

Path 6

GLE-2 (ˆ α = 0 .22)
GLE-10 (ˆ α = 0 .32)
GLE-50 (ˆ α = 0 .38)
GLE-200 (ˆ α = 0 .4)
fBM (ˆα = 0 .66)
BM ( α = 1)

Figure . Model-based MSD estimates for representative trajectories from Figure . The dashed line demarquates the observation timeframe (– sec).
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our particular application, two “default” priors are evaluated in
sec. 4 in the online supplementary materials: (i) a noninforma-
tive but proper prior, and (ii) the informative prior of Aitkin
(1991), which uses the data twice. Both are found to emphati-
cally select the GLE-200 model over fBM, regardless of which
model is used to simulate the data.

Fortunately, another default prior construction is available
for the multiply replicated experiment at hand. That is, priors
for the 10 “testing” datasets retained for model comparison in
Figure 2 can be obtained by pooling the remaining 66 “train-
ing” datasets through the use of a hierarchical model. Speci"-
cally, for each model Mi, the hierarchical model on all J = 76
datasets x1, . . . , xJ is

x j | θ j
ind∼ f (x j | θ j), θ j

iid∼ g(θ | η), η ∼ π (η), (17)

where we have dropped the dependence onMi to simplify nota-
tion. Here, f (x | θ) are the matrix-normal densities (11), θ are
the parameters of the fBM or GLE models, θfBM = (H,µ,!)

and θGLE = (γ , τ,µ,!), and η are the hyperparameters of the
hierarchical model. Such a model naturally induces between-
path particle heterogeneity and the ergodicity breaking phe-
nomenon described in Section 1.2.

Fitting (17) to the T = 66 training datasets xtrain =
(x1, . . . , xT ) produces a posterior distribution

p(η | xtrain) ∝ π (η)

T∏

j=1

∫
f (x j | θ j)g(θ j | η) dθ j, (18)

which leads to a proper parameter prior for the 10 testing
datasets xtest = (xT+1, . . . , xJ ) in Figure 2:

πtest(θ) = p(θ | xtrain) =
∫

g(θ | η)p(η | xtrain) dη. (19)

This approach to prior speci"cation for Bayesian model com-
parisons is a simpli"ed instance of the intrinsic Bayes factor of
Berger and Pericchi (1996). A full application of this procedure
would average over all “minimal” training samples capable of
identifying the model parameters. In our context however the
resulting computations become prohibitively expensive, and we
proceed with the 66 training sets and 10 test sets from Figure 2.

4.1. Approximate Fitting of the Hierarchical Model

While the prior πtest(θ) in (19) is conceptually appealing, its
estimation typically requires computationally intensive Markov
chain Monte Carlo (MCMC) techniques. As an alternative, we
outline here an approximation that allows the bulk of the calcu-
lations to be run in parallel.

1. Suppose that θ is a d-dimensional parameter vector. We
begin by obtaining posterior samples from

p0(θ j | x j) = f (x j | θ j)g0(θ j)/Cj,

Cj =
∫

f (x j | θ j)g0(θ j) dθ j, (20)

for each training set x1, . . . , xT . Any prior g0(θ) can be
used, although the approximationworks best when g0(θ)

is uninformative. In our case, g0(θ) is the improper prior

(13) de"ned in Section 3.2. This stage can be imple-
mented in parallel as the inference for each dataset is
independent from any other.

2. Suppose that each posterior p0(θ j | x j) is approximately
normal:

p0(θ j | x j) ≈ ϕ(θ j | λ j,( j), (21)

where ϕ(· | λ,() is the PDF of a Gaussian distribution
with mean λ and variance (. Then if a priori we have

θ j
iid∼ N (λ0,(0),

and π (η) is a prior on η = (λ0,(0), the posterior distri-
bution on ) = (θ1, . . . , θT ) and η is approximately

p(), η | xtrain) ∝ π (η)

T∏

j=1

ϕ(θ j | η) ×
[
f (x j | θ j)/Cj

]

≈ π (η)

T∏

j=1

ϕ(θ j | η) ×
[
ϕ(θ j | λ j,( j)/g0(θ j)

]
.

(22)

3. For the Lebesgue prior g0(θ) ∝ 1, the approximate pos-
terior (22) has precisely the form of a multilevel normal
model, for which Bayesian inference can easily be con-
ducted with the help of a Gibbs sampler. That is, for the
scale-invariant hyperparameter prior

π (λ0,(0) ∝ |(0|−(ω+d+1)/2 ,

the Gibbs sampler updates its various components using
the analytical distributions

θ j | λ0,(0, xtrain
ind∼ Nd

(
B jλ0+(I − B j)λ j, (I − B j)( j

)

(0 | θ, xtrain ∼ Inv-Wishart (S,ω) (23)

λ0 | θ,(0, xtrain ∼ Nd
(
λ̄, 1

t (0
)
,

where B j = ( j(( j + (0)
−1, λ̄ = 1

t
∑t

j=1 λ j, and
S =

∑t
j=1(λ j − λ̄)(λ j − λ̄)′. When g0(θ) is not

Lebesgue, a Metropolis step is used to correct
the conditional draws of θ j with acceptance rate
a = min{1, g0(θ(old)

j )/g0(θ(new)
j )}.

4. To obtain samples from πtest(θ) in (19), each MCMC
draw from p(λ0,(0 | xtrain) in step 3 is augmented with
a draw from θ | λ0,(0 ∼ N (λ0,(0).

5. Finally, the MCMC samples (θ(1), . . . , θ(m)) from
πtest(θ) are used to approximate πtest(θ) by a prior
in the conjugate family (14) (as described in sec. 2
in the online supplementary materials). This proved
to be a minor adjustment in our case, but with con-
siderable computational bene"ts. This is because
model comparisons rely on the marginal likelihood
p(x |Mi) =

∫
p(x | θi,Mi)πtest(θi |Mi) dθi. Under a

conjugate prior, p(x |Mi) is e$ciently calculated for
fBM and GLE models via one- and two-dimensional
deterministic integrals (see sec. 2 in the online supple-
mentary materials).

An attractive feature of the approximate hierarchical
model above is that the bulk of its calculations—"tting each
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Figure . Testing priors (black) and independent posteriors (gray) for the fBM and GLE-models.

p0(θ j | x j)—can be conducted in parallel. A similar approach
was adopted by Lunn et al. (2013) to "t the hierarchical model
exactly, employing a Metropolis-Hastings resampling step
for the conditional draws from p(θ j | η, xtrain). A potential
drawback of this exact MCMC algorithm is that theMetropolis-
Hastings acceptance rates are adversely a#ected when the
independent posteriors are shrunk heavily toward the common
mean (as for µ1 and µ2 in Figure 5).

To improve the accuracy of the normal approximation (21),
we transformed the parameters to

θfBM =
(
H, µ1, µ2, log(σ1), log(σ2), ρ

)
,

θGLE =
(
log(τ )/γ , log(τ ), µ1, µ2, log(σ1), log(σ2), ρ

)
.

Figure 5 displays the densities of πtest(θ) for the fBM and GLE-
200 models under the normalizing transformations, along with
a sample of the independent posteriors p0(θ j | x j) that were used
to compute them.

4.2. Model Comparison Results

To evaluate the adequacy for model selection of the data-
driven testing prior (19), 500 datasets from fBM and GLEs with
K = 2, 10, 50, 200 were simulated with parameters drawn from
πtest(θi |Mi). Posterior model probabilities (16) were calculated

for each dataset and two-way model comparison. Simulation
results are summarized in Table 1.

For each pair ofmodels, the "rst number is the average poste-
rior probability p(MC | x) given to the correct modelMC, taken
over datasets generated from the correct model, x ∼ p(x |MC).
The number in parentheses is the probability of selecting the
correct model MC, based on the rule that chooses the model
with the highest posterior probability. Table 1 indicates that
fBM, GLE-2, and GLE-200 are highly distinguishable from
each other using Bayes factors, with 80%–95% classi"cation
accuracy. On the other hand, the intermediate GLE models
with K = 10, 50, 200 are more di$cult to tell apart (60%–80%
accuracy). This is consistent with the relatively similar MSD

Table . Summary of model selection results with simulated data.

Alternative model

GLE- GLE- GLE- GLE- fBM

Correct model GLE- —  ()  ()  ()  ()
GLE-  () —  ()  ()  ()
GLE-  ()  () —  ()  ()
GLE-  ()  ()  () —  ()
fBM  ()  ()  ()  () —

NOTE: The first number corresponds to the average posterior probability
p(Mc | x) × 100% attributed to the correct model MC under equal prior odds.
The number in parentheses is the percentage of datasets for which the correct
model had larger posterior odds.
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Figure . Marginal likelihoods for fBM and GLE models computed for the  particle trajectories in Figure .

estimates reported by these models over the experimental
timescale in Figure 4.

We now turn to model selection for the 10 real datasets of
Figure 2. The marginal likelihoods p(x j |Mi) for each dataset
and model are displayed in Figure 6.

Within each dataset, the marginal likelihoods for all models
weremultiplied by a constant to facilitate visualization, such that
comparisons across datasets cannot be made. However, model
comparisons within each dataset suggest that the GLEs have
marginal likelihood increasing with K.

Table 2 displays the posterior probability of the best-"tting
GLE model against the fBM alternative. In six of the 10 test
sets, the best-"tting GLE emphatically dominates fBM (over
90% posterior probability), with the reverse pattern only exhib-
ited in dataset DS-8. In half the datasets, the best-"tting GLE
is GLE-200, and in most cases, Figure 6 shows that the worst-
"tting model is GLE-2. These "ndings suggest that the GLE
with dense relaxation spectrum (moderate to largeK) most ade-
quately describes the nonuniform subdi#usion exhibited by our
data.

5. Predictive Model Assessment of Goodness of Fit

In this section we wish to assess whether the observed particle
trajectories are consistent with our candidate subdi#usive mod-
els. To do this, we begin with the null hypothesis that the data
come from a hierarchical model:

H0 : x | θ ∼ f (x | θ), θ ∼ πtest(θ). (24)

Here, x = xtest is one of the 10 datasets of Figure 2, f (x | θ) is the
matrix-normal density (11) of the fBM or GLE increments, and
πtest(θ) = p(θ | xtrain) is obtained from the 66 training datasets
in Section 4. While this prior is data-driven, it does not depend
on xtest. Therefore, xtest ∼ p(x |H0) has a sampling distribution

Table . Posterior probability (×100%) of GLE model versus fBM for each of the 
test sets from Figure  (top row).

Dataset          

Pr(GLE-K | x) (%) . . . . . . . . . .
K          

NOTE: For each dataset the GLEwith themost favorable number ofmodeswas used
(bottom row).

that can be interpreted in the frequentist sense, if one accepts
both levels of the hierarchical model.

To evaluate various aspects of the model under H0, we con-
sider a test statistic T = T (x), and compare its observed value
Tobs = T (xobs) to either a prior predictive distribution (Box
1980)

pprior(T ) =
∫

p(T | θ,H0)πtest(θ) dθ, (25)

or a posterior predictive distribution (Rubin 1984)

ppost(T ) =
∫

p(T | θ,H0)p(θ | xobs,H0) dθ. (26)

Lack of concordance between xobs and the model are indicated
by Tobs in the tails of (25) or (26). The choice of which predictive
distribution to use depends on the model feature under exami-
nation, and shall be made explicit in the following sections.

We employ two sets of test statistics to evaluate our subdif-
fusive models. The "rst pertains to the MSD—the model fea-
ture of primary interest (Section 5.1). None of our MSD tests
exhibit evidence of model inadequacy, though we note that they
have limited power to detect anomalies at longer timescales.
The second set of tests is based on conditionally Gaussian resid-
uals, which are both easy to calculate and extremely sensitive
to model misspeci"cations (Section 5.2). In the worst-"tted
datasets, these residuals reveal a pattern of within-path hetero-
geneity that our models do not capture.

5.1. MSD-Based Tests

We have seen in Figure 1 that the 76 experimental particle tra-
jectories exhibit considerably more between-path heterogene-
ity than a single-parameter fBM or GLE model would predict.
Figure 7 compares the pathwiseMSD statistics 〈X̂2(t )〉 for the 10
real datasets of Figure 2, x(i)

obs, i = 1, . . . , 10, to those of 10 sim-
ulated datasets from the prior predictive distribution (25) under
fBM and GLE-200 hierarchical models. For two-dimensional
paths, the sample MSD was calculated as the average of the one-
dimensional MSD statistics de"ned in (2) along each axis, after
“detrending” the sample mean of the increments to zero. The
MSDs in Figure 7 are similar to those of the empirical data. This
demonstrates that a hierarchical fBM or GLE model can induce
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Figure . Sample MSDs for empirical data and simulated data from the prior predictive distribution.
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Figure . Simulated MSD statistics from their posterior predictive distributions. Observed MSD (solid) and average posterior MSD (dashed) are superimposed.

the observed amount of ergodicity breaking—a central feature
of the CTRWmodel discussed in Section 1.

Figure 8 compares the MSD statistic of each x(i)
obs to 100

simulated trajectories from its posterior predictive distribution,
under the model selected by the Bayes factor in Section 4 (fBM:
1,5,8; GLE-200: 2,4,6,9,10; GLE-50: 3; GLE-10: 7). Also provided
in Table 3 are posterior predictive p-values,

ppost = Prpost(T > Tobs),

a quantitative measure of the lack of concordance between sim-
ulated and observed MSD statistics.

Under H0, the posterior predictive distribution draws a new
dataset x from the same unknown value of θ that generated
xobs, and thus is well suited for assessing within-path par-
ticle dynamics. Unlike classical p-values, the distribution of
ppost = ppost(xobs) under xobs ∼ p(x |H0) is generally nonuni-
form, tending to be conservative of H0 (Meng 1994). Nonethe-
less, ppost remains a valid probability under H0, with the usual

Table . Posterior predictive p-values (×100%) for the test statistic T = 〈X̂2(t )〉 at
different values of t .

Dataset

Statistic          

T = 〈X̂2(t )〉 t = 1/60 s          
t = 1/10 s          
t = 1.0 s          
t = 10 s          

p-value interpretation: that ofT = T (x) for the newdataset pro-
viding more evidence against H0 than Tobs (Gelman 2013).

At short timescales (2–5 sec), the simulatedMSDs in Figure 8
and Table 3 are in excellent agreement with those of the empiri-
cal data. At longer timescales, the MSD statistic becomes highly
variable, having little power to detect model departures.We take
these "ndings as indicative of the timescale over which the data
provide reliable information. In particular, we have little evi-
dence to assess the GLE’s transition to ordinary di#usion in
Figure 4.

5.2. Analysis of Residuals

If xN×2 has the matrix-normal distribution f (x | θ) in (11),
then

ZN×2 = Z(x, θ) = V−1/2
ϑ (x − "tµ)!−1/2 (27)

is an N × 2 matrix of iid N (0, 1) residuals. For N = 1800
observations, these residuals could be used to construct highly
sensitive tests against the conditional model f (x | θ). As θ is
unknown, Z cannot be observed directly. However, we may eas-
ily obtain draws from the conditional distribution

p(Z | xobs) =
∫

p
(
Z(xobs, θ) | θ

)
p(θ | xobs) dθ, (28)

by calculating Z(xobs, θ) from a posterior draw of θ ∼
p(θ | xobs).

Model evaluations with parameter-dependent test statistics
such as (27) fall under the framework of “realized discrepancy
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assessments” proposed by Gelman,Meng, and Stern (1996), and
similar residuals have been proposed by Albert and Chib (1995)
for outlier detection in regressions with binary outcomes. Note
that a draw from xobs ∼ p(x |H0) followed by a draw from Z ∼
p(Z | xobs) results in Z being a matrix of iid standard normals.
Moreover, a test statistic T (Z) = T (x, θ) is amenable to poste-
rior predictive p-value calculations of the form

ppost = Prpost
(
T (x, θ) > T (xobs, θ)

)

=
∫

Pr
(
T (x, θ) > T (xobs, θ) | xobs, θ,H0

)
p(θ | xobs,H0) dθ.

Figure 9 displays density estimates for 10 draws from
p(Z | xobs) for each dataset x(i)

obs. The square-roots of V ϑ and

! we employed were the Cholesky decomposition of the for-
mer, and the eigendecomposition of the latter. Thus, for each
θ ∼ p(θ | xobs), the elements of Z = (Z1,Z2) are of the form

znk =
x̃nk − E

[
x̃nk | x̃1k, . . . , x̃n−1,k, θ

]

sd(x̃nk | x̃1k, . . . , x̃n−1,k, θ)
,

where Zk = (z1k, . . . , zNk) and x̃n = (x̃n1, x̃n2) are the projec-
tions of xn onto the eigenvectors of !. Thus, Z1 is along the
direction of greatest particle movement, after removing the
drift induced by the slowly moving mucin environment. Also
included in Figure 9 are posterior predictive p-values for the
Kolmogorov-Smirnov test statistic.
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Figure . One posterior draw from p(Z1 | xobs) for three representative datasets.
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Figure 9 uncovers some lack-of-"t in the Z1 residuals. These
appear to have a mixture distribution, most clearly visible in
datasets DS-2 and DS-10. To investigate serial dependence,
Figure 10 displays a single draw from p(Z1 | xobs) for three
datasets, eachwith increasinglyworsemodel"t.While the resid-
uals for DS-6 and DS-9 have no discernable temporal pattern,
those of the severely mis"t DS-2 have visible within-path het-
erogeneity, exhibited by alternating periods of large and small
particle movement. Interestingly, there is virtually no lack-of-"t
in the Z2 residuals, despite the di#erence in variance along each
eigenvector being only 25%–50%.

6. Discussion

In this article we have detailed a rigorous Bayesian analysis
of two models for subdi#usive two-dimensional particle tra-
jectories in biological !uids. The models are fBM and a GLE
with generalized Rouse relaxation spectrum, respectively, char-
acterizing uniform and transient subdi#usive behaviors. Our
analyses leverage all information contained in the likelihood
function, obviating the need for sole reliance on summary statis-
tics such as the MSD. Methodological contributions include a
highly parallelizable approximation to the parameter posteriors
of hierarchical models, and the development of versatile and
easily computable residuals for conditionally Gaussian models.
Both of these methodologies are widely applicable outside the
present setting.

Our analyses soundly suggest that the GLE with tunable
power-law relaxation spectrum best describes the nonuniform
subdi#usion exhibited by our data, on the timescale for which
they provide reliable information. The divergence between
observed and expected MSD in Figure 8 suggests that this is
about 2–5 sec. We have also found that a hierarchical fBM or
GLE model naturally and adequately captures between-path
heterogeneity of particle movement. However, our highly sen-
sitive residual analysis reveals some degree of model lack-of-"t.
In the worst-"t datasets, this was due to within-path particle
!uctuations that our models do not resolve. This hints at the
presence of caging events, whereby particles move in and
out of low-mobility cages formed by the complex molecular
microstructure.

Based on these "ndings, we outline two important direc-
tions for further research. The "rst pertains tomodeling within-
path heterogeneity. One approach is to account for alternating
periods of normal and con"ned particle movement via regime-
switching models (e.g., Kim and Nelson 1999), the approach
taken by CTRW. Along similar lines, one might allow the
parameters of a ‘homogeneous” model such as fBM or GLE to
depend on particle location. By simultaneously examining mul-
tiple tracer particles in neighboring environments, such models
could provide valuable information about the heterogeneity of
the !uid sample.

A second direction for future work relates to the stated sci-
enti"c objective of "rst-passage time prediction. Experiments
suggest that the passage time of several important pathogens
through protective mucosal layers is on the order of dozens of
minutes to hours (Lai, Wang, and Hanes 2009; Suk et al. 2011).
This is far beyond the timescale over which we have reliable
information on particle dynamics. Thus, to empirically assess

the validity of "rst-passage time predictions, it will be neces-
sary to increase the observation period by at least an order of
magnitude. However, this is di$cult to achieve with the cur-
rent experimental setup, as the tracer particles move out of the
microscope focal plane given a su$cient amount of time. It is
possible to restrict attention to only the particles that remain
in range for the duration of the experiment, but then infer-
ence must be conducted by conditioning on this fact. We are
actively looking into this approach, as well as di#erent experi-
mental particle-tracking strategies.

Supplementary Materials

AppendicesClosed-form expressions for the covariance of the GLEmodel,
likelihood calculations for location-scale Gaussian models, assessment
of instrumental measurement error, and e#ect of prior on Bayes factor.
(PDF "le)
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