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Abstract: Modeling the flow of polymer solutions requires knowledge at various length and time
scales. The macroscopic behavior is described by the overall velocity, pressure, and stress. The
polymeric contribution to the stress requires knowledge of the evolution of polymer chains. In
this work, we use a microscopic model, the finitely extensible nonlinear elastic (FENE) model,
to capture the polymer’s behavior. The benefit of using microscopic models is that they remain
faithful to the polymer dynamics without information loss via averaging. Their downside is the
computational cost incurred in solving the thousands to millions of differential equations describing
the microstructure. Here, we describe a multiscale flow solver that utilizes GPUs for massively
parallel, efficient simulations. We compare and contrast the microscopic model with its macroscopic
counterpart under various flow conditions. In particular, significant differences are observed under
nonlinear flow conditions, where the polymers become highly stretched and oriented.

Keywords: polymer; multiscale; fluid dynamics; viscoelastic

1. Introduction

Viscoelastic fluids are materials that exhibit complex behaviors due to their unique
composition and structure. Uses of these materials can be found in many industrial,
biomedical, and basic science applications [1–6]. Common examples include liquid crystals,
polymers, and colloids. In practice, modeling the behavior of viscoelastic materials requires
significant computational power, which clashes with the need for fast simulations. An
increasing number of research studies focus on the mathematical modeling of viscoelastic
fluids at different scales. To allow such modeling efforts to be useful in practice, there is a
critical need for more efficient computational methods. In recent years, GPU computing
has emerged as a valuable tool to overcome these challenges. Here, we describe numerical
algorithms aimed at using GPU computing in viscoelastic flow simulations.

GPU computing refers to the use of graphics processing units (GPUs) to perform
numerical computations. GPU computing has become an important tool for the study of
complex fluids due to its ability to handle large amounts of data and perform computations
in parallel. Because GPUs can handle massive computational demands, they can provide
results in a fraction of the time of traditional CPU-based methods. As computing power
continues to increase, GPU-based simulations can become increasingly important for
understanding the behavior of complex materials and complex flows. GPUs have been
previously used in the modeling of polymeric systems. Reith et al. [7] performed numerical
simulations to find the equilibrium properties of polymer rings. Brito et al. [8] used GPUs
to accelerate computations of smoothed particle hydrodynamics (SPH) for viscoelastic
materials. Ingelsten et al. [9] extended their Lagrangian–Eulerian method for viscoelastic
flow simulations to GPU computing. Yang et al. [10] simulated phase separation in polymer
blends and polymer solutions using a GPU-based viscoelastic model. Bergamasco et al. [11]
introduced a lattice-Boltzmann-based finite-volume formulation, where the macroscopic
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equations were solved by a finite-volume method and the microscopic equation was
solved by a lattice-Boltzmann method. These authors implemented the solution to the
microscopic equation in GPUs. Gutierrez-Castillo et al. [12] used GPUs to accelerate their
three-dimensional numerical simulations of viscoelastic fluids for both the Oldroyd-B
and FENE-P models. Schram and Barkema [13] simulated ring polymer melts via GPU
computing using an elastic lattice polymer model. Behbahani et al. [14] investigated
high-molecular-weight entangled polymer melts using HOOMD-blue, a GPU accelerated
simulation software. In this paper, we use GPU computing to couple dynamics at the
macroscale with those at the mesoscale, described by Langevin-type equations.

From a modeling perspective, it is well-known that the stress, τ, of any Newtonian
fluid is directly proportional to the imposed shear rate, τ = ηγ̇, where the proportionality
constant η is the viscosity of the material. Differences between materials will only affect
the value of η but not the functional form of the constitutive equation. Mathematically
speaking, this means that for Newtonian fluids, there is a single, general constitutive
equation capable of describing different types of Newtonian materials. In principle, this
means that the same numerical algorithms can be used for any material by only changing
the value of the viscosity constant. In contrast, there is not a single all-encompassing
constitutive equation for viscoelastic materials. This is because, in this case, the evolution
of the stress as a function of the applied strain can vary from material to material or even
for the same material under different flow conditions. Accordingly, the formulation of
constitutive equations describing different types of viscoelastic materials is a prolific area
of research [15]. It is not surprising, then, that because of the lack of a single constitutive
equation and due to their ubiquity in many industrial and biological processes, numerical
methods for solving the flow of these viscoelastic materials under flows fields of different
levels of complexity have been a very active research field. Some extensive reviews in this
subject can be found in [9,16–20].

Broadly speaking, the link between polymer fluids and external fields is relatively well-
understood: how a polymeric fluid behaves under a given field is directly governed by the dynamics
of their corresponding underlying microstructure. For polymeric fluids, this microstructure
comprises polymer chains. The underlying dynamics include coiling and uncoiling pro-
cesses, hindered motion due to physical entanglements or hydrodynamic effects caused
by the presence of other polymer molecules in their vicinity, and in some cases, physical
cross-linking between chains. In this paper, we focus on a subclass of the available compu-
tational techniques: the so-called micro–macro approaches [18]. These approaches combine
the solution of the conservation equations at the macroscale with models derived from
kinetic theory at the microscale. The advantage of using kinetic models is that instead of
a homogenized view of the rheology of the material through a macroscopic constitutive
equation, the viscoelastic contribution to the stress is obtained using coarse-grained rep-
resentations of the microstructural dynamics. For more comprehensive reviews on these
methods, the reader is referred to [18,21–25].

Micro–macro methods are especially appealing when modifications to the microstruc-
tural dynamics need to be introduced without incurring large numerical changes or extreme
computational costs. This is because the evolution of the microscopic description is some-
how decoupled from the macroscopic flow solvers. This has the potential of making the
model highly versatile and applicable to a range of deformation conditions. In addition,
micro–macro methods facilitate the investigation of the effects of various parameters to gain
insights into the underlying physics of a given phenomenon and lead to an optimization of
a range of industrial processes. On the other hand, micro–macro methods are more com-
putationally demanding than their corresponding macroscopic counterparts. In practice,
one must choose between models that are computationally tractable but perhaps do not
offer a direct link between the flow-induced development of the micro-structure and the
applied flow field or be limited to simple geometries and viscometric flows when using
macro–micro methods.
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Within the context of microscopic models, different models have been developed
to describe the coupling between macroscopic response and microstructure dynamics in
polymeric fluids. One family of models are the so-called bead-spring models. These models
use molecular coarse-graining to describe the behavior of polymer chains represented as
beads connected by massless springs. The simplest of these models considers only two
beads, and it is known as the elastic dumbbell model. Although it is widely recognized
that a single dumbbell is too simple to be able to describe any complicated dynamics
in polymeric systems, it is also known that stretching and orientation alone suffice to
give a qualitative description of steady-state rheological properties and flows with slow
characteristic time scales [15]. Accordingly, these models have been extensively used to
develop “an elementary but broad understanding of the relation between macro-molecular
motions and rheological phenomena” [15]. One of the most common dumbbell models is
the Hookean dumbbell model, where the spring connecting the two beads is assumed to
follow a linear elastic law ( Hooke’s law). This model, although physically unrealistic, has
the advantage of being the only model in its class with an exact closure [15,26]; this closure
leads to the well-known macroscopic constitutive equation called the Oldroyd-B model.
If a different spring law is assumed, the transition between micro and macro models is not
directly possible. For instance, the family of models derived from using a finite extensible
(FENE) spring force can have many types of closure depending on which approximation is
made in the closure step. Many studies have investigated the effects of the different FENE
closures; for an example, see Herrchen and Öttinger [27].

In short, the use of dumbbell models allows for the simulation of complex fluids
at a molecular level, which, although somewhat unrealistic, can still provide valuable
insight into the microstructural responses in these materials. However, simulating complex
fluids using dumbbell models requires large amounts of computational power, which
has hindered the ability to conduct large-scale simulations until recently. That is why,
although some information is lost by averaging the effect of the dumbbells in a single
differential equation, macroscopic models are still more widely used in complex flow. The
main reason for this is that PDE models are more computationally tractable than their SDE
counterparts. Parallel computing has surfaced as an alternative to close the gap between
these two computational costs. In particular, GPU computing emerged in past decades as a
cheap option for performing parallel computing. The only drawback when dealing with
GPUs is that memory transfer between the CPU and the GPU is very costly, which is why
these devices perform better on systems that are trivially parallelizable.

Here, we demonstrate the use of GPU computing using non-interacting dumbbell
models, which are by design trivially parallelizable. First, we explore two viscometric
flows: simple shear and uniaxial extensional flow. Next, we show the coupling between an
existing macro solver [28] and the GPU dumbbell models to simulate capillary thinning.
Capillary thinning is a phenomenon where a liquid bridge formed between two solid
surfaces undergoes thinning due to surface tension forces until it breaks. This is a common
phenomenon in a variety of industrial processes, such as coating, printing, and microfab-
rication [1,3,5]. The use of simulations in understanding capillary thinning can provide
insight into the underlying physics and aid in the design of improved processes. An
advantage of using dumbbell models is that they enable the investigation of the effects of
various microstructural parameters on capillary thinning.
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2. Governing Equations
2.1. Macroscopic Flow Equations

At the macroscale, considering an unsteady, incompressible viscoelastic flow and in
the absence of external body forces, the flow is governed by the conservation of mass and
the conservation of momentum equations

∇̃ · ũ = 0, (1)

ρ

(
∂ũ
∂t̃

+ ũ · ∇̃ũ
)

= −∇̃ p̃ + ηs∇̃
2ũ + ∇̃ · τ̃, (2)

where ũ is the velocity vector, p̃ is the pressure, τ̃ is the extra stress tensor, ηs is the solvent
viscosity, and ρ is the density.

We scale the conservation equations as follows:

t = t̃ ·
(

U
L

)
, x = x̃ ·

(
1
L

)
, u = ũ ·

(
1
U

)
, p = p̃ ·

(
1

ρU2

)
, τ = τ̃ ·

(
λ

ηp

)
. (3)

Here, L is a characteristic macoscopic length, U is a characteristic velocity, ηp is the
zero shear rate polymeric viscosity, and λ is the longest relaxation time. With this scaling,
the conservation equations become

∇ · u = 0, (4a)
∂u
∂t

+ u ·∇u = −∇p +
1

Re

[
β∇2u +

1− β

De
∇ · τ

]
. (4b)

Several nondimensional groups arise from this scaling:

• The Reynolds number, Re =
ρUL

η
, which is the ratio of inertial to viscous forces.

• The ratio of the solvent to total zero-shear viscosity: β =
ηs

ηs + ηp
.

• The Deborah number, De = λ
U
L

, which is the ratio of the fluid relaxation time to a
characteristic time for the macroscopic flow. Note that in the case of viscometric flow,
in which U/L = γ̇0, this is also referred to as the Weissenberg number.

2.2. Constitutive Equations for Extra Stress

To solve the resulting system of conservation equations, an expression for the extra
stress tensor, τ, is necessary. As discussed in the introduction, there are several ways in
which the extra stress can be modeled. Here we use a micro–macro approach [21], where the
coarse-grained approximation at the mesoscale utilizes non-interacting elastic dumbbells.
Below, we introduce the evolution equations of the dumbbell models used in this study.
For completeness, we also introduce the macroscopic closure equations corresponding to
each of the two dumbbell models considered.

2.2.1. Microscopic Description—Dumbbell Models

The solvent is assumed to be an incompressible Newtonian fluid of viscosity ηs. The
configuration of the dumbbell, shown in Figure 1, is described by the end-to-end connector
vector Q = r2 − r1 and the center-of-mass vector rc = 1

2 (r1 + r2). Here, we assume a
homogeneous distribution, so that the only variable of =interest is Q.
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Figure 1. Dumbbell configuration given by the coordinates of each dumbbell,~r1 and~r2, or its center
of mass,~rc and end-to-end vector, ~Q.

The stochastic differential equation describing the evolution of the end-to-end vector
is given by [15,29],

dQ̃t =
(
∇̃ũ

)ᵀ · Q̃t −
2
ζ

F
(
Q̃t
)
+

√
4kBT

ζ
dWt, (5)

where F(·) denotes the functional form of the spring force, Wt is a two-dimensional Wiener
process, ζ is the drag coefficient acting on each bead, and kBT is the thermal energy.

The viscoelastic contribution to the stress is given by Kramer’s relation [15,29],

τ̃ = n
〈

F(Q̃) Q̃
〉
− nkBT I, (6)

where n is the dumbbells’ number density, n〈F(Q)Q〉 is the contribution of the tension on
the spring with the spring law F(Q), and nkBT captures effects due to Brownian motion.

• Hookean dumbbells:
For Hookean dumbbells, a linear form is assumed for the spring force, F(Q) = HQ,
where H is the spring constant. With this, Equations (5) and (6) become

dQ̃t =
(
∇̃ũ

)ᵀ · Q̃t −
2H
ζ

Q̃t +

√
4kBT

ζ
dWt, (7a)

τ̃ = nH
〈
Q̃Q̃

〉
− nkBT I. (7b)

These equations are scaled using Equation (3) and the characteristic microscopic length,

x =

√
kBT
H

. (8)

With these,

ηp = nkBTλ, τ = τ̃ ·
(

λ

ηp

)
= τ̃ ·

(
1

nkBT

)
, Q = Q̃ ·

(√
H

kBT

)
. (9)

In addition, the longest relaxation time is defined as

λ =
ζ

4H
. (10)
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The resulting non-dimensional equations are then

dQt = (∇u)ᵀ ·Qt −
1

2 De
Qt +

1√
De

dWt, (11a)

τ = 〈QQ〉 − I, (11b)

where the Deborah number is defined as before, De = λU/L.

• FENE Dumbbells
If instead of a linear spring connector a finitely extensible spring is considered, we
obtain FENE-type models. These models are derived by introducing Warner’s finitely
extensible nonlinear connector force law [15],

F
(
Q̃
)
=

HQ̃

1−
(
Q̃/Qmax

)2 , (12)

where Q2 = Q ·Q and Qmax is the maximum allowed extension of the dumbbell.
Introducing this spring law into Equation (5) and non-dimensionalizing as before gives

dQt = (∇u)ᵀ ·Qt −
1

2De

(
Qt

1−Q2/b

)
+

1√
De

dWt, (13a)

τ =

〈
QQ

1−Q2/b

〉
− I, (13b)

where the nonlinear FENE parameters are b = H Q2
max/(kBT).

2.2.2. Macro-Constitutive Equations—Closure Models

In this section, we introduce macroscopic closures for the two dumbbell models dis-
cussed in Section 2.2.1. We introduce these closures here and use them in Sections 3.1 and 3.2
to compare their results with those of their corresponding microscopic dumbbell model.
The main objective is to show how much information is lost at the microscale using closure
approximations. These shortcomings of the macroscopic closures highlight the importance
of micro–macro models to properly capture the underlying dynamics that govern the flow
in complex fluids.

Recall that the extra stress is found as a function of the second moment of the end-to-
end vector, Q. From the equation of motion of a dumbbell, Equation (5), the following
evolution equation for the second moment of the end-to-end vector Q can be derived:

(〈
Q̃Q̃

〉)
(1) +

4
ζ

〈
F(Q̃)Q̃

〉
=

4kBT
ζ

I, (14)

where (·)(1) is the upper convected derivative, defined as

(·)(1) =
∂(·)
∂t

+ u ·∇(·)− (·) · (∇u)− (∇u)ᵀ · (·). (15)

• Upper convected Maxwell model:
If the spring is linear (Hookean), where F(Q) = HQ, the resulting constitute equation
obtained from Equation (14) is known as the upper convected Maxwell (UCM) model

τ̃ = nH
〈
Q̃Q̃

〉
− nkBTI, (16a)(〈

Q̃Q̃
〉)

(1) +
4H
ζ

〈
Q̃Q̃

〉
=

4kBT
ζ

I. (16b)
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Using the same scaling as before leads to the following non-dimensional constitutive
equations:

τ = 〈QQ〉 − I, (17a)

De(〈QQ〉)(1) + 〈QQ〉 = I. (17b)

• FENE-P model
In a FENE model, with the spring law given by Equation (12), the evolution equation,
Equation (14), becomes

(〈
Q̃Q̃

〉)
(1) +

4H
ζ

〈
HQ̃Q̃

1− (Q̃/Qmax)2

〉
=

4kBT
ζ

I. (18)

Different FENE models can be formulated based on the approximation used to calcu-
late the second term in Equation (18). Here, we focus on the FENE-P model, which is
obtained by the approximation〈

HQ̃Q̃
1− (Q̃/Qmax)2

〉
=

〈
Q̃Q̃

〉
1−

〈
Q̃2
〉
/Q2

max
. (19)

With this approximation, the constitutive equations become

τ̃ =
nH

1−
〈

Q̃2
〉
/Q̃2

max

〈
Q̃Q̃

〉
− nkBTI, (20a)

(〈
Q̃Q̃

〉)
(1̃) +

4H
ζ

〈
Q̃Q̃

〉
1−

〈
Q̃2
〉
/Q̃2

max
=

4kBT
ζ

I. (20b)

Scaling as before, we obtain

τ = 〈QQ〉

1−
〈

Q2
〉

/b
− I, (21a)

De(〈QQ〉)(1) +
〈QQ〉

1− 〈Q2〉/b
= I. (21b)

For convenience, one can define the non-dimensional configuration tensor, A, as

A ≡ d
〈
Q̃Q̃

〉〈
Q̃2
〉

0
, (22)

where
〈

Q̃2〉
0 is the mean-square end-to-end spring length at equilibrium (absence of

flow) and d is the dimensionality [15].
Note that if we scale the end-to-end vector as before, we have

A ≡ d
kBT
H 〈QQ〉〈

Q̃2
〉

0
= d〈QQ〉

(
kBT

H
〈

Q̃2
〉2

)
= d〈QQ〉

(
1
d

)
= 〈QQ〉. (23)

In addition, trace(A) = d
〈

Q2〉.
The constitutive equation for A in two dimensions is

τ =
A

1− trace(A)/(2b)
− I. (24a)

DeA(1) +
A

1− trace(A)/(2b)
= I, (24b)
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2.3. Numerical Considerations

In this work, we use graphics processing units (GPU) to perform calculations at the
mesoscale. This approach takes advantage of the fact that the stochastic differential equa-
tions for non-interacting dumbbells are trivially parallelizable, so that one can concurrently
solve millions of equations. This approach eliminates the need for variance reduction
approaches [30–32] since it is possible to resolve hundreds of thousands of realizations with
very little computational time. The main computational scheme is summarized in Figure A1,
particular considerations for the Hookean and FENE dumbbells are described below.

One thing to keep in mind when using GPUs is that this approach works best when the
dynamics of the individual dumbbells are trivially parallelizable. That is why, for instance,
modeling hydrodynamics comes with a much higher computational costs using GPUs.
In this study, we limit ourselves to equations of motion that are trivially parallelizable.

• Parameter values: Unless otherwise noted, the parameter values used in the simula-
tions are given in Table 1.

Table 1. Simulation parameters.

Parameter Symbol—Eqn Units Value Ref.

Density ρ kg/m3 1000
Solvent viscosity ηs Pa s 0.001
Zero shear rate viscosity η0 = ηs + ηp Pa s 0.0037 [33]
Characteristic relaxation time λ s 0.010 [34]
Characteristic velocity U =

√
γ/(ρR0) m/s 0.260

Characteristic length L m 0.003
Surface tension γ N/m 0.070 [34]
Initial jet radius R0 m 0.001 [34]
Reynolds number Re = ρUL/η0 Dimensionless 78
Ratio of viscosities β = ηs/η0 Dimensionless 0.270
Deborah number De = λU/L Dimensionless 0.800
Ohnesorge number Oh = η0/

√
ργR0 Dimensionless 0.038

FENE parameter b Dimensionless 105

Wavenumber k Dimensionless 0.8

2.3.1. Hookean Dumbbells

Equation (11a) will be solved for each dumbbell using a forward Euler scheme,

Q
(
tj+1

)
= Q

(
tj
)
+

[
(∇u)ᵀ ·Q

(
tj
)
− 1

2De
Q
(
tj
)]

∆tj +
1√
De

∆Wj. (25)

Boundary conditions for Q are imposed at the macroscale through u. Whenever
necessary to calculate the stress gradient, ghost cells will be included in the macroscale grid.

2.3.2. FENE Dumbbells

Because of the nonlinearity introduced in the evolution equation, a semi-implicit, first-order
algorithm is used instead of the forward Euler scheme. Briefly, a two-step operator splitting
procedure is implemented, where the two steps are given by Equations (26) and (27) [29]
as follows:

Q̄
(
tj+1

)
= Q

(
tj
)
+

[
(∇u)ᵀ ·Q

(
tj
)
− 1

2De

(
Q
(
tj
)

1−Q
(
tj
)2/b

)]
∆tj +

1√
De

∆Wj, (26)

and
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1 +
1

4De
∆tj

1− Q2(tj+1)
b

Q
(
tj+1

)
= Q

(
tj
)
+

1√
De

∆Wj +

1
2

[
(∇u)ᵀ

(
tj+1

)
· Q̄
(
tj+1

)
+ (∇u)ᵀ

(
tj
)
·Q
(
tj
)

− 1
2De

 Q
(
tj
)

1− Q2(tj)
b

∆tj. (27)

Equation (27) can be written as

Q3
j+1 − P Q2

j+1 − b
(

1 +
1

4De
∆t
)

Qj+1 − b P = 0, (28)

where P is the magnitude of the right-hand side of Equation (27). This cubic equation
has one real root in the interval

(
0,
√

b
)

[29,35]. The approach is to find the magnitude

of Q
(
tj+1

)
using the polynomial’s solution in this interval; then, its direction is found by

solving Equation (27) for each vector component.
Note that Equation (27) requires the velocity gradient tensor, (∇u)ᵀ

(
tj+1

)
, at time

t + 1, which is unknown for non-viscometric flows. In our computations, u
(
tj+1

)
is found

by a second-order extrapolation following [35],

u
(
tj+1

)
= 2u

(
tj
)
− u

(
tj−1

)
. (29)

3. Results
3.1. Simple Shear

This flow field results from placing the fluid between two parallel plates, with the
lower plate stationary and the upper plate moving at a constant velocity Utop. Under
viscometric conditions, the equations can be simplified by assuming a fully developed flow
so that

ũ = [γ̇0ỹ, 0]ᵀ,
∂(·)
∂x

= 0, (30)

where γ̇0 = Utop/L and L is the plates’ separation.
Using the same scaling as before simplifies the velocity to u = [y, 0]ᵀ, and the velocity

gradient tensor reduces to

∇u =

(
0 1
0 0

)
. (31)

All initial conditions correspond to equilibrium conditions. For dumbbell models,
this means the end-to-end vectors are drawn from a normal distribution. For the closure
models, this means the extra stress is zero.

The UCM model is an exact closure of the Hookean dumbbell equation, and as
expected results from these two models will always agree, this is confirmed in Figure 2,
where results from both models in viscometric simple shear flow are compared.
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Figure 2. Extra stress results in viscometric simple shear flow for Hookean dumbbells (Equation (11))
and UCM model (Equation (17)). The first normal stress difference is calculated as N1 = τyy − τxx.
All variables are non-dimensionalized using the scaling given in Equation (3) and parameter values
given in Table 1.

Similarly, Figure 3 compares results from the FENE-P model with stochastic simula-
tions of FENE dumbbells. The figure shows that the FENE-P approximation underpredicts
the nonlinear behavior of the shear stress, in agreement with previous studies [27].

Figure 3. Extra stress in viscometric simple shear flow for FENE models compared to the FENE-P
closure (Equation (24)). All variables are non-dimensionalized using the scaling given in Equation (3)
and parameter values given in Table 1.
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Figure 4 shows that as the nonlinearity, represented by the parameter b, is increased,
the discrepancies between the micro and macro representations become more pronounced.
For a more in-depth comparison between the FENE model and different FENE closures,
the reader is referred to [27].

The advantage of using dumbbell equations, as opposed to closure approximations, is
that in addition to the average stress behavior, shown in Figures 2–4, one can also capture
the stretching and orientation of dumbbells under flow. In this way, the model predictions
can be compared to data obtained from scattering techniques [36]. Figure 5 shows the
temporal evolution of the distribution of dumbbell lengths, Qx vs. Qy, as a function of
shear flow both in the linear regime, De = 10, and the nonlinear regime, De = 500. In the
linear regime, dumbbells are stretched and oriented in the direction of the flow, but the
distribution of lengths remains Gaussian. In the nonlinear regime, Gaussianity is lost
around the same time the overshoot in the shear stress is observed.

Figure 4. Stochastic simulations for the FENE model with different values of the nonlinear parameter
b. All variables are non-dimensionalized using the scaling given in Equation (3) and parameter
values given in Table 1.

We can also examine the probability distribution function of the dumbbell orientation
as a function of the Deborah number; these results are shown in Figure 6. The figure
shows that the nonlinear behavior differs from linear behavior in two main ways. First,
the ‘molecules’ are more oriented with respect to the flow, as proven by the fact that the
mean orientation angle at steady state for De = 10 is not quite zero, while for De = 500,
the mean angle is zero. Second, narrower distributions for De = 500 indicate that more
‘molecules’ are aligned with the flow at steady state compared with molecules in the
linear regime.
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Figure 5. Scatter plots of Qx and Qy in simple shear flow for two values of the Deborah number De.
Note: the scale of the scatter plots is not the same across the different plots.

A final checkpoint for our simulations is the expansion ratio, defined as

e =

√
e2

x + e2
y

2
, (32)

where the axes of extension for the dumbbell ‘molecule’ are calculated as

ei =

√ 〈
Q2

i
〉〈

Q2
i
〉

0
, i = x, y (33)

where < · >0 represents the mean deformation at equilibrium.
Figure 7 shows the expansion ratio for different values of De. Compared to the

information gathered from the shear stress curves, the expansion ratio does not offer any
new insight into the flow dynamics. However, our simulations at the mesoscale allow us to
take a closer look at the individual axes of extension and analyze their behavior, as shown
in Figure 8.
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Figure 6. Probability distribution function (PDF) of dumbbells’ orientation as a function of time and
Deborah number (De).

Figure 7. Expansion ratio as a function of time and Deborah number. The ratio is calculated using
Equation (32).

In Figure 8, we show the particulars of the two axes of extension in the nonlinear
regime, De = 500, together with their distributions at some selected times. In the scattering
plots, we have normalized the axes with respect to their maximum values. However,
we should note that the maximum values vary widely for different times. For instance,
at t = 1 : max(ex) = 10.54, while at t = 1000 : max(ex) = 295.82. This normalization was
carried out to visualize the breaking of isotropy in the stretching as the system approaches
the stress overshoot.
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Figure 8. Axes of extension as a function of time and De = 500. Distribution plots at the bottom
have been normalized by their corresponding maximum values. Between 0 and 100, the system
is in the linear regime, and the stretching in the x- and y-directions are proportional to each other.
In the nonlinear regime, t > 100, the molecules stretch more in the direction of the flow field, i.e., the
x-direction. As the stretching approaches the maximum dumbbell length (b = 300), the stretching is
’accumulated’ at the end of the spectrum.

3.2. Elongational Flow

This flow field results from stretching the fluid in one direction at a rate ε̇0 = dε/dt,
where ε is the strain. As before, we assume a fully developed flow so that the velocity field
is given by

ũ =

[
ε̇0 x̃,−1

2
ε̇0ỹ,−1

2
ε̇0z̃
]ᵀ

. (34)

Using the same scaling as before simplifies the velocity as u =

[
x,−1

2
y,−1

2
z
]ᵀ

and

the velocity gradient tensor as

∇u =


1 0 0

0 −1
2

0

0 0 −1
2

. (35)

As before, we assume that initially, the system is at equilibrium, as discussed in Section 3.1.
Figure 9 shows the comparison of the macro and stochastic simulations. As expected,

the FENE-P closure deviates from the FENE dumbbell model, and this deviation increases in
the nonlinear regime. For a complete discussion of FENE models under rapid elongational
flow, the reader is referred to [37].
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Figure 9. Comparison of FENE-P model (Equation (24)) with stochastic simulations (Equation (13))
under viscometric elongational flow.

3.3. Capillary Thinning

Transient elongational rheometry is used to obtain comparative information about the
elongational behavior of polymer solutions. The investigation of the elongational behavior
of complex fluids is relevant to applications defined by spraying and jetting, such as mi-
crofluidic devices, printing, fiber spinning, and understanding how droplet emissions from
respiratory events affect the transmission of infectious diseases [1–6]. Ardekani et al. [34]
showed that three conditions should be satisfied for an elongational experiment to be
successful: an elastocapillary balance must be established, the range of diameters of the
liquid jets should be experimentally accessible, and the formation of secondary droplets
along the thread must be suppressed. Clearly, understanding the underlying microstruc-
tural dynamics that govern one or more of these conditions is important to evaluate the
optimal performance both under experimental and application settings. While most of the
theoretical analysis is carried out using homogenized views of the microstructure in the
form of macroscopic constitutive equations, using methods that allow for the straightfor-
ward explicit integration of microstructural dynamics is appealing. Here, our goal is to
illustrate how coarse-grained mesoscopic simulations can also be used to gain insight into
the development of droplets in a viscoelastic fluid jet. We note that the objective of this
publication is to demonstrate the feasibility of the methods, and we take advantage of
symmetry and one-dimensional flow fields to simplify many of the computations. More
in-depth studies will be left for future investigations.

In capillary thinning experiments, a piece of fluid is stretched between two separating
surfaces, with surface tension being the main driver of the fluid motion. When a Newtonian
fluid is stretched, its radius decreases due to surface tension until it breaks into many
droplets. For viscoelastic materials, the underlying microstructure can give rise to different
configurations. In polymeric materials, these dynamics involve nonlinear effects derived
from the finite extensibility of polymer chains within the fluid. As the fluid jet starts to
form droplets, the polymer inside the drops remains relaxed, while polymer chains in the
filaments between drops become strongly oriented and stretched, essentially leading to the
formation of bridges with high tensile strains. This instability, characteristic of fluids that have
some elasticity, has become known as a “beads-on-a-string” structure [38–41]. Moreover,
under certain flow regimes, when there is a balance of capillary, viscous, and inertial
effects, additional structures can appear. For a more in-depth review of the formation of
bead-on-a-string structures, see [40].

To solve this flow, a thin film formulation is used where only the leading-order
approximation in an expansion on the jet radius, R(z, t), is considered [42]. This essentially
assumes that the flow inside the fluid jet is one-dimensional so that the only relevant
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variables are the radius and the axial velocity, v(z, t). In this case, the non-dimensional
conservation of mass and of momentum equations are simplified as [43],

∂R2

∂t
+

∂

∂z
(vR2) = 0 (36a)

(
∂v
∂t

+ v
∂v
∂z

)
= −∂κ

∂z
+ 3 Oh

β

R2
∂

∂z

(
R2 ∂v

∂z

)
+

Oh
De

(1− β)

R2
∂

∂z

(
R2(τzz − τrr)

)
, (36b)

where

κ =
1

R(1 + R2
z)

1/2 −
Rzz

(1 + R2
z)

3/2 (37)

is the curvature and τ is the polymer contribution to the stress. The equations have been
non-dimensionalized by taking the initial radius of the jet, R0, as the characteristic macro-

scopic length scale and the Rayleigh time, tR =
√

ρR3
0/γ, as the macroscopic characteristic

time scale; this gives the characteristic velocity as
√

γ/(ρR0). Finally, the Ohnesorge number

is defined as Oh = η0/
√

ργR0, and all other dimensionless groups are defined as before.
With this scaling, the dynamics of the axisymmetric slender jet are governed by three

non-dimensional groups: the Ohnesorge number, Oh, which is the ratio of surface tension to
inertial forces; the parameter β, which is the ratio between the solvent and fluid viscosities;
and the Deborah number, De, which measures the ratio of the material’s characteristic time
to the time scale of the flow. An additional parameter captures the nonlinear viscoelastic
behavior of the polymer chains, which, in the case of FENE models, is the finite extensibility
parameter, b, defined above.

The nonlinear system of partial differential equations (PDEs), Equation (36), is solved
numerically via finite differencing [28]. All spatial terms, except convection, are discretized
using second-order central differencing. For the convective terms, a velocity-weighted
upwind discretization scheme is used. In particular, the derivative is interpolated between
pure central differencing and pure upwind. The result is that in regions of slow flow,
a central differencing is used; however, as the velocity increases, the weighting moves
closer to a pure upwind differencing. For the convective terms where the derivative
depends on the velocity, the first derivative is calculated as follows:(

∂ f
∂z

)
j
=

(1− gj)( f j+1 − f j)

2∆z
+

(1 + gj)( f j − f j−1)

2∆z
, (38)

where gj = vj/vmax.
We use the implicit Euler method for time discretization combined with time filters,

which increase the order of accuracy from first to second order [44]. Additionally, we have
implemented variable step sizes, which greatly enhances the speed and efficiency of the
solver. The numerical solver has been benchmarked against existing simulations of the
Oldroyd-B model [34].

In the spatial domain, periodic boundary conditions are used for the velocity, the ra-
dius, and the polymer configurations. The initial condition considers a homogeneous base
state corresponding to a uniform cylindrical shape and molecules at equilibrium conditions.
To this base state a small amplitude perturbation is added. We note that the eigenvalues of
the linearized system resulting from expanding the governing equations to first order in
the amplitude of these perturbations determines how fast the perturbations grow towards
a necked state or whether they decay to leave a uniform filament. Following [34], we set
the initial shape of the jet as

R = R0(1 + 0.01 cos(kz)), (39)
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where k is the wavenumber.
At each time step, the system of PDEs is solved to find the velocity field. The field

is then used to find the velocity gradient, ∇u, at each grid point. Using these values,
the dumbbell configurations are updated using Equation (13a) and the extra stress calcu-
lated with Equation (13b). The resulting values for the extra stress at each grid point are
introduced in the macroscopic simulation through Equation (36b).

Below, we show the results obtained when the Deborah number, the wavelength
values, and the maximum extensibility of the FENE dumbbells are varied. As a metric for
microstructural organization, we use the expansion ratio defined in Equation (32).

3.3.1. Deborah Number

Figure 10 shows the evolution of the jet morphology as a function of the Deborah
number, De. As the elasticity of the fluid is increased—a larger De—the formation of
droplets is inhibited. This inhibition is related to the higher tensile stress in the filament
prior to the formation of the droplets, represented by a larger expansion ratio in the
figures. This, in turn, hinders the reorganization of the strands that would result in a lower
expansion ratio in the middle of the jet, which is what ultimately leads to the formation
of droplets.

3.3.2. Wavelength

The effect of the excitation wavenumber on the formation of droplets is well under-
stood; see, for example, [34,45–47]. Briefly, there are three regimes: (i) for very small
wavelengths, the jets are characterized by traveling capillary waves; (ii) in the middle
regime, the jet develops single and multiple drops; and (iii) at large wavelength numbers,
no formation of droplets is observed. Our simulations show the same behavior. In Figure 11
the jet evolutions for two different wavenumbers are shown. The expansion ratio shows
the same trends discussed above, where the main stretching is observed at the bridges.
In addition, this figure shows that smaller droplets result in a higher level of stretching in
other regions of the filament.

Figure 10. Filament stretching evolution coupled with microstructure evolution. In this model, the
microstructure is represented by non-interacting dumbbells, and their conformation is given by the
expansion ratio in Equation (32). Other parameters are β = 0.27, Oh = 0.04, k = 0.8, and b = 105.
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Figure 11. Filament and microstructure evolution for different wavelength numbers. Other parame-
ters are β = 0.27, Oh = 0.04, De = 0.8, and b = 105.

3.3.3. Nonlinear FENE Parameter

Figure 12 shows the evolution of droplets for two values of the nonlinear parameter b.
Recall that b controls the maximum stretch allowed in the dumbbells. It is this stretch that
gives polymer solutions their elasticity. In this manner, filament formation has a similar
trend when varying b and De, i.e., as maximum extensibility is increased, satellite bead for-
mation is suppressed. Under conditions where satellite beads do form, smaller, secondary
droplets between the satellite and main beads may appear. As shown in Figure 12, larger
values of b suppress these secondary droplets. Furthermore, another main difference is
observed at the pinch sites, with smaller values of b resulting in more pronounced pinching.
This is a result of less elasticity, hence more viscous-like behavior.
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Figure 12. Effects of different FENE parameter. Other parameters are β = 0.27, Oh = 0.04, k = 0.8,
and De = 0.8.

4. Discussion

In this work, we have considered multiscale simulations of dilute polymeric solutions
under homogeneous and non-homogeneous flow conditions. At the microscale, Langevin
equations describing the behavior of elastic dumbbells are solved using GPUs, which
allows for massively parallel simulations. Considering dumbbell equations provides
more accurate information on the stretch and orientation of polymer chains, as opposed to
macroscopic constitutive equations. In this way, the stretching and orientation of dumbbells
are captured in a similar manner in which an experimentalist will analyze fluid behavior
using scattering techniques.

Under viscometric conditions of simple shear and uniaxial extension, we showed
that there is a significant difference between predictions from macroscopic and mesoscopic
models. These differences are exacerbated under nonlinear flow conditions. In the linear
regime, dumbbells are stretched and oriented in the direction of the flow, but the distri-
bution of lengths remains Gaussian. In the nonlinear regime, Gaussianity is lost around
the same time the overshoot in the shear stress is observed. Furthermore, the PDF of
dumbbell orientation shows that ‘molecules’ are more oriented with respect to the flow in
the nonlinear regime compared with molecules in the linear regime.

Under capillary thinning, we investigated the effects of the Deborah number, wavenum-
ber, and maximum extensibility on the formation of satellite drops. As the elasticity of
the fluid (De) is increased, the formation of satellite droplets is inhibited. This inhibition
is related to a higher tensile stress in the filament prior to the formation of the droplets,
represented by a larger expansion ratio. This, in turn, hinders the reorganization of the
strands that would result in a lower expansion ratio in the middle of the jet, which is what
ultimately leads to the formation of droplets. The finite extensibility plays a similar role.
By increasing the extensibility, the polymer becomes more elastic, suppressing droplet
formation. For less elastic materials, significant pinching can be observed where the bead
and string meet, as one might expect from a viscous filament. The wavenumber of per-
turbation, although not a material feature, plays a significant role in filament evolution.
The expansion ratio shows the same trends as elastic effects, where the main stretching is
observed at the bridges. In addition, smaller droplets result in a higher level of stretching
in other regions of the filament.

The objective of this work is to further examine and reveal the power and utility
of microscopic descriptions of macromolecules. One of the primary concerns in using
micro–macro multiscale simulations is computational efficiency. In homogeneous flow
fields, configurations are easy to follow around due to the absence of spatial resolution.
We extended the simulation capabilities to an inhomogeneous flow field, namely one-
dimensional capillary thinning. The symmetry and thin film assumptions resulted in
the problem being reduced to one spatial dimension. This allowed the decoupling of
the dumbbell stretching in two dimensions, which simplifies computational time and
effort. The goal now is to consider more general flow fields. In order to extend the
solver’s capabilities to other types of flow, a more careful coupling of the micro and macro
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approaches is required, with extra limitations arising from the use of GPUs. The results of
this work show that coupling a GPU solver for the Langevin equations with an efficient
macroscale solver for the flow field can lead to large-scale multiscale simulations in complex
flow fields.
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Appendix A

Appendix A.1. Flow Diagram

Figure A1 shows a flow diagram describing the procedure followed to couple micro-
and macroscale equations.

Figure A1. Coupling of equations at the micro- and macroscales.

Appendix A.2. Computational Resources

Simulations were performed at USC’s Hyperion cluster. The cluster is a heterogeneous
configuration, consisting of 291 compute nodes, 8 large memory nodes, 53 GPU nodes,
a large SMP system, and 2 IBM Power8 quad GPU servers. All nodes are connected via
a high-speed, low latency, InfiniBand network at 100 Gb/s. All nodes are also connected
to a 1.4 petabyte high-performance GPFS scratch filesystem and 450 terabytes of home
directory storage.

Figure A2 shows a comparison of running time between parallel and serial computa-
tions for simple shear flow.
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Performance Evaluation
Simple Shear Flow with Hookean Dumbbells

Figure A2. Wall clock time comparison for viscometric computations in simple shear flow for
Hookean dumbbells. Speedup using GPU increases with the number of dumbbells considered.

Appendix A.3. Capillary Thinning Results Using FENE-P Model

In this section, we compare the results shown in Figure 10 for the FENE dumbbell
model with those obtained using a macroscopic closure, namely a FENE-P model. The
predictions of the FNE-P model are given in Figure A3.

Figure A3. Principal stress difference obtained from simulations of the FENE-P model. These results
are comparable to those shown in Figure 10. The differences arise because the FENE-P model is not
an exact closure for the FENE dumbbell model and some information is lost by the approximation
used in the FENE-P model.
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