- 1. Find the Maclaurin series for f(x) and the associated radius of convergence
  - (a)  $f(x) = (1-x)^{-2}$
  - (b)  $f(x) = \cos(3x)$
  - (c)  $f(x) = x e^x$
  - (d)  $f(x) = e^{5x}$

2. Find the Taylor series for f(x) centered at the given value of a.

- (a)  $f(x) = x^4 3x^2 + 1$ , a = 1(b)  $f(x) = x^{-2}$ , a = 1(c)  $f(x) = \cos x$ ,  $a = \pi$ (d)  $f(x) = \frac{1}{x}$ , a = -3
- 3. Use series to approximate the definite integral.

(a) 
$$\int_{0}^{1} x \cos(x^{3}) dx$$
  
(b)  $\int_{0}^{1} x^{2} e^{-x^{2}} dx$ 

- 4. Use series to evaluate the limit
  - (a)  $\lim_{x \to 0} \frac{x \tan^{-1} x}{x^3}$ (b)  $\lim_{x \to 0} \frac{\sin x - x + \frac{1}{6}x^3}{x^5}$
- 5. Use Taylor's Inequality to determine the number of terms of the Maclaurin series for  $f(x) = e^x$  that should be used to estimate  $e^{0.1}$  to within 0.00001 error.
- 6. A car is moving with speed 20 m/s and acceleration 2 m/s<sup>2</sup> at a given instant. Using a second-degree Taylor polynomial, estimate how far the car moves in the next second. Would it be reasonable to use this polynomial to estimate the distance traveled during the next minute?
- 7. An electric dipole consists of two electric charges of equal magnitude and opposite sign. If the charges are q and -q and are located at a distance d from each other, then the electric field E at the point P in the figure is

$$E = \frac{q}{D^2} - \frac{q}{(D+d)^2}$$

By expanding this expression for E as a series in powers of d/D, show that E is approximately proportional to  $1/D^3$  when P is far away from the dipole.



8. If a surveyor measures differences in elevation when making plans for a highway across a desert, corrections must be made for the curvature of the earth. If the radius of the earth is R and L is the length of the highway, it can be shown that the correction is given by

$$C = R \sec\left(\frac{L}{R}\right) - R$$

Use a Taylor polynomial to show that

$$C\approx \frac{L^2}{2R}+\frac{5L^4}{24R^3}.$$