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Abstract
This manuscript introduces a new Erlang-distributed SEIR model. The model incor-
porates asymptomatic spread through a subdivided exposed class, distinguishing
between asymptomatic (Ea) and symptomatic (Es) cases. Themodel identifies two key
parameters: relative infectiousness, βSA, and the percentage of people who become
asymptomatic after being infected by a symptomatic individual, κ . Lower values of
these parameters reduce the peakmagnitude andduration of the infectious period, high-
lighting the importance of isolationmeasures. Additionally, the model underscores the
need for strategies addressing both symptomatic and asymptomatic transmissions.

Keywords SEIR model · Erlang distribution · Asymptomatic transmission ·
Infectious disease modeling

1 Introduction

Despite significant advancements in medicine, humanity continues to encounter many
challenges in the battle against different diseases. Recent events have underscored
the continued vulnerability of humans to the rapid propagation of infectious dis-
eases and the ensuing epidemics. The 2002–2004 severe acute respiratory syndrome
(SARS) outbreak (Knobler et al. 2004), the 2009 swine flu pandemic (https://www.
cdc.gov/flu/pandemic-resources/2009-h1n1-pandemic.html), theWest African Ebola
epidemic, the Kivu Ebola epidemic (https://www.cdc.gov/vhf/ebola/outbreaks/drc/
overview.html), and the global COVID-19 (Holmes et al. 2020; Nicola et al. 2020;
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Chinazzi et al. 2020; Kraemer et al. 2020) pandemic have demonstrated the ability
of viruses to spread over large areas and affect people, healthcare systems, disrupting
economies and the daily lives of people around the world. At the same time, mathe-
matical models have emerged as valuable instruments in comprehending the intricate
dynamics of disease transmission. Models aid in forecasting the spread of diseases,
diminishing uncertainty, and expediting decision-making procedures.While no singu-
lar model can entirely grasp the complexities of disease propagation, their usefulness
is widely acknowledged. Therefore, continuously improving epidemiological models
is crucial for enhancing disease control strategies.

In 1927, McKendrick and Kermack published the first modern mathematical
study using such models (Kermack and McKendrick 1927). Their work, focused on
infectious and susceptible (SI) compartments, laid the foundation for understanding
disease dynamics in populations over time. Subsequent developments, including the
susceptible-infected-recovered (SIR) model and its variants, have made significant
contributions to epidemiology. These models and modifications incorporating disease
control measures continue to play a critical role in studying the dynamics of infectious
diseases (Hethcote 2000).

Introducing additional classes expanded the SIR model to include the exposure
class (E), resulting in the SEIR model. This model allows for a more accurate rep-
resentation of the spread and dynamics of infectious diseases. By incorporating the
exposure class, theSEIRmodel captures the incubation period and the potential for pre-
symptomatic transmission, which are crucial factors in understanding and controlling
disease outbreaks.

Subsequent modifications include the Erlang-distributed SEIR model. This model
improves upon the standard SEIR model by providing a more realistic representation
of the latent and infectious periods of a disease. Standard SEIR models assume that
transitions between compartments (exposed to infectious, and infectious to recovered)
follow exponential distributions. This implies a limited degree of variability in the
duration of these periods, failing to capture the wide range of durations often observed
in real-world infections, where some individuals may remain in a given stage for
significantly longer or shorter periods than average. In contrast, the Erlang distribution,
by allowing for a more flexible distribution shape, can better represent the observed
heterogeneity in these durations, enabling the model to capture the higher variability
seen in latent and infectious stages.

In this manuscript, our aim is to explore various modifications and refinements to
the Erlang-distributed SEIR model which enhance its effectiveness in predicting and
managing infectious diseases. In particular, we explore the effects of distinguishing
between asymptomatic and symptomatic transmission in infectious diseases. Asymp-
tomatic individuals are defined as thosewhodo not showany symptoms of an infection.
However, as suggested byPeirlinck et al. (2020), individualswho showmild symptoms
that are uncharacteristic of the disease may also be classified as asymptomatic.

Recent data has shown that asymptomatic and pre-symptomatic infected individuals
played a key role in the transmission dynamics of COVID-19 pandemic (Gatto et al.
2020; Das et al. 2021; Pei et al. 2022; Khairulbahri 2023). Consequently, numerous
studies have focused onmodeling these aspects of disease spread. However, challenges
in data collection for asymptomatic cases limit our understanding of their precise
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impact. Furthermore, factors such as vaccination can influence the ratio of symptomatic
to asymptomatic individuals, complicating the epidemiological picture. It is also more
difficult to contain a disease with a higher percentage of asymptomatic individuals.
Nevertheless, the significance of asymptomatic cases in disease transmission cannot
be overstated.

To effectively address these complexities, epidemiological models must accurately
capture the dynamics of asymptomatic transmission. For instance, Grunnill (2018)
emphasize the importance of incorporating targeted vaccination strategies into SEIR
models to control outbreaks. The challenge is magnified for diseases with a high pro-
portion of asymptomatic cases, which can rapidly disseminate as diseases with more
asymptomatic individuals tend to have a higher reproductive number, R0 Peirlinck
et al. (2020).

To better understand the dynamics of such diseases, Anggriani et al. (2022) devel-
oped a model differentiating symptomatic and asymptomatic dengue fever cases. The
authors analyzed outbreak potential and proposed a critical immunity level – the
minimum population needing protection, via vaccination or prior infection, to pre-
vent outbreaks. The model showed this critical level depends on how easily the virus
jumps between symptomatic and asymptomatic cases and how long immunity lasts.
Leung et al., Leung et al. (2018) further refined this understanding by introducing a
time-varying ratio of symptomatic to asymptomatic cases, emphasizing the need for
adaptable modeling approaches.

Castañeda et al. (2023) expanded on this by creating a model explicitly separating
asymptomatic and symptomatic infectious individuals. Their work demonstrates the
advantages of this type of modeling in informing disease control strategies.

Furthermore, the substantial impact of asymptomatic transmission is evident in the
study by Chowdhury et al. (2022). Their findings show that during the first year of
the COVID-19 pandemic, asymptomatic transmission had a more significant impact
on disease spread than symptomatic transmission. This underscores the necessity of
comprehensive models that account for asymptomatic spread of the disease.

Thismanuscript introduces a novel Erlang-distributedSEIRmodel to investigate the
impact of asymptomatic transmission, seasonality, andwaning immunity on infectious
disease dynamics. By incorporating separate compartments for asymptomatic and
symptomatic individuals during the latent and infectious periods, the model provides
a more nuanced understanding of disease transmission. Sections2 and 3 introduce the
foundational SEIR andErlang-distributed SEIRmodels, respectively. Readers familiar
with these models may skip directly to Sect. 4. The subsequent sections focus on the
proposed modifications, which explicitly model asymptomatic spread and its potential
impact on disease outbreaks.

2 The SEIRModel

In the SEIRmodel, individuals transition from the susceptible class (S) to the exposure
class (E) upon contact with an infectious individual. The exposed individuals then
progress to the infectious class (I) after a latent period, during which they are infected
but not yet infectious. Finally, individuals in the infectious class (I) transition to the
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Fig. 1 Fourmain compartments in the SEIRmodel with transition rates between compartments. Susceptible
(S(t)): Individuals capable of contracting the disease. Exposed (E(t)): Individuals that are infected but not
infectious. Infected (I (t)): Individuals capable of transmitting the disease. Recovered (R(t)): Those who
are permanently immune (Color Figure Online)

recovered class (R) after a duration of infectiousness. The transition in and out of the
four classes, including a natural death/birth rate μ, are shown in Fig. 1.
The model parameters and main model assumptions are,

• The population size is constant N ≡ N (t) = S(t)+ E(t)+ I (t)+ R(t), for any t .
• The disease is not lethal, and birth and death rates are assumed to equal μ.
• The transmission parameter, β, is defined as the average number of effective con-
tacts with other individuals per infectious per unit time. An effective contact is an
encounter in which the infection is transmitted; we assume this has a probability
b. Assuming the contacts per unit time is given by k, the transmission parameter
is then given by β = kb.

• The recovery rate is γ , so that 1/γ is the mean infectious period.
• Similarly, the mean latent period is 1/σ .

The governing equations for each of the categories are

dS(t)

dt
= μ N − μ S(t) − kb

I (t) S(t)

N
, (1a)

dE(t)

dt
= −μ E(t) + kb

I (t) S(t)

N
− m σ E(t), (1b)

d I (t)

dt
= −μ I (t) + m σ E(t) − n γ I (t), (1c)

dR(t)

dt
= −μ R(t) + n γ I (t). (1d)

One of the fundamental assumptions SEIR models make is that the probability of
transitioning between compartments is independent of the time spent in each com-
partment. This suggests that an individual who has recently been exposed has an equal
likelihood of transitioning to the infectious category as an individual who has been
exposed for a longer period. Not only is this incorrect in the general case, but it also
relies heavily on the specific details of the disease being studied. One way to remove
this assumption is by exploring an alternative probability distribution functions (PDFs)
for the latent and infectious periods (Wearing et al. 2005; Chebotaeva and Vasquez
2023).
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Fig. 2 Erlang distributed SEIRmodel. Since we considerm sub-compartment for E and n sub-compartment
for I , we denote this model as SEm InR(Color Figure Online)

3 Adding Erlang Distributions—The SEmInRModel

From a mathematical perspective, assuming a constant transition rate between
compartments implies that infectivity follows an exponential PDF. An exponential
distribution represents the time between events in a Poisson process. Its core assump-
tion is that events occur continuously and independently at a constant rate. This means
that, in the exponential distribution, the likelihood of an event happening in the future
is not influenced by the time that has already passed. This memoryless property inher-
ent to exponential distributions makes them less ideal for epidemiological models, as
factors like the duration of exposure or the individual’s immune state can influence
the likelihood of infection.

There are various approaches to remove this condition. The two most common are
(i) using integro-differential equations, (Kermack and McKendrick 1927; Hethcote
and Tudor 1980; Keeling and Grenfell 1997; Feng et al. 2007; Cushing 2013), or
(ii) subdividing the classes into sub-compartments, as in Lloyd (2001), Cunniffe et al.
(2012), Sherborne et al. (2015), Chebotaeva andVasquez (2023). The latest approach is
also known as the “linear chain trick” approach (Cushing 1998; Hurtado andKirosingh
2019; Lloyd 2001). In this study, we follow themultiple sub-compartment approaches,
illustrated in Fig. 2, and based on the model proposed by Wearing et al. (2005);
Chebotaeva and Vasquez (2023).

An Erlang distribution describes the probability distribution of the sum of k inde-
pendent exponential random variables. Each exponential variable has a mean of 1/λ,
representing the average time between events. Alternatively, it can be viewed as the
distribution of the time until the kth event occurs in a Poisson process with rate λ. The
PDF for an Erlang distribution is then given by

f (x; k, λ) = λk xk−1e−λx

(k − 1)! . (2)

As it can be deduced from Eq. (2). the Erlang distribution is a special case of the
Gamma distribution where the shape parameter is the discrete variable, k.

An Erlang-distributed SEIR model has the time spent in the exposed and infectious
classes modeled by an Erlang distribution with rates σ and γ , and shape parameters
m and n, respectively. As discussed in Fig. 2, we refer to this model as the SEmInR
model.

Figure 3 illustrates the expected probabilities of an Erlang-distributed variable as
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Fig. 3 Probabilities given by an Erlang distribution with shape parameter k and rate λ. The PDF shown in
the figure, f (x; k, λ), is valid for x, λ ≥ 0. In these examples, λ = 1. An Erlang distribution equals an
exponential distribution when k = 1 (Color Figure Online)

a function of the number of sub-compartments, 1 ≤ k < ∞. At the lower bound,
when the value of k is equal to 1, the probability density function simplifies to the
exponential distribution. At the upper bounds, in the limit as k goes to infinity, the
duration of stay in a class will be the same for all individuals. It is notable that the
probabilities predominantly center on the rate, λ = 1 for this particular example.
The differing factor is the extent of the surrounding spread; it is tighter for larger
k’s. This implies that the main difference between exponential and Erlang-distributed
disease dynamics is in the transients rather than in the averages and/or steady-state
values. From an epidemiological perspective, the dynamics of disease transmission
are highly significant due to their direct influence on resource allocation. We continue
the discussion in Sect. 3.1, where we provide specific examples.

In addition to the assumptions made in the SEIR model, the SEmInRmodel has the
following assumptions:

• The population size is constant and equal to N = S + ∑m
i=1 E

i + ∑n
k=1 I

k + R.
• The exposed class is divided into m sub-classes, and mσ is the rate of sequential
progression through the sub-classes, where 1/σ is the mean latent period. This is a
proxy of modeling the latent period as a Gamma distribution with shape parameter
m and rate parameter σ .

• Infected classes are divided into n sub-classes, and nγ is the rate of sequential
progression through the sub-classes, where γ is the recovery rate so that 1/γ is
the mean infectious period. As before, this corresponds to a Gamma distribution
with shape parameter n and rate parameter γ .
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Fig. 4 SEm InR model including loss of immunity at a rate ω, and seasonality, captured by the time-
dependent transmission parameter, β(t) (Color Figure Online)

The governing system of equations is given by,

dS(t)

dt
= μ N − μ S(t) − kb

I (t) S(t)

N
, (3a)

dE1(t)

dt
= −μ E1(t) + kb

I (t) S(t)

N
− m σ E1(t), (3b)

dEi (t)

dt
= −μ Ei (t) + m σ

[
Ei−1(t) − Ei (t)

]
, i = 2, ...,m, (3c)

d I 1(t)

dt
= −μ I 1(t) + m σ Em(t) − nγ I 1(t), (3d)

d I k(t)

dt
= −μ I k(t) + n γ

[
I k−1(t) − I k(t)

]
, k = 2, ..., n, (3e)

dR(t)

dt
= −μ R(t) + n γ I n . (3f)

Many research studies have investigated the effects of using Erlang probability
density functions (PDFs) on the transition rates in SEIR models (Krylova and Earn
2013; Wearing et al. 2005; Bolzoni et al. 2021; Carbone and De Vincenzo 2022;
Meehan et al. 2023; Chebotaeva and Vasquez 2023). In general, they have found
that this approach is sufficiently flexible to provide a good approximation of realistic
distributions for latent and infectious periods (Krylova and Earn 2013; Wearing et al.
2005). It is worth mentioning that the differences between the SEIR and SEmInR
models become even more noticeable when factoring in time-dependent effects on the
transmission and evolution of the disease. For instance, we can consider factors like
loss of immunity and seasonality, as discussed in the next section.

3.1 SEmInRModel with Loss of Immunity and Seasonality

Figure 4 depicts the model resulting from adding loss of immunity to the SEmInR
model. Here, we include a new parameter, ω, which is the rate at which immunity is
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Fig. 5 The differences between exponential and Erlang-distributed SEIR models become more noticeable
when considering the loss of immunity and seasonality. Here m denotes the number of sub-compartments
in class E and n the number of sub-compartments in class I . The standard SEIR model corresponds to
m = n = 1, and here we are comparing it with a SEm InR model with m = n = 10. In addition,
μ = (76 · 365)−1, ωS = (365)−1 and β1 = 0.75. Other parameter values are given in Table 1 (Color
Figure Online)

lost. In addition, to account for seasonality, we use a time-varying rate of infection,
β(t), given by,

β(t) = k b

2
[1 + β1 cos (2πωSt)] , (4)

here, 0 < β1 < 1 is the reduction percentage of β, and ωS is the reciprocal of the
average protected period specific to seasonality.

Figure 5, shows how the SEIR and SEmInR models differ when loss of immunity
and seasonality are considered. The parameter values for these simulations are given
in Table 1.With the basic SEIRmodel, we see a second peak in the infectious after one
year due to the loss of immunity (blue dashed lines). This is mainly because in these
simulations, 1/ω = 365 days. Once we include ten sub-compartments (SE10I10R), the
magnitude of that second peak increases from ∼ 3% to ∼ 5%. This means that when
we include loss of immunity, the SEIRmodel underestimates the number of infectious
individuals after the initial peak.

When a seasonal component is incorporated into the basic SEIRmodel (represented
by red solid lines), the resulting model exhibits periodic peaks in disease prevalence.
These peaks have a consistent frequency and amplitude, creating a predictable pattern
for the SEIR model. However, the introduction of seasonality in the SEmInR model
disrupts this uniformity. Unlike the SEIR model, the SEmInR model with seasonality
displays peaks that vary in both magnitude and timing. Additionally, similar to the
impact of loss of immunity, seasonal forcing in the SEmInR model can lead to an
overall increase in peak severity.

Perhaps the most significant consequence of this disruption is the potential for
misleading predictions. For example, imagine allocating resources for disease control
based on the predictable peak timing forecast by the SEIRmodel in year two.However,
if the actual disease dynamics follow the more realistic yet irregular pattern predicted
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Fig. 6 The differences between exponential and Erlang distributed SEIR models when the number of sub-
compartments in the exposed and infectious classes varies separately. In this figure, μ = (76 · 365)−1,
ωS = (365)−1 and β1 = 0.75.Parameter values are given in Table 1 (Color Figure Online)

by the SEmInR model, such resource allocation could be ineffective and potentially
lead to devastating consequences.

To investigate if these differences arise from adding sub-compartments to the
exposed class,m, or the infectious class, n, we vary the number of sub-compartments in
these two classes separately. In Fig. 6, we show these results. The figure indicates that
the peak aroundoneyear is lost due to the inclusionof sub-compartments in the exposed
class, while the increase in the magnitude comes from adding sub-compartments to
either the exposed or the infectious classes. These findings suggest that accurately cap-
turing the distribution of infectiousness and the latent period, achieved through Erlang
distributions in the SEmInR model, plays a crucial role in not only the magnitude of
the outbreaks but also their timing. This highlights the importance of considering both
Erlang-distributed infectious and latent periods whenmodeling diseases with seasonal
forcing.

The results presented in Figs. 5, 6 consistently demonstrate that relying on constant
transition rates instead of Erlang distributions underestimates the dynamic nature of
disease progression. These discrepancies become even more pronounced when we
factor in loss of immunity and seasonal variations. Interestingly, the equilibrium points
remain relatively unaffected.

The stark differences observed between the SEIR and SEmInR models highlight
the need to refine the underlying assumptions. In the following sections, we address
this by incorporating a broader range of social and behavioral factors that influence
the spread of epidemics.

4 NewModeling Considerations

This manuscript explores the effects of differentiating exposed individuals based on
whether they had contact with symptomatic or asymptomatic infectious individu-
als. Understanding this distinction is crucial for developing effective disease control
strategies. By analyzing transmission patterns and outcomes among those exposed to
symptomatic or asymptomatic individuals, we can gain valuable insights into disease
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dynamics and the potential role of asymptomatic spread. This research aims to pro-
vide public health officials, policymakers, and healthcare professionals with valuable
information to implement targeted interventions and preventive measures, mitigating
the risk of transmission from both symptomatic and asymptomatic individuals.

In prior studies, the infectious class (I ) has been divided into symptomatic (Is) and
asymptomatic (Ia) sub-classes (Wearing et al. 2005; Peirlinck et al. 2020). However,
in those studies, the exposed (E) class did not distinguish between exposure to symp-
tomatic or asymptomatic individuals. The latest data from COVID-19 datasets reveal
that the chances of developing symptoms and becoming infectious vary for individu-
als who interact with symptomatic or asymptomatic individuals (Methi and Madslien
2022). To resolve this, we suggest subdividing the E class into two distinct cate-
gories: Exposed from an asymptomatic source (Ea) and exposed from contact with a
symptomatic individual (Es). In addition, we include delayed dynamics to account for
self-quarantine and isolation, where susceptible individuals who have been in contact
with infectious individuals symptomatic enter a susceptible quarantined class (Sq )
after a delay (tq ). This delay reflects real-world constraints, such as the time taken
for contact tracing and testing, which involves identifying individuals who have been
in close contact with a known infectious person. They are then quarantined to pre-
vent further spread of the disease, even before they show symptoms or are confirmed
as infected. Once quarantined, individuals remain isolated for a fixed period before
returning to the susceptible pool. This approach assumes ideal quarantine, aligning
with prior work that highlights how ideal quarantine provides theoretical upper bounds
for intervention efficacy (Browne et al. 2015). “Ideal” implies that there is full isolation
and compliance with the quarantine.

We also note that different studies have included quarantine and isolation in their
models. In particular, the study by Heideicke et al. (2024) examined scenarios where
infections are confirmed through testing undetected infectious individuals. These indi-
viduals are assumed to self-isolate and identify infected contacts, who can then be
traced and quarantined either during their latent period or after becoming infectious.
The study also divided the infectious stage into early and late phases but did not
distinguish between symptomatic and asymptomatic cases.

As a first step, our model assumes ideal self-quarantine and isolation. While
acknowledging that real-world quarantine measures are imperfect and could be
addressed by incorporating a quarantine infection rate or partial compliance (Browne
et al. 2015), we defer these considerations to future work. The resulting model is
illustrated in Fig. 7.

Following the same basic assumptions from the SEmInR model and the transition
dynamics shown in Fig. 7, the resulting system of equations is,

dS

dt
= −kbA

N
IA(t)S(t) − kbS

N
IS(t)S(t) − qk

[
1 − bS

]

N
IS(t)S(t)

+qk
[
1 − bS

]

N
IS(t − τQ )S(t − τQ ) + ωR(t) + ωQ(t)

dSQ
dt

= qk
[
1 − bS

]

N
IS(t)S(t) − qk

[
1 − bS

]

N
IS(t − τQ )S(t − τQ )
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Fig. 7 Proposed SEma,sI
n
a,sR model, including self-isolation, quarantine and loss of immunity (Color Figure

Online)

dE1
A

dt
= kbA

N
IA(t)S(t) − mσ E1

A(t)

dEi
A

dt
= mσ Ei−1

A (t) − mσ Ei
A(t), i = 2, . . . ,m

dE1
S

dt
= kbS

N
IS(t)S(t) − kbSq

N
IS(t)S(t) − mσ E1

S(t)

dEi
S

dt
= mσ Ei−1

S (t) − mσ Ei
S(t), i = 2, . . . ,m − 1

dEm
S

dt
= mσ Em−1

S (t) − [1 − κ]mσ Em
S (t) − κmσ Em

S (t)

d I 1A
dt

= mσ Em
A (t) + κmσ Em

S (t) − nγ I 1A(t) − P1
I (t)

d I iA
dt

= nγ I i−1
A (t) − nγ I iA(t) − Pi

I (t), i = 2, . . . , n

d I 1S
dt

= P1
I (t) + [1 − κ]mσ Em

S (t) − nγ I 1S (t) − dI I
1
S (t)
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d I iS
dt

= Pi
I (t) + nγ I i−1

S (t) − nγ I iS(t) − dI I
i
S(t), i = 2, . . . , n

dQ

dt
= kbSq

N
IS(t)S(t) + dI IS(t) − ωQ(t)

dR

dt
= nγ I nA(t) + nγ I nS (t) − ωR(t)

where

Pi
I (t) = mσκ Em

A

(
t − τD

)
[
nγ τD

]i−1

[i − 1]! exp
[−nγ τD

]
.

The parameter τq represents the average time delay between contact tracing and the
initiation of quarantine. This could result from inefficiencies in tracking or tracing indi-
viduals. The parameter q indicates the proportion of susceptible individuals identified
for quarantine after contact with symptomatic cases. While q is set to 0.5 in our base
model, studies suggest that increasing q through enhanced contact tracing could signif-
icantly reduce transmission, especially in high-incidence settings (Browne et al. 2015).
In the IA class, we consider both asymptomatic and pre-symptomatic cases of infec-
tion. Both types of individuals can transmit the disease without displaying symptoms.
However, the crucial difference lies in the development of symptoms. Asymptomatic
cases are characterized by the absence of symptoms throughout the entire duration of
the infection. On the other hand, individuals who are pre-symptomatic are in the initial
phase of infection and have exhibited no symptoms. Eventually, these individuals will
exhibit symptoms, but they can still transmit the virus before symptoms appear.

In the model, the proportion of pre-symptomatic cases is controlled by Pi
I (t). This

variable represents the rate of transition of individuals from the asymptomatic infec-
tious class IiA to the symptomatic infectious class IiS . In other words, P

i
I (t) calculates

the inflow of individuals into the i th infectious symptomatic class at time t who were
previously exposed to asymptomatic cases at different stages (E1

A to Em
A ) some time

ago
(
t − τD

)
, weighted by their infectiousness and the probability of remaining undi-

agnosed until the current time. The binomial coefficient was introduced to account for
the fact that higher stages likely contribute more due to a potentially higher viral load
closer to becoming infectious. This modeling approach is particularly applicable to
pathogens with aerial transmission, where the quantity of viral particles released into
the environment by an infected individual is directly proportional to their viral load
(Gandolfi et al. 2015).

While our model considers the impact of viral load on disease progression and
transmission, it does not explicitly model the direct relationship between the quan-
tity of viral load and transmission. To explore this correlation, alternative modeling
approaches like immuno-epidemiological infection-age or integro-differential equa-
tion models could provide valuable insights for various transmission modes, including
airborne and other routes of infection, as discussed in Gandolfi et al. (2015).

Finally, we note that, for simplicity, we have neglected the natural birth/death rate,
μ = 0. Other parameter descriptions and values are given in Table 1. In addition,
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Fig. 8 Cumulative number of infectious individuals as a function of (A) the relative infectivity of asymp-
tomatic individuals, βSA and (B) percentage of individuals exposed to symptomatic infectious individuals
who do not develop symptoms, κ . Comparison between no self-isolation of individuals who came into
contact with symptomatic individuals (solid - blue lines) and the case in which 25% of those individuals
self-isolate (dashed - red lines). The cumulative number is calculated as the area under of the curve of
Is + IA versus time (Color Figure Online)

we performed Partial Rank Correlation Coefficients (PRCC) analysis to quantify the
influence of individual model parameters on the model’s outputs. The results of this
sensitivity analysis are presented in Appendix A.

5 Results

5.1 The Impact of Asymptomatic Cases on Self-isolation Strategies

In Fig. 8, we investigate the efficacy of self-isolation strategies of susceptible individ-
uals following contact with symptomatic, infectious individuals. To do this, we vary
the two main parameters that distinguish symptomatic and asymptomatic infections
in our model, βSA and κ .

The first parameter, 1 ≤ βSA ≤ 3, represents the relative infectiousness of asymp-
tomatic individuals compared to their symptomatic counterparts. Mathematically, if
bS denotes the probability of transmission from a symptomatic individual, the corre-
sponding probability for asymptomatic individuals is bA = bS/βSA. In essence, βSA

quantifies the degree of attenuation in infectiousness associated with asymptomatic
cases. The second parameter, 0 ≤ κ ≤ 1, captures the proportion of exposed indi-
viduals who do not develop symptoms, even after they are exposed to symptomatic
infectious individuals. Thismetric effectively captures the prevalence of asymptomatic
cases arising from exposure to symptomatic individuals.

Figure8A shows that implementing self-isolation strategies effectively reduces
the total number of infectious individuals. However, when the transmission rate of
asymptomatic individuals approaches that of symptomatic individuals (βSA ∼ 1),
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self-isolation measures become ineffective, resulting in the same number of infec-
tious individuals as in the absence of any intervention. As βSA increases, the
impact of self-isolation becomes more pronounced. This observation aligns with the
model’s assumptions: When βSA 	 1, the infectiousness of both symptomatic and
asymptomatic individuals becomes equivalent. Consequently, isolation interventions
triggered solely by contact with symptomatic individuals have a lower impact on the
overall infectious period. This finding highlights the critical role of asymptomatic
infectiousness in shaping the effectiveness of self-isolation strategies.

Similarly, Fig. 8B shows that the number of infectious individuals increase with
increasing values of κ . This is because a higher κ value indicates a greater number of
individuals who are infected but exhibit no symptoms. These asymptomatic individ-
uals can unknowingly transmit the disease to others, contributing to a higher overall
infection count. However, the effectiveness of isolation strategies remains relatively
constant, irrespective of the value of κ . This is because isolation primarily targets
symptomatic individuals.

In Summary, Fig. 8 emphasizes the importance of addressing asymptomatic individ-
uals in infectious disease control.While self-isolation is effective against symptomatic
cases, its impact is reduced when asymptomatic individuals are highly infectious or
prevalent. This means that to optimize control strategies, it’s crucial to consider the
specific characteristics of the pathogen and the population.

5.2 Interplay BetweenMean Recovery Time and Asymptomatic Spread

Figure 9 illustrates how the time evolution of the percentage of infectious individuals
varies with the mean recovery time for different values of the relative infectiousness,
βSA, and the proportion of individuals who become asymptomatic, κ . A key insight
gained from comparing the upper and lower panels of the figure is that the level of
transmissibility associated with asymptomatic individuals can significantly alter the
course of the epidemic.

In Fig. 9, plots (A) and (B) reveal a late peak in infections when the infectivity of
asymptomatic individuals is comparable to symptomatic cases, βSA = 1. The magni-
tude of this peak increases with longer mean recovery times and higher values of κ .
Moreover, an increase in κ leads to an earlier occurrence of this peak. On the other
hand, plots (C) and (D) examine the scenario where the infectivity of asymptomatic
individuals is significantly lower than that of symptomatic individuals βSA = 10.
In this case, the late peak is eliminated due to the presence of quarantine and isola-
tion measures, which effectively control the peak when the relative infectiousness of
asymptomatic individuals is low.

In general, Fig. 9 underscores the critical interplay between mean recovery time
and the timing of isolation and quarantine measures. Early identification and isolation
of both symptomatic and asymptomatic cases are crucial for a quicker reduction in
the peak prevalence of infections. However, the figure also highlights limitations,
particularlywhen dealingwith highly infectious asymptomatic cases. This emphasizes
the need to explore additional public health interventions, especially in scenarios with
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Fig. 9 Percentage of infectious individuals (I = IA + IS ) as a function of time and mean recovery time, 1/γ .
In this figure, we assume that 50% of susceptible individuals (S) self-isolate after contact with symptomatic,
infectious individuals (IS ). Plots (A) and (B) correspond to the case in which asymptomatic are as infectious
as symptomatic individuals, βSA = 1. Plots (C) and (D) correspond to the case in which symptomatic
individuals are ten times more infectious than asymptomatic individuals, βSA = 10. The parameter κ

represents the percentage of individualswho are exposed to symptomatic individualswho become infectious
but do not develop symptoms (Color Figure Online)

longer mean recovery times and situations where asymptomatic individuals are highly
infectious.

5.3 Loss of Immunity and Asymptomatic Impact on Equilibria

The previous sections assumed no loss of immunity, ω = 0, leading to a disease-free
equilibrium as the only stable state. However, introducing waning immunity, ω > 0,
modifies these dynamics. As shown in Fig. 10A, endemic equilibria emerge at low
values of the relative infectiousness parameter βSA. In contrast, for larger values,
the only equilibrium point is the disease-free equilibrium, where the percentage of
infectious individuals approaches zero, as depicted in Fig. 10B.
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Fig. 10 Time evolution of percentage of infectious individuals, I = IS + IA , for (A) βSA = 2 and (B)
βSA = 3. From these figures we obtain the equilibrium points for each parameter combination. The
equilibrium points, as a function of the relative infectiousness parameter, βSA and rate of loss of immunity,
ω, are given for (C) total infectious individuals, I = IA + IS , and (D) total exposed individuals, E = EA +
ES (Color Figure Online)

In Fig. 10C, D, the equilibrium points are plotted as functions of the parameters βSA

and ω. These plots reveal a linear relationship between the equilibrium points and βSA

when βSA � 2.7. However, for βSA � 2.7, the system converges to the disease-free
steady state. This critical threshold underscores the system’s sensitivity to variations
in βSA.

The underlying reason for this behavior is that βSA ≈ 1 indicates highly infectious
asymptomatic individuals. In such cases, isolation and quarantine strategies, which
primarily target symptomatic individuals, are less effective in curbing the spread of the
disease. Conversely, a disease-free equilibrium can be achieved for higher βSA values
due to the limited impact of asymptomatic transmission, coupled with the efficacy of
isolation and quarantine measures in controlling symptomatic transmission.

In addition, higher values of the loss of immunity parameter,ω, mean that individu-
als lose their immunity faster. This results in a larger group of susceptible individuals,
leading to a larger number of exposed individuals, as shown in Fig. 10D. These dynam-
ics allow the disease to persist at a higher level within the endemic equilibrium,
challenging efforts to control the spread.
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In summary, Fig. 10 illustrates the impact ofwaning immunity on disease dynamics.
When highly infectious asymptomatic individuals are prevalent, the figure highlights
the emergence of non-endemic equilibria, emphasizing the need for interventions tar-
geting both symptomatic and asymptomatic populations. Conversely, an increased rate
of immunity loss leads to a larger susceptible population, resulting in elevated num-
bers of infected and infectious individuals. This scenario necessitates the exploration
of alternative control strategies.

5.4 Relative Infectiousness Parameter Impact on Equilibria According to Different
Disease Parameters and Control Measures

Infectious and latent periods are inherent characteristics of a disease that are beyond
our control. However, the parameters β and q can be managed to influence disease
dynamics. This section explores how variations in these controllable parameters, along
with changes in the relative infectiousness parameter βSA, affect the equilibrium states
of the system.

While not shown in the figure, when κ = 0, the only equilibrium point corresponds
to the disease-free state. For κ > 0, the equilibrium points are independent of κ and,
in general, show a linear dependence on βSA for small values of the parameter, as
shown in Fig. 11.

Figure 11A investigates the impact of the percentage of susceptible individuals who
self-quarantine after exposure to a symptomatic infectious individual, as regulated by
the parameter q. The figure shows that a disease-free equilibrium is unattainable for
q � 0.28. For values of q � 0.28,we found that all equilibriumpoints are independent
of q and follow the same behavior captured by the empirical relation,

{−0.0218βSA + 0.0584 if βSA < 2.7
0 if βSA > 2.7

, (5)

Figure 11B explores the effect of the transmission parameter β. The figure shows
that increasing β leads to a higher proportion of infectious individuals at equilibrium.
However, when βSA is sufficiently high, the impact of β on the equilibrium states
becomes negligible, and the system converges to the disease-free equilibrium.

Figure 11C and D investigate the impacts of mean recovery and latent periods,
respectively. A prolonged recovery period correlates with a higher percentage of
infectious individuals at equilibrium. In contrast, variations in latent period have a
negligible effect on the equilibrium proportion of infectious individuals. Intriguingly,
an increased latent period leads to a lower equilibrium level of infection.

In summary, Fig. 11 demonstrates the influence of various factors on disease dynam-
ics. While inherent biological characteristics like latent and recovery periods cannot
be modified, parameters such as the transmission rate, β, and self-quarantine rate,
q, can be strategically adjusted to impact disease spread. The figure highlights the
critical role of self-quarantine in preventing disease outbreaks, as evidenced by the
threshold value of q. Moreover, the relationship between the relative infectiousness of
asymptomatic individuals, βSA, and the overall transmission rate, β, is complex, with
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Fig. 11 Equilibrium points as a function of the relative infectiousness parameter, βSA for (A) quarantine
percentage q, (B) rate of infection β, (C) mean recovery time 1/γ , and (D) mean latent time 1/σ (Color
Figure Online)

potential implications for disease control strategies. To effectively mitigate disease
spread, it is essential to consider individual behaviors, including adherence to pre-
ventive measures and personal responsibility, as these factors significantly influence
infection rates.

6 Discussion and Conclusions

AnewErlang-distributed SEIRmodel has been developed, which considers the spread
of an infectious disease through symptomatic and asymptomatic individuals. This
new model offers valuable insights for public health strategies, as it provides a more
nuanced understanding of disease transmission.

The main factor determining the difference between asymptomatic and symp-
tomatic cases is the parameter κ . In the model, individuals are more likely to develop
symptoms if the value of κ is smaller. The model shows that lower values of κ

correspond to a slower spread of the disease, with a delayed and reduced peak of
infections.
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The findings underscore that the efficacy of isolation measures is highly dependent
on the relative infectiousness of asymptomatic individuals βSA and the proportion of
exposed individuals who become asymptomatic κ . Lower values of βSA and κ lead to
a notable reduction in both the peak magnitude and duration of the infectious period,
highlighting the importance of these parameters in the prediction of the spread of the
disease and thinking through isolation measures.

The interplay between mean recovery time and isolation measures plays a criti-
cal role in the temporal dynamics of the infection spread. Early and comprehensive
isolation of symptomatic and asymptomatic individuals can significantly mitigate the
peak prevalence of diseases. However, highly infectious asymptomatic cases repre-
sent a serious problem requiring additional public health measures to achieve effective
control.

The study also delves into the implications of waning immunity, revealing that the
emergence of endemic equilibria is contingent on the relative infectiousness of asymp-
tomatic individuals. A higher rate of immunity loss ω leads to a larger susceptible
population. These insights highlight the need for effective strategies that address both
symptomatic and asymptomatic transmissions and consider the dynamics of immunity
loss.

Overall, the model emphasizes the significance of understanding the distinct roles
that symptomatic and asymptomatic individuals play in disease spread. It suggests that
public health strategies should consider these differences to optimize the timing and
scale of their responses, ultimately improving themanagement of healthcare resources
and reducing the socio-economic impact of the disease.

Future considerations for this model could include incorporating additional factors
influencing disease spread. For instance, the model could be expanded to account
for spatial dynamics, where the location of individuals and their interactions play a
role in transmission, similar to the study we presented in Chebotaeva and Vasquez
(2023). Additionally, factors like age distribution, pre-existing immunity levels in the
population, and the potential formutations in the disease could be integrated to create a
more comprehensive picture. Furthermore, the model’s predictions could be validated
through real-world data analysis to assess its accuracy and refine its parameters.

Appendix A Sensitivity Analysis

To assess the sensitivity of the model to parameter variations, we performed a par-
tial rank correlation coefficient (PRCC) analysis. This analysis involved using Latin
Hypercube Sampling (LHS) to generate 20,000 combinations of parameters within the
ranges specified in Table 2. Figure12 illustrates the sensitivity of the total cumulative
number of infected individuals (both symptomatic and asymptomatic) after 200 time
steps to each parameter.

The PRCC analysis reveals that themean recovery time (1/γ ) has the largest impact
on the number of infected individuals. This is not unexpected since longer infectious
periods increases the chances of transmission. The second most impactful parameter
is the number of sub-compartments in the infectious classes (n). This underscores the
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Table 2 Parameter ranges for
PRCC test

Param. Description Range

k Number of contacts per unit
time

[0.1, 0.5]

bS Probability of transmitting the
disease for a symptomatic
individual

[0.7, 2]

βSA Relative infectiousness of
asymptomatic individuals
compared to symptomatic
individuals, βSA = bS/bA

[1, 5]

1/γ Mean recovery time [2, 10]
1/σ Mean latent time [2, 10]
κ Percent of peoplewho become

asymptomatic after being
infected by a symptomatic
individual

[0.1, 0.5]

τQ Days spent in quarantine [2, 10]
q Percent of people who had

contact with infectious and
symptomatic individuals but
did not contract infection who
were quarantined in Sq (quar-
antined susceptible class)

[0.1, 0.3]

τD Delay, which accounts for the
incubation period for individ-
uals who were exposed to
asymptomatic cases

[2, 10]

di Daily rate of isolation of newly
infectious cases

[0.1, 0.3]

m Number of classes in the
exposed class

[3, 20]

n Number of classes of infec-
tious class

[3, 20]

importance of using an Erlang distribution, rather than an exponential distribution,
when modeling infectious diseases.

In asymptomatic cases, the total cumulative infections are positively affected by
several parameters besides the average recovery time (1/γ ). These include the contact
rate (k), the relative transmissibility of asymptomatic individuals (βSA = bs/ba), and
the proportion of individuals who become asymptomatic (κ). Finally, we note that,
in contrast to its effects on infectious symptomatic individuals (IS), the quarantine
parameter (q) has a substantially more significant effect on the transmission dynamics
within the infectious asymptomatic population (IA).

123



Differentiating Contact with Symptomatic... Page 23 of 25    38 

Fig. 12 PRCC test for model parameters. Parameter descriptions and ranges are given in Table 2 (Color
Figure Online)
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