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Dynamic experiments in a modest range of magnetic forces show (1) a short-lived high viscosity
plateau, followed by (2) a bead acceleration phase with a sharp drop in apparent viscosity, and (3) a
terminal steady state that we show resides on the shear-thinning slope of the steady-state flow curve
from cone and plate data. This latter feature implies a new protocol to access the nonlinear steady-
state flow curve for biological EPS available only in microliter-scale volumes. We use the moment-
closure form of the Rolie–Poly kinetic model for EPS hydrodynamics, together with a decoupling
approximation that obviates the need for a full three-dimensional (3D) flow solver, to qualitatively
reproduce this dynamic experimental sequence. We thereby explain the phenomenon in terms of
entangled polymer physics, and show how the nonlinear event (acceleration and termination on the
shear-thinning response curve) is tunable by the interplay between molecular-scale mechanisms
(relaxation via reptation and chain retraction) and magnetic force controls. The experimental
conditions mimic movement of cilia tips, bacteria, and sperm in mucus barriers, implying a
physiological relevance of the phenomenon and compelling further quantitative kinetic-flow 3D
numerical modeling. VC 2013 The Society of Rheology. [http://dx.doi.org/10.1122/1.4811477]

I. INTRODUCTION

Microrheology is a technique used to determine the response functions of soft materi-
als that are volume limited or heterogeneous at microscopic length scales. In active
microrheology (AM), external forces induce the motion of probe particles, often through
the use of optical traps or magnetic fields. Tracking the probe motion allows one to infer
linear and, more rarely, nonlinear properties of the medium [Squires (2008); Sriram et al.
(2009); Squires and Mason (2010)]. Early AM methods by Ziemann et al. (1994) applied
magnetic forces to beads attached directly to cells and interpreted the results with linear
viscoelastic modeling. Subsequent modeling by Uhde et al. (2005) described the transient
response of pulsed magnetic beads in entangled actin networks as an osmotic pressure
effect that arises from the packing of actin filaments in front of the bead, the creation of
an entropic restoring force, and subsequent diffusion of the actin bundles to relieve con-
centration gradients. Recent experiments and modeling by Meyer et al. (2006) and Rich
et al. (2011) interpret nonlinear behavior for probes in colloidal suspensions as shear
thinning. Wilking and Mason (2008) used rotating, micron-scale discs in collagen solu-
tions and interpreted nonlinearity as a yield stress. Finally, our own previous work used
AM to show steady-state shear thinning for magnetic spheres and nanorods embedded in
entangled k-DNA solutions [Cribb et al. (2010)].

Here, we focus instead on the transient dynamics and the asymptotic quasisteady

response of magnetically driven microspheres in entangled polymer solutions (EPS) sub-

jected to a controlled, constant force. The range of transient and quasisteady behavior we

report, if fully understood and accurately modeled, could have profound implications for

characterization of the stress responses induced by objects in motion within many biolog-

ical systems (e.g., cilia, microswimmers such as sperm and bacteria) and of the transient

material properties of the materials through which they travel (e.g., mucus). The primary

challenge lies in understanding and modeling the unknown nonlinear mechanisms and

responses of EPS, which in turn require determining the unsteady Lagrangian flow field

generated by the probe particle as well as the coupled heterogeneous stress distribution

that influences its motion; we refer the reader to detailed discussions by Squires (2008),

Squires and Mason (2010), Squires and Brady (2005), and Fu et al. (2008).
Previously, several proposed numerical and asymptotic methods were used to analyze

and model experiments for spheres in viscoelastic fluids falling under gravity in a con-
fined cylinder; for extended discussions on the subject we direct the reader to the work of
Arigo et al. (1995), Rajagopalan et al. (1996), Owens and Phillips (2002), and McKinley
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(2002). These studies explain that, while these approaches capture experimental observa-
tions in a qualitative way, they do not give quantitative accuracy. The shortcomings are
caused by the use of macroscopic constitutive models that coarse-grain the dynamics of
the polymer molecular constituents. For this reason, it is imperative to develop mathe-
matical methods capable of coupling microscopic changes in the polymer network with
the macroscopic response observed experimentally. To our knowledge, there are no
reports of quantitative agreement between computational methods and experimental data
for this benchmark problem. It is safe to say that further progress is needed for various
classes of complex fluids, and for EPS in particular, to achieve quantitative agreement
with experiments.

Most rheological inferences from microrheology experiments rely on the generalized
Stokes–Einstein relation (GSER) which gives the diffusivity, D, of a particle with radius
a in a medium of viscosity g, D ¼ kBT=ð6pagÞ [Squires and Mason (2010)]. Once experi-
mental conditions violate the assumptions that allow the GSER formulation, the expected
agreement between microscopic and macroscopic measurements is lost. Squires and
Mason (2010) surveyed conditions under which the Stokes–Einstein relation might fail.
For instance, the Einstein component breaks down when actuated probes drive the sur-
rounding polymer system out of equilibrium. Conversely, violations of the Stokes com-
ponent of the GSER include the presence of particle–material interactions as well as
spatial heterogeneities at length scales explored by the particle, i.e., when the particle
size becomes comparable to the characteristic length scales of the polymer network. In
such instances, interpreting these experimental measurements in a rheologically mean-
ingful way becomes murky.

Here, we report a fundamental signature of nonlinearity found in our experimental
data: Beads initially translate uniformly under a constant magnetic force (the expected,
canonical, linear Stokes response), then experience a sudden acceleration, followed by
convergence to an asymptotic uniform velocity that does not scale linearly with magnetic
force. We explain this signature using a mathematical model that includes principles of
entangled polymers driven out of equilibrium. We model the evolution of the medium
compliance as a function of the applied force and parameters that represent molecular-
scale entangled polymer physics. We use the model to qualitatively mimic experimental
conditions and timescales, and thereby illustrate modeling capability to tune dynamics of
both linear and nonlinear responses.

The constant magnetic force microbead experiments presented here reveal nonlinear
phenomena, striking bead acceleration transients and non-Stokesian asymptotic veloc-
ities, at modest forces (1–30 pN). We define non-Stokesian asymptotic velocities as those
that do not scale linearly with force. The sharp transients in bead velocity, combined with
a nonlinear scaling of the asymptotic velocity with magnetic force, imply that the moving
bead drives the material out of equilibrium. To fully understand how the instability
affects particle mobility, one must explicitly compute the perturbed microstructure sur-
rounding the particle. One strategy to gain quantitative accuracy would require a direct
numerical simulation of the controlled magnetic force, a kinetic constitutive model for
EPS, as well as the full three-dimensional (3D) momentum balance for the flow field.
Instead, we propose a reduced-order model of the fully coupled system that captures the
EPS mechanisms by decoupling the flow away from the bead from the extra stresses aris-
ing in the polymer network. Our model is computationally feasible and amenable to a
wide parameter study, and thereby has the potential to explain the experimental transient
phenomena in qualitative terms.

The reduced-order model we developed here provides simulations that can explain the
molecular-scale mechanism behind the nonlinear phenomena in both the transients and
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the asymptotic quasisteady behavior. In this regard, our experimental-modeling protocol
complements the study of individualistic k-DNA molecular dynamics by Teixeira et al.
(2007) through the interrogation of nonequilibrium entangled polymer hydrodynamics.

For our experiments, we choose k-DNA, guar, and hyaluronic acid (HA) solutions
because of their relevance in many driven-flow paradigms found in physiology. A signifi-
cant amount of DNA is present in pathological mucus (sputum), a material the lung must
eliminate using cilia propulsion or air drag from breathing and cough to safeguard against
infection [Rubin (2006)]. Guar, often used as a thickening agent in foods, has had some
success as a mucus simulant when used in mucociliary transport experiments [King and
Macklem (1977)]. HA, found throughout the body, is especially instrumental in dissipat-
ing stresses in load-bearing joints. The physiological conditions involving these biopoly-
mer solutions comprise a wide range of forcing at transient shear rates, suggesting that
nonequilibrium fluid dynamical phenomena play essential roles in human physiology.
The thresholds of nonlinear response and possible signatures of nonlinearity in human
physiology drive the motivation for this study.

II. MATERIALS AND METHODS

A. Sample preparation

We prepared our k-DNA solution (Invitrogen, Carlsbad, CA, 25250-028), at a con-
centration of 1.4 mg/ml by concentrating stock k-DNA with centrifuge filters (Amicon
Ultra UFC510024) that had a molecular weight cutoff of 100 kD. A k-DNA solution at
this concentration should be in the entanglement regime, i.e., above the overlap concen-
tration, c$ ¼ 0.07 mg/ml. This solution contains an average of 20 entanglements per
chain, a reptation time of 3.2 s, and a plateau modulus of 0.9 Pa. The guar reagent,
derived from the seeds of Cyamopsis tetragonoloba, presented large aggregates
(30 lm) of structural matrix and cellular debris. To avoid spatial heterogeneities it
became necessary to eliminate these large aggregates using centrifugation (15 000 g for
10 min) at little to no cost of its macroscale rheology, confirmed via cone and plate
(CAP) measurements. The guar solution, prepared at a concentration of 15 mg/ml, is
also in the entanglement regime (c$ ¼ 0.3 mg/ml) with an average of 50 entanglements
per chain, a reptation time of 0.75 s, and a plateau modulus of 49 Pa. Finally, the HA so-
lution (Sigma-Aldrich 53747), prepared at 10 mg/ml, is in the semidilute regime (since
c$ ¼ 10 mg/ml), has a reptation time of 0.2 s and a plateau modulus of 46 Pa. We
obtained the molecular weight for each solution from the manufacturer or measured
using light scattering techniques. We calculated the contour length and number of
entanglements per chain using persistence lengths obtained from published work by Lu
et al. (2002), Morris et al. (2008), and Buhler and Bou!e (2004). Finally, we found
reptation time and entanglement modulus for each solution through fitting CAP data to
the Rolie–Poly model as described in Sec. V.

B. Microrheology experiments

Our magnetic-tweezer system, described previously by Fisher et al. (2006), uses a
small angle thin-foil wedge of magnetically permeable metal, referred to here as a “pole-
tip,” mounted to a glass coverslip, which is, in turn, mounted onto miniature copper-wire
coils capable of driving up to 2.5 A of DC current with an operating bandwidth of 20 kHz
(Fig. 1). This pole-tip and coverslip act as the upper boundary of the sample chamber
while a plain coverslip serves as its lower boundary. We load a small volume (1–3 ll) of
specimen inside the sample chamber and place the entire assembly into a Nikon TE-2000
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inverted microscope outfitted with a 60% 1.2 numerical aperture (NA) water-immersion
objective.

Embedded inside each specimen solution are 1 lm diameter magnetic beads (Dynal
MyOne) whose surfaces are functionalized with polyethylene glycol to discourage any
intrinsic attachment to the surrounding polymer system. Flowing current through the
magnetic coil channels magnetic flux through the pole-tip, generating a magnetic field
that attracts the magnetic beads distributed throughout the specimen volume. Applying a
step current generates a step force, FM, over small bead excursions x(t) (<5 lm) that
range from 1 pN at a distance of 100 lm from the pole-tip to 1000 pN at the pole-tip sur-
face. Because the pole-tip itself imposes a no-slip boundary condition to the sampling
space, we limited ourselves to locations that were 10 or more bead diameters away from
the pole-tip, effectively reducing our applicable force to approximately 150 pN. To mea-
sure creep response, we applied step currents that could range between 0.12 and 2.5 A
for durations that lasted from 0.2 to 15 s. A Jai Pulnix PTM-6710 camera collected
images at 120 frames per second, equivalent to an 8.6 ms temporal resolution. Once col-
lected, bead trajectories were tracked offline using our custom spot tracking software
(www.cismm.org) [Fisher et al. (2006)].

C. CAP rheometry

To compare our microrheology measurements with classical macroscopic measure-
ments, we employed a stress-controlled rheometer (AR-G2, TA Instruments, DE) and its
40 mm diameter/1& CAP geometry. For dynamic measurements, the instrument applied a
constant shear rate (in feedback) and recorded the evolution of the shear stress, sxy, as a
function of time. We used the long time scale, steady-state values to create a flow curve
of viscosity, g, versus shear rate, _c, where g ¼ sxy= _c. The Stokes solution for the drag
force, FD, on a bead of radius a that is moving at constant speed U, provides the maxi-
mum shear rate at the bead surface, _c ¼ 3U=

ffiffiffiffiffi
2a
p

.

FIG. 1. (A) Schematic of experiment: The bead experiences a magnetic force, FM , from the pole-tip that is
countered by the drag FD of the surrounding solution. (B) Photo of pole-tip, tip radius is approximately 15 lm.
(C) Magnetics system where pole-tip is mounted to one of the several available copper-wound coils. Each coil
surrounds a permalloy core that comes into magnetic contact with the nearby pole-tip. When current flows
through the coil magnetic flux is channeled into the pole-tip, generating an intense magnetic field in the proxim-
ity of beads embedded inside the polymer solution.
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III. MATHEMATICAL MODELING

We model the transient motion of a spherical probe of radius a and mass m accelerat-
ing in a polymeric fluid under the influence of a constant applied magnetic force, FM. If
the applied magnetic force and the drag force on the bead are equal, Stokes drag law
gives the apparent viscosity, gapp, as

gapp ¼
FD

6paU
; with FM ¼ FD: (1)

When FM 6¼ FD, a balance between these two forces gives the instantaneous change in
the velocity of the probe, UðtÞ

m
dUðtÞ

dt
¼ FM ' FDðtÞ: (2)

We obtain the drag force acting on the probe by integrating the normal traction over its
surface, S

FD ¼
þ#$
'pI þ 2gsfðrvÞ þ ðrvÞTg

%
) n̂ þ ðr' IÞ ) n̂

&
dS; (3)

where n̂ is the inward-pointing unit normal vector, gs is the viscosity of the solvent, v is
the velocity field induced by the probe’s displacement, p is the isotropic pressure, I is the
identity tensor, and r is the extra stress tensor arising from conformational changes of the
entangled polymer molecules immersed in the solvent [Bird et al. (1987)].

Closing the system of Eqs. (2) and (3) requires a constitutive equation for r; here, we
use the Rolie–Poly model for EPS formulated by Likhtman and Graham (2003). In this
model, the evolution of the extra stress is given by

dr

dt
¼ ðrvÞT ) rþ r ) ðrvÞ ' r' I

sd
' 2

sR
1'

ffiffiffiffiffiffiffiffiffiffi
3

trðrÞ

s0

@

1

A rþ b

ffiffiffiffiffiffiffiffiffiffi
3

trðrÞ

s

ðr' IÞ

2

4

3

5: (4)

Within this constitutive equation, two characteristic timescales govern the dynamics of
the polymer network: The relaxation by chain orientation, described by the reptation
time sd ¼ 3Z3se, and the relaxation by chain stretch given by sR ¼ Z2se [Likhtman and
Graham (2003)]. Here, se is the Rouse relaxation time of an entanglement segment and Z
is the number of entanglement segments in a chain. In addition, the parameter 0 * b * 1
captures the effects of convective constraint release. In this study, we fix b ¼ 1, follow-
ing the work of Teixeira et al. (2007) and Likhtman and Graham (2003). This implies
that, in this work, the only two fitting parameters are Z and se.

To solve the resulting system of equations, we impose a flow decoupling approxima-
tion that allows us to determine a closed-form expression at each time step for the veloc-
ity field external to the bead. Our modeling assumptions allow us to bypass a full solution
of all hydrodynamics and stress fields in space and time. Specifically, we assume that the
bead translational velocity at each time step, UðtÞ, generates an instantaneous quasisteady
Stokes velocity field. The velocity field is thereby explicit; in spherical coordinates and
assuming axisymmetric flow (v/ ¼ 0), this field is given by [Pozrikidis (1997)]
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½vr; vh, ¼
UðtÞ

2

a

r
cos h 3' a

r

' (2
 !

;' sin h
2

3þ a

r

' (2
 !" #

: (5)

Here vr and vh are, respectively, the velocity components in the r and h directions.
Equation (5) then yields the velocity gradient tensor, rv, at the surface of the bead,
a ¼ r.

Once the velocity field around the bead is determined from Eq. (5), Eqs. (2)–(4) con-
stitute a nonlinear integro-differential system of equations that provide a closed dynami-
cal representation of bead motion and surface stresses. The initial conditions at t ¼ 0
assume that the polymer molecules are at equilibrium so that r ¼ I, and from the Stokes
relation (1) we impose an initial value for the velocity of the probe that assumes an initial
Stokes response speed

Uð0Þ ¼ FM

6pags
: (6)

To impose the boundary conditions, we update the local conformational distribution of
the polymer molecules at the bead surface and calculate the extra stress using the
Rolie–Poly constitutive equation.

In this study, we show this approximate model is sufficient to capture the experimen-
tally observed behavior. Because of its relative computational simplicity, we can explore
a wide range of model parameters to mimic experimental controls as well as EPS molec-
ular properties, and analyze both transient and quasisteady behavior across the full pa-
rameter space. We also note that the standard linear viscoelastic protocol measures the
steady-state velocity, U1, and assumes that the only forces on the probe are due to vis-
cous drag and magnetic forces, using Eq. (1) to get the viscosity. Our extension of this
protocol models a nonuniform bead motion and the forces on the bead that arise from
nonequilibrium microstructure-induced stresses. Since the force balance at the bead sur-
face governs the bead velocity UðtÞ, the viscosity of the fluid evolves in time through
shear thinning and thickening states when there are non-negligible microstructure-
induced stresses. Our goal with the approximate model is to identify the underlying mo-
lecular basis for the conformational dynamics of the entangled polymer molecules that
result in bead takeoff events and that emerge in the convergence to non-Stokesian quasis-
teady velocities.

To find the state of the dynamical system (2)–(5) at tþ Dt, we follow the protocol
defined explicitly here and illustrated as a flowchart in Fig. 2. First, we use the bead ve-
locity at time t, UðtÞ, to evaluate the velocity gradient tensor, j ¼ ðrvÞT at the bead sur-
face through Eq. (5). We then update the extra stress by integrating Eq. (4) using a semi-
implicit finite difference scheme. We then use this extra stress r, to compute the new
drag force on the sphere via Eq. (3). Finally, we use this new drag force to update the
bead velocity using Eq. (2). In this way, Eqs. (2)–(5) constitute a closed seven-
dimensional nonlinear dynamical system for UðtÞ and rðt; a; hÞ, given a magnetic force,
FM, and a bead diameter, a.

Finally, for completeness, we note that, when the nonlinear stress terms in the
Rolie–Poly equation (4) are sufficiently small, the model reduces to the upper convected
Maxwell (UCM) model

dr

dt
¼ ðrvÞT ) rþ r ) ðrvÞ ' r' I

sd
: (7)
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Since ðrvÞ is given at the bead surface, the UCM model is exactly solvable, which we
shall exploit to illustrate the necessary role of the Rolie–Poly nonequilibrium model
mechanisms in capturing the nonlinear bead dynamic phenomena.

To find the steady-state solution to the UCM model, we posit the functional form of
the stress as in the linear viscoelastic case and introduce the following transformations:

rrr ¼ gðtÞsin2hþ 1; (8a)

rrh ¼ f ðtÞsin h: (8b)

Then, the drag force is explicitly given by

FD ¼ 6pags þ
8

3
pa2f ðtÞ: (9)

The resulting system of differential equations is

dgðtÞ
dt
¼ 3

a
UðtÞf ðtÞ ' 1

sd
gðtÞ; (10a)

df ðtÞ
dt
¼ 3

2a

gp

sd
UðtÞ ' 1

sd
f ðtÞ; (10b)

FIG. 2. The model and flowchart used to solve the system of Eqs. (2)–(5).
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dUðtÞ
dt
¼ 1

m
FM ' 6pagsUðtÞ '

8

3
pa2f ðtÞ

# &
: (10c)

Here, gp is the zero-shear rate viscosity of the polymeric fluid. The steady-state solution
of Eqs. (10) is likewise explicit

U1 ¼
FM

6paðgs þ 2=3 gpÞ
; (11a)

f1 ¼
3

2a
gpU1; (11b)

g1 ¼
3ffiffiffi
2
p

a

' (2

sdgpU2
1: (11c)

Analysis of the dynamical system (10) confirms that the steady state (11a)–(11c) is a
unique stable attractor. Thus, for polymeric solutions described by the UCM model,
Eq. (11a) gives the asymptotic bead velocity uniquely. Clearly, the steady-state
velocity for a linear viscoelastic or UCM model fluid is linear in the magnetic force,
with the same Stokesian scaling as a viscous fluid and an “effective” viscosity
gef f ¼ gs þ 2=3 gp.

We have thereby recovered the standard linear viscoelastic rheological inference for
magnetic microbeads under constant forcing. That is, given FM, a, and the measured U1
(confirmed to scale linearly with FM) one can infer the effective viscosity, gef f .

IV. EXPERIMENTAL RESULTS AND OBSERVATIONS

Our first bulk measurements show the transient/dynamic response of our test materials
to a step strain rate measurement imposed by the CAP rheometer. All three solutions
show a linear viscoelastic response at a shear rate _c ¼ 0:1 s'1, where the apparent vis-
cosity is a monotonic function of time (Fig. 3). Higher shear rates reveal nonlinear
responses for guar and DNA solutions, detected by a viscosity overshoot. The guar solu-
tion shows a viscosity overshoot at a shear rate of _c ¼ 10 s'1, and for the DNA data,
extracted from Teixeira et al. (2007), this occurs at _c ¼ 30 s'1. We note that both of
these solutions are at concentrations much higher than their overlap concentration, c$.
Conversely for the HA solution, which has a lower concentration relative to c$, over-
shoots appear at much higher shear rates than the ones shown in the figure.

We also used bulk CAP methods to measure the steady-state rheology of our solutions.
Shown in Fig. 4 as solid lines is the steady-state apparent viscosity of each solution
plotted against the Weissenberg number, We ¼ _c sd, where sd is the longest relaxation
time (Table I). These results show that all solutions investigated in this study exhibit
shear thinning for We - 1, which, in turn, implies that larger shear rates are necessary
to observe shear thinning in the HA data, consistent with Fig. 3. Namely, we expect
DNA to shear thin, and hence show overshoots in plots of viscosity versus time, for
shear rates _c - 1=3:2 ¼ 0:31 s'1; for guar this is _c - 1=0:75 ¼ 1:33 s'1, and for HA
_c - 1=0:2 ¼ 5 s'1.

In the microbead experiments, instead of direct stress and strain measurements that
the CAP provides, our instrument generates displacement curves by tracking bead trajec-
tories over time while under a constant applied force, FM. Figure 5 shows trajectories for
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FIG. 3. Apparent viscosity gapp for steady, shear-rate-mode CAP data (colored curves) on three polymeric solu-
tions, with fits to the Rolie–Poly model (black curves). The shear rates shown here were chosen to match those
accessible by the magnetic system.

FIG. 4. Measured gapp of k-DNA, guar, and HA solutions versus shear rate in CAP (solid lines) and in the
magnetic-tweezer system where open symbols correspond to measurements at U0 and closed symbols at U1,
each obtained from the appropriate regimes shown in detail in Figs. 5 and 6. Numerical labels indicate represen-
tative U0 and U1 pairs.

TABLE I. Molecular weight Mw, contour length Lc, concentration nc*, number of entanglements per chain Z,

reptation time sd, and entanglement modulus Ge of each polymeric system.

Mw (MDa) Lc (lm) nc* Z sd (s) Ge (Pa)

Guar 50 54 46 50 0.75 49

HA 1.6 0.5 1 1 0.2 46

k-DNA 32 14.7 18 20 3.2 0.86
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beads embedded in the HA solution, revealing a typical Stokes response for any force ac-
cessible with our experimental setup.

When we apply the same type of measurement for beads embedded within DNA we
also find the typical Stokes response, but only for forces below a threshold, i.e., when
FM * FT , where FT is approximately 2 pN, as shown in Fig. 6. Below FT , the bead dy-
namics quickly reach a steady-state velocity (U1). Above FT , a remarkable dynamic
transition sequence occurs: First an initial, apparently steady, velocity U0, followed by a
bead acceleration phase and subsequent saturation to a terminal velocity U1 that scales
nonlinearly with the applied magnetic force FM (Fig. 6). The ratio U0:U1 in our experi-
mental datasets ranges from 1:2 to 1:10. Guar data, not shown here, exhibit the same
acceleration events as DNA. For both DNA and guar, we distinguish linear from nonlin-
ear asymptotic response when U1 fails to scale linearly with FM.

Importantly, the timescales of the initial Stokes response U0 and the acceleration
phase are potentially below experimental resolution, easily leading one to misinterpret
the asymptotic steady velocity, U1, as a linear Stokes response and thereby report an er-
roneous Stokes viscosity. Therefore, the detection of the nonlinear threshold force FT is
critical, and it follows by the force sweep protocol and scaling of bead displacement.

We infer the apparent viscosity gapp from both U0 and U1 using Stokes drag law [Eq.
(1)], and plot these values in Fig. 4 as discrete data points. Remarkably, gappðU0Þ and
gappðU1Þ lie, within experimental error, on the viscosity versus shear rate curve from
CAP experiments for all three biopolymer solutions. Further, for trajectories that show a
bead acceleration event, the asymptotic data always lie on the shear-thinning part of the
curve. It is clear that for HA, the applied forces cannot generate sufficiently large shear
rates to shear thin the solution, in accord with CAP measurements; thus all AM data for
HA lie on the viscosity plateau at low shear rates as expected for a viscoelastic material
in the linear response regime.

V. MODELING: RESULTS AND DISCUSSION

Numerical solutions to the system of Eqs. (2)–(5) show that, at short times, the bead dis-
placement exhibits a linear Stokes response [Fig. 7(A)], i.e., a deceleration from the posited

FIG. 5. Bead displacements in HA showing the scaling of steady-state velocity consistent with linear rheologi-
cal behavior and Stokes drag.
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initial velocity Uð0Þ ¼ FM=6pags. This deviation from the initial velocity comes from the
change in the drag force that results from a nonzero viscoelastic stress in Eq. (3). Since, as
discussed above, in this linear regime viscoelastic stresses contribute to the effective
viscosity giving gef f ¼ gs þ 2=3 gp. This initial regime is shown in Figs. 7(B) and 7(C) at
t < 10'2 s. In Fig. 7(B), we show simulated bead displacements versus time for different
values of the number of chain entanglements, Z. At small values of Z, bead takeoff is
absent. As the number of entanglements increases, the system is driven out of equilibrium,
as shown by the onset of bead takeoff events at the same applied force. Beyond the initial
Stokes regime, the bead velocity either plateaus to a single value or transitions between
two states, depending on the applied force. We first analyze this transition in terms of the
applied force by keeping the model parameters, se and Z, constant.

As before, we designate FT as the threshold value for the applied force that differenti-
ates the two responses described above. For the parameter values used in Fig. 7(C), we
found that FT - 3 pN. When FM < FT the nonlinear corrections to the standard linear
viscoelasticity are negligible, and the velocity scales linearly with the magnetic force, or
equivalently, the lower set of compliance curves in Fig. 7(C) overlap at all times. In these

FIG. 6. (A) Bead displacements in k-DNA for constant applied forces. Note transition from U0 to U1 in the 2.4
pN trajectory. (B) Zoom-in of early responses in (A) showing transition for the 5.7 pN trajectory.
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conditions, there is no bead takeoff event. The mild upturning of the compliance plots is
associated with convergence to a Stokes steady-state velocity. In this figure, compliance
is found by scaling bead displacement by 6pa=FM.

As FM increases past the threshold value, the bead transitions from an apparent Stokes
velocity, U0, through an acceleration phase followed by convergence to a terminal con-
stant velocity, U1. This terminal velocity does not scale linearly with FM, as seen by the
shift in the high compliance curves in Fig. 7(C), recapitulating the experimental data dis-
cussed previously.

Now, we turn our attention to the dependence of bead displacement history on model
parameters. In order to distinguish the critical role played by entanglement dynamics, we
take the limit sR !1, which reduces the Rolie–Poly model to the UCM model. As
determined above analytically, solutions of the UCM model do not exhibit bead accelera-
tion events for any set of parameters. We conclude that the experimental phenomenon of
interest here is not due to pure chain orientation dynamics. Instead, we focus our investi-
gations on stretching and retraction dynamics, governed by sR, and consider their effects
on transient shear thickening and thinning events.

Within the Rolie–Poly model the normalized trace of the conformation tensor,
trðrÞ=3, gives the end-to-end stretch of the average polymer chain. Therefore, within our
analysis of chain stretching and retraction dynamics, we can use trðrÞ=3 as a metric to
detect nonlinear behavior and bead takeoff dynamics. Additionally, the nonlinear terms
in Eq. (4) vanish when trðrÞ=3 - 1, implying that the chains are near equilibrium. Our
numerical investigation of the model parameter space shows that bead takeoff events
occur when trðrÞ=3 is Oð10Þ or larger.

As a first step in understanding the role that chain stretching dynamics plays in the
bead takeoff phenomena, we explore in Fig. 7(D) the steady-state behavior of trðrÞ=3 as
a function of FM, ZZ, and se. When the number of entanglements is small (Z ¼ 3 in the

FIG. 7. Rolie–Poly model simulations. (A) Lin-Lin plot of the predicted displacement X for beads driven by
low (blue-dashed) and high (red) FM , producing linear and nonlinear responses, respectively. (B) Log–log plot
of displacement versus time as a function of Z. Increasing Z invokes a nonlinear response. (C) Log–log plot of
compliance ð6paX=FMÞ versus force plots show that these curves do not overlap, indicating nonlinear material
response. (D) Log–log plot of chain stretch [trðrÞ=3] versus applied force. Recall that trðrÞ=3 ¼ 1 for chain
configurations close to equilibrium.

1259NONLINEAR SIGNATURES IN ACTIVE MICRORHEOLOGY

 2
5
 O

c
to

b
e
r 2

0
2
3
 0

1
:3

6
:5

3



figure), chain stretching increases significantly with increasing entanglement relaxation
time, se. In this semidilute regime, chains cannot relax to their equilibrium configuration
within time scales comparable to those of the applied deformation. Here, the relaxation
of individual entanglement segments plays a crucial role in the relaxation dynamics of
the whole chain. Further increase in Z, with a constant force, results in an increase in
chain stretching; however, in this case the dependence on se is weaker. This arises
because, for larger Z, the entangled network of chains dominates the relaxation dynamics,
rather than the entanglement segments. This behavior of the chain stretching and the fact
that trðrÞ=3 is directly related to bead takeoff events strongly suggest that the magnitude
of the deformation and the ability of the network to relax after the deformation play a
major role in the bead takeoff dynamics.

So far, we have shown how changes in the steady-state values of chain stretch signal a
nonlinear microstructural transition governing the bead acceleration events. Next, we
focus on the analysis of the temporal evolution of stress around the bead to reveal the
mechanisms and timescales involved in this departure from linear behavior. Figure 8
depicts a surface plot generated by a family of constant-shear-rate solutions of Eq. (4)
using parameter values for k-DNA given in Table I trajectories at long times reproduce
gappðU1Þ, consistent with experimental data on the steady-state shear-thinning curve in
Fig. 4. The dashed yellow curves correspond to the traditional viscometric CAP measure-
ments with a controlled, constant shear rate. Solutions of the system (2)–(5) give
gappðtÞ ¼ rrhðtÞ= _cðtÞ, plotted as solid red curves in Fig. 8 while their respective projec-
tions onto the surface are shown as white dashed curves. Here, the unsteady nature of the
Lagrangian flow field around the bead is evident as the shear rate and viscosity change in
time, transverse to lines of constant shear rate.

In Fig. 9, the simulated bead trajectories (red) are plotted together with lines of con-
stant shear rate (black). From this figure, we note that the viscosity overshoot experienced
by the bead is larger in experiments where the force is constant, compared to those where
the velocity is constant. Nonetheless, since the beads asymptotically approach a constant
U1, and thus a constant _c1, the Rolie–Poly simulations of viscosity versus shear rate
recover the CAP steady-state shear-thinning curve.

FIG. 8. Surface of apparent viscosity, gapp, versus time, obtained from solutions of the Rolie–Poly model with
imposed constant shear rate, _cðtÞ. Three examples of CAP experiments are shown in yellow curves, which corre-
spond to experiments with constant shear rate. Red curves correspond to Rolie–Poly simulations of magnetic
bead trajectories with their surface projections shown as white dashed lines. Recall that the initial condition for
the bead trajectories (red lines) is Uð0Þ ¼ FM=6pags, in our simulations gs ¼ 0:005 Pa s and a ¼ 0:5 lm.
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These observations indicate that a necessary condition for bead takeoff is that the bead
trajectory must pass through a region of viscosity overshoots. Because the shear history
on a bead can take any “trajectory” for a given set of parameters, this illustrates the tuna-
bility of the nonlinear behavior. For bead trajectories with a takeoff event, the duration of
U0 depends on how soon the dynamic viscosity trajectory leaves the overshoot region.
The time scale of this transition depends on the strength of the deformation, which is a
function of FM, and on the surface shape, itself dictated by the polymer chain parameters,
Z and se. The formalism we have developed here using the Rolie–Poly model qualita-
tively illustrates the bead takeoff phenomena as the interplay between nonlinear relaxa-
tion dynamics of the polymer network and rate of deformation imposed by the pulling
bead.

VI. CONCLUSIONS

In summary, we presented and then interpreted experimental trajectories of magneti-
cally driven microbeads in EPS that, with a tunable magnetic force, transition from a lin-
ear to a nonlinear response. Our mathematical modeling qualitatively reproduces the full
dynamic sequence of linear and nonlinear bead experiments, with a tradeoff in quantita-
tive accuracy based on a flow decoupling approximation that renders the bead dynamics
and the evolution of the surrounding microstructure numerically tractable. The
Rolie–Poly model for EPS is used to afford a microstructural interpretation of the nonlin-
ear behavior.

Above a critical magnetic force, the traveling bead distorts the surrounding entangled
network from its equilibrium conformation and generates extra stresses stored by

FIG. 9. Simulated bead trajectories (red lines) projected upon planes of constant shear rate (black lines) in the
surface shown in Fig. 8. This figure shows that the viscosity overshoot experienced by a bead pulled at a con-
stant force is larger than the overshoot experienced by a bead pulled at a constant velocity.
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nonequilibrium network and chain conformations. These extra stresses, enhanced by the
drag force on the bead, drive the bead out of the linear Stokes regime at nonconstant
speeds until conformational stresses equilibrate with the applied force, thus dictating the
asymptotic bead velocity. The response of the entangled polymer network to the imposed
deformation consists of an interplay between the rate of deformation imposed by the
bead and the rate of retraction of the entanglement segments toward their equilibrium
configuration. As the pulled bead translates through the entangled network, the imposed
deformation extends and orients the flexible polymer chains in the network. This concep-
tual picture forms the basis of the model presented by Uhde et al. (2005), demonstrating
that the protocol presented here can be applied to other complex fluids, although the
choice of constitutive equation depends upon the particulars of the polymeric
microstructure.

The Rolie–Poly model, based on tube theory, states that the equilibration time of the
chain contour length is much faster than the relaxation time of the chain orientation.
When the force pulling the bead is small, the chains conserve their equilibrium contour
length under the applied deformation and the entangled network deforms much more
slowly than the stretch/retraction relaxation rates of the network. A viscosity that is a
monotonic function of time characterizes this behavior in CAP data, while a single as-
ymptotic bead velocity is the signature in the pulled bead experiments. Conversely, when
the rate of equilibration by contour length fluctuations is comparable to the deformation
rate, the bead experiences significant microstructural changes in the network character-
ized by viscosity overshoots in CAP data and a transition between two velocities in the
microbead experiments. In this case, an initial accumulation of strains impedes the bead
motion until network relaxation occurs. Finally, if the applied force is too large, the bead
moves through the overshoot very quickly, giving the appearance of linear Stokes behav-
ior when it is in fact a shear-thinned response. Since the time scale of the viscosity over-
shoots is related to the relaxation of chain stretching, this last scenario occurs when the
deformation rates exceed the rate of relaxation by contour length fluctuations.

We emphasize that the qualitative behavior with our modeling is not unique to the
Rolie–Poly conformation tensor model. Simulations with alternative nonlinear conforma-
tion tensor models, the Giesekus model, for example, are also able to capture these non-
linear microbead phenomena. We choose the Rolie–Poly model because its parameters
have molecular and network significance for EPS, and we believe that a fully resolved ki-
netic Rolie–Poly equation, flow field, and bead motion model have the potential to yield
more quantitative accuracy. Our results make a compelling case for the investment in
such a full 3D kinetic-flow-microbead algorithm. Such a modeling tool would comple-
ment high-resolution magnetic bead experiments and provide deeper understanding of
the intrinsic dynamics underlying nonlinear mechanisms in EPS.

The physiological relevance of the observed overshoot in the apparent viscosity
becomes more clear when we consider the Weissenberg number We ¼ _csd, where
We > 1 describes the regime for shear thinning. We highlight three examples where
objects move through mucus, characterized to have a reptation time sd - 40 s [Puchelle
et al. (1987)]. In the lung, 250 nm diameter cilia tips move with velocities of -200 lm/s,
resulting in a We ¼ Oð106Þ (Hill et al., 2010). Bacteria, with diameters of 1 lm, swim
through mucus at velocities of -30 lm/s [Celli et al. (2009)], giving We ¼ Oð103Þ. The
acrosome of sperm has a diameter of -5 lm and a velocity of 30 lm/s, we calculate a
We ¼ Oð103Þ. The flagella of sperm, with a diameter of 250 nm and a transverse velocity
of 300 lm/s experience a We ¼ Oð106Þ [Ishijima et al. (1986)]. We therefore surmise
that these driven magnetic bead studies can yield insights into understanding hydrody-
namic physiological phenomena, such as mucus clearance, infection, and fertility.
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