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ABSTRACT
We present a novel method for identifying topological features of chromatin domains in live cells using single-particle tracking and topological
data analysis (TDA). By applying TDA to particle trajectories, we can effectively detect complex spatial patterns, such as loops, that are often
missed by traditional time series analysis. Using simulations of polymer bead–spring chains, we have validated the accuracy of our method and
determined its limitations for detecting loops. Our approach offers a promising avenue for exploring the topological complexity of chromatin
in living cells using TDA techniques.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0236090

INTRODUCTION

The discovery of cross-linking proteins that extrude chromatin
loops has revolutionized our understanding of higher order chro-
matin organization. Loops are typically detected through the analy-
sis of chromatin conformational states from fixed timepoints. Here,
we propose a new methodology to identify loops from snapshots
of single-particle positions or time-lapse series of single-particle
trajectories in living cells.

Traditional time series analysis represents a particle’s trajectory
as a sequence of discrete points. While this approach effectively cap-
tures linear motion and overall displacement, it often falls short in
detecting complex spatial patterns, such as loops. To address this
challenge, we turn to topological data analysis (TDA). In contrast
to traditional time-series analysis, TDA considers the entire parti-
cle trajectory as a continuous path embedded in a four-dimensional
space (x, y, z, t) and then uses persistent homology for the detection
of topological features such as holes or voids.

TDA is an emerging analytical technique that uses algebraic
topology to uncover the underlying shape or structure inherent in

data. At its core, TDA represents data as geometric objects and
examines their topological features. By focusing on the data’s shape,
TDA can identify both local and global structures across multiple
scales. This approach has found applications in diverse fields, includ-
ing biology, medicine, economics, and image analysis. For instance,
researchers are using TDA to investigate molecular structures, fil-
amentous networks, analyze medical images, and detect anomalies
within large datasets.1–5 While TDA remains a developing field,
it has shown promising results and is increasingly integrated with
other data analysis methodologies. In this paper, we present an
overview of the core TDA concepts essential for understanding our
specific application: spatial detection of DNA loops in living cells.
To evaluate the persistence of DNA loops over a range of scales, we
use persistent homology (see Key Concept in the Explanatory Box).
For a more in-depth treatment of the subject, readers are referred to
Refs. 1–3 and 6.

When applied to spatial data, persistent homology character-
izes spatial features of data based on proximity and positions of data
points. The more persistent a particular feature is over a range of
proximities (distances), the more resolved and defined the feature is.

J. Chem. Phys. 161, 204105 (2024); doi: 10.1063/5.0236090 161, 204105-1

Published under an exclusive license by AIP Publishing

 26 N
ovem

ber 2024 13:27:18

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0236090
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0236090
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0236090&domain=pdf&date_stamp=2024-November-22
https://doi.org/10.1063/5.0236090
https://orcid.org/0009-0005-6835-5996
https://orcid.org/0000-0003-1203-4956
https://orcid.org/0000-0002-3457-004X
https://orcid.org/0000-0003-1003-6640
mailto:paula@math.sc.edu
https://doi.org/10.1063/5.0236090


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Persistent homology allows us to transform data from single particle
tracking (collection of points in space and/or time) into topological
data to provide insight into underlying spatial patterns. To achieve
this, it employs three core concepts: simplicial complexes, filtrations,
and topological summaries. A simplicial complex is a geometric
structure representing data as a collection of points, lines, triangles,
and higher-dimensional shapes (see Key Concept in the Explana-
tory Box). By constructing a sequence of simplicial complexes at
increasing levels of detail, filtration allows for the study of how topo-
logical features evolve. Persistence diagrams visualize the birth and
death of these features across the filtration, providing insights into
the data’s underlying shape.

The filtration process used in the methods in this paper is the
Vietoris–Rips filtration. Panel (a) of Fig. 1 illustrates this filtration
process applied to a point cloud. The method involves surrounding
each point with a circle and systematically enlarging its radius. Con-
nections are established based on the intersection of these enclosing
circles. This expansion transforms the data in the example from iso-
lated points to connected lines, to a single connected component
with a hole. In general, by tracking changes in homology groups

throughout this process, the persistence of topological features, such
as the birth and death of holes, can be quantified.

Figure 2 demonstrates TDA’s ability to identify and differenti-
ate loop structures of varying sizes within a point cloud. By tracking
topological changes through a filtration process and analyzing the
resulting persistence diagram, the figure reveals the presence of both
a larger and a smaller loop, quantified by their respective persistence
values.

Figures 1 and 2 showcase the potential of TDA in identify-
ing loop structures within static datasets. However, when apply-
ing this methodology to single-particle tracking experiments, a
critical limitation arises. Unlike static datasets, which allow for
the observation of multiple particles simultaneously, single-particle
experiments generate time-series data that capture the trajectory
of an individual particle over time. This presents a challenge in
determining whether the particle is part of a loop as it evolves
through space and time. To overcome this limitation, we pro-
pose a novel approach that combines the simulation dynamics of
chromatin chains with TDA-based methods to detect the existence
of loops.

FIG. 1. (a) Initially, each data point is considered an independent connected component (H0). The filtration process involves expanding circles around each point with an
increasing radius. When two circles intersect, the corresponding points become connected, forming a new component (H0), for example at r = 3.5. This process continues,
with components merging as their enclosing circles overlap. The emergence of a closed curve formed by overlapping circles signifies the birth of a one-dimensional hole
(H1). As these circles further expand and overlap, the hole is filled, marking its death. For instance, in the figure, a hole is born at radius r = 6 and dies at r = 6.2. (b)
Graphical representation of the birth and death of H0 and H1 features in panel (a). (c) A persistence diagram plots points corresponding to the birth, on the x-axis, and the
death, on the y-axis, of each feature within the dataset.
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FIG. 2. Identification of loops within a point cloud using persistent homology. (a) Filtration process to determine the birth and death of each of the two loops. (b) Resulting
persistence diagram with the birth and death of topological features (H0: connected components and H1: loops). Arrows indicate the persistence of each feature.

Key Concepts
Geometry and Topology
Topology studies how shapes can be completely deformed with

out losing their core properties. For example, a coffee mug
and a donut are considered topologically equivalent because
they can be transformed into each other through continuous
deformations.

Homology is a topological tool for classifying spaces based on
their shape by identifying and counting holes. Spaces with
identical hole structures, called homology groups, are consid-
ered topologically equivalent.

Homology groups capture information about holes. They clas-
sify these holes by dimension: H0 represents the number of
connected components, H1 quantifies one-dimensional holes
(such as circles), H2 signifies two-dimensional holes (such as
voids), and so on for higher dimensions.

Simplex is a basic shape in topology. It can be a point, line, tri-
angle, or higher-dimensional equivalent, defined by its corners
(vertices).

A simplicial complex is a collection of simplexes.

Persistent homology is a method for studying the topological
features of data that persist over a range of scales. It tracks the
birth and death of topological features (such as holes) as the
data is filtered.

Filtration is a nested sequence of simplicial complexes, essen-
tially a gradual construction of a shape by incrementally adding
simplexes. In persistent homology, filtrations are employed to

extract topological signatures from data. Figure 2 illustrates a
filtration process where the enclosing radius, determining the
size of circles centered on data points, serves as the filtration
parameter. As this radius increases, the point cloud evolves
from individual points (H0 homology group) to a structure
of lines (still H0, i.e., no holes) and finally to a connected poly-
gon with a single one-dimensional hole (H1 homology group at
r = 6). By tracking changes in the homology, the persistence of
topological features throughout the filtration can be quantified.
Although the Vietoris–Rips filtration, which is used in this
paper, is widely adopted, there are other filtration meth-
ods available. Two examples are the Čech filtration and the
alpha-complex filtration. The choice of filtration depends on
the specific application and the type of data being analyzed.7

A persistence diagram is a graphical representation of persis-
tent homology data, showing the birth and death of topological
features.

Polymer Physics
A bead–spring model treats chromatin as a WLC (worm-like

chain), a statistical mechanical representation of long-chain
polymer. The chain consists of a series of beads connected
via Hookean springs. Hinge-like forces between each bead are
parameterized to give the strands the same bending rigidity of
DNA, that is, a persistence length of 50 nm.8

Persistence length is a statistical mechanical measure of the
stiffness of a polymer chain. It is the length scale over which
the polymer’s orientation is correlated, defined by the decay of
the autocorrelation function cos (θ) = exp [−L�Lp] of the tan-
gent vector along the chain. Here, θ is the angle between two
points separated by a distance L, and the chain’s persistence
length is Lp.

Tether resistance: End beads of the chromatin chain are defined
as tethers that constrain (provide resistance to) the movement
of the entire chain via a viscous drag. In simulation, forces
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acting on tethered beads are scaled down by dividing by their
tether resistance (unitless quantity).

A condensin spring is a Hookean spring that cross-links two
beads on the chain when they are within a prescribed
distance. This spring represents an action of Structural
maintenance of chromosomes (SMC) protein forming a
chromatin loop.9

ChromoShake is a simulation package written in C++10 and
updated to run with ImageTank,9,11,12 a GUI package from
Visual Data Tools, Inc. All simulated loop data herein is found
in Kolbin et al.9

RESULTS
Topological data analysis can detect loops
with positional data of an entire chain

To assess the generalizability of TDA functions for loop iden-
tification beyond the idealized scenario depicted in Fig. 2, we use a
bead–spring polymer model.9 By using simulated data, we can (1)
identify bona-fide loops, (2) modify loop size and duration, and
(3) by comparing the TDA-identified loops with the known loop
position from the model, evaluate the accuracy and robustness of
the TDA methodology. For this study, we have used a chain of
101 beads, altering the chain properties as described in the Key

FIG. 3. Examples of modeled loops and associated persistence diagrams. (a) Representative of the initial configuration of the chain before simulation. (b) and (c)
Representative of small and large loops in the chain, respectively. (d) Representative of a floppy loop within the chain.
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Concept (Polymer physics). Loop size and duration can be con-
trolled by changing the tethering resistance of the chain (e.g.,
increasing the weight of the ends), changing the spring strength
(e.g., changing the force connecting beads that are cross-linked),
and changing the persistence length (e.g., changing the degree of
stiffness). For a more comprehensive understanding of the effects
of these parameters, the reader is referred to Kolbin et al.9 The ini-
tial configuration is a linear, tethered chain, where both ends remain
fixed throughout the simulation. In addition to the beads represent-
ing the main chain, the simulation incorporates a cross-linker spring
that connects two non-adjacent beads. The cross-linker extrudes
loops as it traverses the chain.9

To evaluate the accuracy and robustness of the TDA proce-
dure, we construct a point cloud from the positions of all beads
from a simulation at a timepoint when loops are present. Figure 3
shows four persistence diagrams with detected features (loops),
highlighting the largest H1 features in each diagram. Figure 3(a)
shows a linear chain with no loops, as confirmed by the absence
of any H1 (green) points in its corresponding persistence diagram.
Conversely, introducing a loop, as depicted in Fig. 3(b), results in
a distinct H1 point offset from the diagonal, indicating the pres-
ence of a topological hole associated with the loop. Figure 3(c)
further demonstrates this relationship for a larger loop, character-
ized by a point located farther from the main diagonal. Finally,
Fig. 3(d) depicts a floppy loop configuration, which is evident from
the presence of more than one H1 point. The points closer to
the diagonal are referred to as “noise,” since they correspond to
topological features with negligible persistence. However, despite

this increased noise, TDA successfully identifies one primary loop
structure.

While TDA effectively distinguishes between structures with
and without loops, it currently lacks the capability to directly quan-
tify loop dimensions. These dimensions are influenced by para-
meters such as chain stiffness and cross-linker spring strength,
which dictate the size and persistence of the loops. To further
quantify loop size, we introduce the concept of amplitude or lifes-
pan, a metric that measures the persistence of a topological fea-
ture within a dataset. The lifespan is calculated as the difference
between a feature’s birth and death, and it provides a numer-
ical value for loop size. Analysis of the primary H1 points in
Figs. 3(b)–3(d) reveals single-point lifespans of 27.43, 112.2, and
10.87, respectively, suggesting a correlation between lifespan and
loop size.

Single-particle tracking offers an experimentally
accessible means of analysis

While having the positional data of all beads of a chain across
time in the simulation provides a robust means of tracking loops,
this is not a practical approach for tracking loops in living cells.
Single-particle tracking, either through sparse labeling of chromatin
proteins such as histones or the introduction of integrated DNA-
binding sites and visualization with a fluorescent binding protein
(FROS-fluorescence repressor-operator system), allows analysis of a
single segment of the DNA chain over time. To simulate experimen-
tal conditions, we computationally labeled a single bead roughly in

FIG. 4. Example analysis of simulated single-particle tracking. (a) Each point within the point cloud represents a position occupied by the bead at a specific timepoint during
the simulation. The single bead is represented by a red point when it is part of a loop and a blue point when it is not. (b) Persistence diagram associated with the point cloud
in (a), showing only the persistence of H1 features.
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the middle of the chain (position 50 out of 101 beads) and tracked
its position over time, generating a point cloud representing 17 500
time steps as shown in Fig. 4(a).

For this 3D point cloud, we compute its corresponding per-
sistence diagram using every third time step, which is depicted in
Fig. 4(b). When a loop encompasses the beads, they are displaced
from the chain’s main axis, which can be associated with more
displacement, which in turn leads to an increased probability of
forming topological holes in the spatial data. This is captured in
the persistence diagram by points away from the main diagonal.
However, given the complexity of the point cloud, it is challeng-
ing to directly correlate a given point in the persistence diagram
to fluctuations in the linear chain, short-lived loop-like structures,
or bona-fide persistent loops over the entire time series. To address
this, we employ a sliding window approach to generate persistence
diagrams at discrete time intervals throughout the simulation, as
described in the next section.

Sliding windows and lifespan allow for finding loops
through time

To accurately capture the dynamic nature of individual particle
trajectories, we introduce TopoLoop, a pipeline that employs a slid-
ing window technique. This approach generates a temporal lifespan
plot by calculating persistence diagrams at discrete time intervals, as
illustrated in Fig. 5.

To analyze our polymer simulation data, we divided the time
series into overlapping windows, defined by window size and step

size. Window size determines the length of each analysis window,
while step size specifies the amount by which the window is shifted
for subsequent analyses. For instance, using a window size of 100 and
a step size of 20, we create a series of overlapping windows: [0, 100],
[20, 120], [40, 140], and so on. Each window was then processed
to generate a persistence diagram. The lifespan of a persistence dia-
gram is computed by taking the norm of the vector representing the
lifespans of each H1 point within the diagram. For this, we use the
“amplitude” function from the Giotto-tda package with a bottleneck
metric.13,14 These calculations use the bottleneck (L∞) norm of the
distance between the given persistence diagram and the trivial diag-
onal diagram, which consists solely of points on the diagonal line
where rbirth = rdeath. In Giotto-tda, this option can be selected by
setting metric = “bottleneck” and order = “None.” For other options,
see the Giotto-tda documentation.14

To visualize the temporal evolution of loop formation, we then
associated each calculated lifespan with the midpoint of its corre-
sponding time window. For example, if the lifespan of a window
spanning timepoints 0–100 is 3.47, we generate the ordered pair
(50, 3.47). By connecting these points throughout the entire time
series, we generate the temporal lifespan plot shown in the bottom
left of Fig. 5.

In order to determine whether a bead is within a loop, we
consider a persistence threshold. Timepoints with lifespans exceed-
ing this threshold are indicative of loop presence. The value of the
threshold plays a significant role in TopoLoop’s ability to identify
loops. As shown in the bottom left plot of Fig. 5, adjusting the
dashed line (threshold) will directly influence the number of peaks

FIG. 5. Overview of TopoLoop pipeline. TopoLoop takes an input of position-time cloud from single-particle tracking data and predicts the times that a particle is in a
chromatin loop via the sliding window, persistent homology, and lifespan. To evaluate the accuracy of our method, we indicate the times when the bead is in a loop based
on our simulated data by highlighting them in yellow in the bottom-left plot, and we set a threshold of 0.5.
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considered as loop presence. A higher threshold will result in fewer
peaks being identified as loops, while a lower threshold will lead
to more peaks being misclassified as loops. In addition, the cho-
sen window and step size also impact the overall accuracy of loop
detection.

To evaluate the accuracy of TopoLoop, we compare its pre-
dicted loop events to the actual loop occurrences, which are known
from the simulation data and highlighted in yellow in the bottom
left plot of Fig. 5. We calculate accuracy by determining the ratio
of correct predictions to the total number of predictions. Predic-
tions are considered to be the associated times of the time-lifespan
ordered pairs where the lifespan is above the persistence thresh-
old. Through systematic testing of various combinations of window
size, step size, and persistence threshold, we have identified the
optimal parameters that achieve an accuracy rate exceeding 70%
across a representative set of chain configurations (Fig. S1 of the
supplementary material). We note that these parameters are spe-
cific to the simulations, which strongly conform to what occurs in
vivo. However, the temporal and spatial resolution of the simula-
tions may not be representative of all microscopes, which can affect
data collection and may require different parameters than the ones
we outlined. These optimized parameters are used in all the analyses
presented below.

Loop detection accuracy and chain parameters

The power of simulated datasets is the ability to define quanti-
tative aspects of loop size and duration that can be reliably detected.
As an initial foray into these parameters, we varied the three
drivers of loop formation, namely, anchors or tethers that restrict
chain motion (tethering resistance), the strength of the cross-linking
spring (condensin moduli), and the stiffness of the chromatin chain
(Lp). The stiffness of chromatin ranges experimentally from 5 to
220.9,15 The strength of the condensin spring in Gigapascals (GPa) is
based on Young’s modulus of a coiled-coil protein (2 GPa Howard
Mechanics of Motor Proteins and the Cytoskeleton) and fitting

simulations of loop extrusion to experimental data.9,15 Decreasing
the strength of the spring in simulation is informed by the biological
consequences of energy and temperature that soften these materials
in live cells.16 Tethering resistance was determined by the resistive
force on a bead in a bead–spring model. The resistive force delays
the time required for the chain to adopt a random coil. The forces
were tuned to parameters that simulate in vivo relaxation time.17

TopoLoop accuracy for variations of these three parameters is shown
in Fig. 6.

Figure 6(a) shows that increasing tethering resistance signifi-
cantly enhances overall TopoLoop’s accuracy. While Fig. 6(b) shows
that variations in condensin modulus can influence accuracy, the
effect is less pronounced compared to tethering resistance. Notably,
a significant increase in the number of accurate TopoLoop pre-
dictions is observed at moduli above 0.02. Finally, Fig. 6(c) shows
that a smaller persistence length (Lp), indicative of a floppier loop,
results in more accurate TopoLoop predictions compared to more
stiff loops. We conclude that TopoLoop is most accurate when
combinations of chain parameters include high tethering resis-
tance, stiffer condensin spring, and small persistence length of
the chain.

Our findings are consistent with the fundamental physical prin-
ciples governing the system. A higher tethering resistance restricts
overall chain movement, promoting more stable loop structures and
increasing the likelihood of detection. Similarly, a higher condensin
modulus brings the beads at the base of the loop closer together,
facilitating loop identification. Finally, a smaller persistence length,
indicative of a more flexible chain, allows for greater conformational
freedom, potentially enhancing loop detection accuracy by enabling
a given bead to explore a wider range of positions.

Projection to two dimensions maintains accuracy

Given the higher resolution of microscope single particle track-
ing when limiting collection to two dimensions, we aimed to test
the effectiveness of TopoLoop with 2D data to mimic experimen-
tally achievable data. To evaluate TopoLoop’s performance with

FIG. 6. Each panel shows the percentage of runs that achieve an accuracy of 70% or higher varies for different combinations of the corresponding chain parameter: (a)
tethering resistance, (b) condensin modulus, and (c) persistence length. The error bars represent the range of accuracy, with the upper bound corresponding to 50%
accuracy and the lower bound to 90% accuracy. A total of 1620 runs were analyzed (20 replicates of 27 parameter combinations across beads 10, 25, and 50), with each
bar in the graph representing 540 runs (nine specific parameter combinations for each bar).
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FIG. 7. Projection analysis of TopoLoop. We measure TopoLoop’s success when
projecting 3D coordinates to 2D using simple projections and the BEEP projec-
tion. This was used to imitate the 2D data that can be created from single particle
tracking in a microscope. We analyze runs with tethering resistance = 1 × 107,
Lp = 5, and condensin spring strength = 0.2 or 2 GPa (total of 120 runs: 20 repli-
cates of two parameter combinations for beads 10, 25, and 50). Bars are indicative
of a threshold accuracy set to 70%, and the lower and upper errors are set to 90%
and 50%, respectively.

2D data, we conducted simulations using two projection methods:
simple projection onto the (x, y), (x, z), or (y, z) plane, and a BEEP
(Bead-End-End Plane) projection onto a plane defined by the spatial
coordinates of the bead and both chain ends at every timepoint.
We use the following chain parameters to define our dataset and

measure the average accuracy for each projection: tethering resis-
tance = 1 × 107, condensin modulus = 0.2 or 2 GPa, and Lp = 5.
These results are shown in Fig. 7.

Figure 7 shows that projecting down to XY and XZ planes does
not significantly reduce the number of runs that exceed the accu-
racy threshold (70%) while projecting onto YZ or BEEP planes leads
to a notable decrease. We attribute the reduction in accuracy to the
usage of high tethering resistance and note that with this parameter,
a central axis is more prominently formed on the X-axis, which is
accounted for in the XYZ, XY, and XZ projections but not directly
in the YZ and BEEP projections. However, despite this lower over-
all success rate for YZ and BEEP projections, when they do identify
a loop, the accuracy is still high, as demonstrated by the relatively
similar levels of 90% accuracy across the different projections. This
suggests that while these projection methods might be less sensi-
tive in terms of identifying loops overall, they exhibit high precision
when a loop is correctly detected.

Potential of TDA for in vivo experiments

Our current method shows promise in analyzing timelapse
data, but it requires a substantial number of timepoints. However,
obtaining these timepoints can be challenging due to limitations in
optical imaging, such as photobleaching. In order to demonstrate
the potential of TDA for analyzing experimental data without a time
element, we decided to investigate a different dataset.

In this study, we placed a LacO (E. coli lac operator array) at
1.8 kb from the centromere in chromosome XV (CEN15) in a strain
of budding yeast that only had two chromosomes, which we referred
to as the WT. The LacO array was visualized with the lac repres-
sor (LacI) fused to GFP (green fluorescent protein). We chose this

FIG. 8. Persistence diagram and lifespans of the centromere loop. (a) (x, y) positions of the LacO in the loop were determined as outlined, and analysis via TDA was
performed to produce H1 persistence diagrams. (b) The lifespan was calculated for both WT and mcm21� using the outlined sampling method. Error bars on WT are
indicative of a 95% confidence interval. No error bars were generated for mcm21 since the entire dataset was analyzed simultaneously rather than sampled numerous
times.
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genomic location because it is known to form long-lasting and sta-
ble loops during metaphase, which is the same phase of the cell cycle
where our images were captured. In addition, we marked the spindle
pole body with RFP and used it as a reference point for tracking the
position of the LacO marker.

By tracking the (x, y) positions of each LacO marker in differ-
ent cells, we were able to compile a two-dimensional point cloud for
subsequent TDA analysis. To further explore the role of loop forma-
tion at this locus, we created another strain with a deleted MCM21
gene (mcm21�). This gene encodes a protein that recruits cohesin
to the centromere, which in turn promotes loop formation at this
locus.

We calculated the lifespan of the full dataset (197 observa-
tions) for the mcm21 delete strain. To ensure a consistent number
of observations, we randomly sampled 197 observations from the
full dataset of WT (341 observations) and repeated this process 100
times. Figure 8 compares the lifespans of the mcm21� to the average
lifespan of WT. Notably, the WT strain exhibited an approximately
twofold increase in lifespan compared to the mcm21� strain. We
also note that the sampling method of the WT results in consistency
with a TDA of the full dataset (lifespan = 20.2). This difference sug-
gests the presence of smaller, more unstable loops, consistent with
previous findings in mcm21�.

To further confirm that the difference in lifespan, as deter-
mined by TDA, is indicative of weakened spring complexes forming
the loops, we examined the maximum lifespan achieved for con-
densin moduli of 0.02, 0.2, and 2 GPa across various combinations
of tethering resistance and Lp (Fig. 2 of the supplementary material).
Our findings revealed a significant reduction in lifespan at 0.02 GPa
compared to 0.2 and 2 GPa, typically by a factor of 2–3, across most
tethering resistance and Lp combinations except for 1× 105 tethering
resistance. This observation supports our experimental results and
confirms that the difference in lifespan may be due to a reduction in
spring strength rather than random fluctuations.

CONCLUSIONS

Chromatin loops are a pervasive feature of higher order chro-
mosome organization found throughout phylogeny, including pro-
and eukaryotes. Loop detection is largely limited to inferences from
fixed cell analysis through techniques that allow quantitation of
proximal but non-contiguous DNAs. The ability to detect loops in
living cells on a genome-wide scale would markedly advance the
study of loop formation, persistence, and destruction. Topological
Data Analysis (TDA) is a relatively recent approach (circa 1990’s) to
analyze the shape of data. It is based on algebraic topology and posits
that persistent shapes in a dataset are diagnostic of critical relation-
ships. We reasoned that TDA might provide a means to identify
loops from a set of single-particle trajectories. In order to rigorously
test our hypothesis, we demonstrate the power of TDA to identify
loops from simulated datasets consisting of tens of thousands of data
points of a fluctuating bead–spring chain.

Loops are defined as regions of DNA spatially segregated from
the chromosome through the action of cross-linking proteins that
bring non-contiguous regions together. DNA in a loop might be a
region of the chromosome that needs to be transcribed, repaired, or
recombined. It is a way for the cell to control DNA regions on a scale
larger than a gene. Control can be through over- or underwinding

the DNA or through gene clustering, where transient or long-lived
networks can be assembled and disassembled. The life cycle of these
loops is, therefore, critical for understanding dynamic features of
genome organization and emergent structures that ensue from the
sum of short-lived spatially regulated interactions.

In TDA parlance, a loop is a topological feature defined by a set
of data points enclosing a hole within a point cloud. The persistence
of a loop, a measure of its size and stiffness, is determined by its
ability to maintain its topological identity as the radius used to define
points within the point cloud increases. Persistent homology is the
computational tool used to quantify this persistence, and persistence
diagrams (birth vs death plots) are used to visualize it.

Examination of a loop along a chain of fixed length is read-
ily apparent as an off-diagonal position in a persistence diagram
(Fig. 3). In cells, there are three major parameters that dictate the
behavior of loops. These are the stiffness of the chain (Lp), tethers
throughout the genome (e.g., anchors), and the strength of the cross-
linking spring (SMC spring constant). Our simulations enabled us to
assess the efficacy of TDA in loop detection by varying the values
of these parameters. As shown in Fig. 6, the strength of anchors
is the single most significant driver of accuracy in loop prediction
[Fig. 6(a)]. Over a range of simulated runs, we can attain up to 90%
accuracy in loop detection when the strength of the anchor is high.
In addition, the strength of the cross-linking spring has a major
influence on loop detection [Fig. 6(b)]. With very weak springs
(0.02 GPa), loops are very small and short-lived and are not reliably
detectable. Increasing the spring strength increases the ability to
accurately detect the loops. Chain stiffness (increasing Lp), however,
was not a strong driver of loop detection. Over a range of chain
stiffness, the accuracy of loop detection was comparable [Fig. 6(c)].

We demonstrated that TopoLoop can effectively identify loops
in our bead–spring model. To determine if TDA could also iden-
tify genuine loops in vivo, we examined a region of pericentromere
DNA known to contain a high density of loops. As shown in Fig. 8,
we observed persistent shapes (births > deaths). The persistent lifes-
pan for this dataset (n = 341 observations) was ∼20. To confirm the
identity of loops, the same analysis was performed in cells lacking
a key protein that recruits the cross-linker cohesin (mcm21�). In
the dataset from the mutants (n = 197 observations), the persistent
lifespan decreased by a factor of 2 (from 20 to 10). Thus, in an exper-
imental system, TopoLoop provides an unprecedented means for
loop identification in living cells.

TopoLoop offers a significant advancement in our ability to
analyze chromatin motion. While mean square displacement (MSD)
provides insights into the nature and range of motion, TopoLoop
introduces a novel approach by providing geometric information
and the capability to distinguish movement within a loop. TopoLoop
can be applied to various datasets, including fluorescent repressor-
operator spots (FROS) and spots from single-particle tracking of
DNA-binding proteins. Similar to MSD analysis, the constraints on
TopoLoop include spot intensity, susceptibility to photobleaching,
and tracking accuracy. The method is applicable to both single time
points or fixed cells, as well as time-lapse series from living cells.
Given the recent findings highlighting the role of loops as a major
organizing principle of chromosomes for gene expression, chro-
matin compaction, and centromere function, methodologies such as
TopoLoop become increasingly valuable for examining these loops
at the single-cell level.
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MATERIALS AND METHODS
Simulation of chromatin chains and loops

ChromoShake is a three-dimensional chromatin simulator
designed to find the thermodynamically favored states for assigned
geometries.10 The simulator represents a one-micron segment of
chromatin as a linear chain comprised of 101 beads and connected
by Hookean springs. The first and last beads of the chains act as
tethers and constrain chain motions to a degree determined by teth-
ering resistance (see Key Concepts). Additional springs representing
condensins are stochastic, and dynamic cross-linkers provide the
means to study the physical properties of chromatin that influence
the size, duration, and translocation of loops along the DNA.9 A
single cross-linking spring is seeded randomly on the bead–spring
chain and is active for a duration representative of the lifetime of
condensin on the DNA. The spring traverses the chain by stepping
in a random direction. It can crosslink distant parts of the chain
in a single step, intermittently stall, or unbind. The cross-linking
spring is responsive to chromatin tension and extends to its maxi-
mum length. As shown previously, the drivers of loop behavior are
the tethering resistance of the end beads, the persistence length of
the DNA, and the strength of the cross-linking spring.9 In vivo, the
drivers are subject to modifications and cellular processes and, thus,
depict physiologically relevant states. Our dataset obtained in Ref. 9
considers 27 combinations of three parameters (three values for
tethering resistance, three values for condensin spring strength, and
three values for DNA persistence length). Each combination is run
in 20 replicates for 540 total simulations. For TDA analysis, either a
snapshot of x, y, and z positions of all beads at a single timepoint or
a position of a single bead across time scales is considered.

SUPPLEMENTARY MATERIAL

See the supplementary material for Fig. S1 shows parameter
optimization for the sliding window technique. Figure S2 illustrates
the impact of chain parameters on loop detection. Video 1 demon-
strates the sliding window approach on a simulated bead–spring
chain.
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