

Determine whether the series is convergent or divergent

1.
$$\sum_{n=1}^{\infty} \frac{4+3^n}{2^n}$$
Use comparison test
$$\frac{4+3^n}{2^n} > \frac{3^n}{2^n} = \left(\frac{3}{2}\right)^n, \quad \text{for all } n \ge 1.$$
The geometric series $\sum \left(\frac{3}{2}\right)^n$ diverges, since $3/2 > 1$, so that our series diverges by the comparison test.
$$\boxed{\text{Divergent}}$$
2.
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1} = \sum_{n=1}^{\infty} (-1)^n b_n \quad \Rightarrow \quad \lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{3n-1}{2n+1} = \lim_{n \to \infty} \frac{3-\frac{1}{n}}{2} = \frac{3}{2} \neq 0$$

$$\boxed{\text{Divergent}}$$
3.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
Use Ratio test
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2}{2^n} \right| = \lim_{n \to \infty} \left| \frac{2^n (n+1)^2}{2^{n+1} n^2} \right| = \frac{1}{2} \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^2 = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^2 = \frac{1}{2} < 1$$

$$\boxed{\text{Convergent}}$$
4.
$$\sum_{n=1}^{\infty} \frac{1}{n+3^n}$$
Use comparison test
$$\frac{1}{n+3^n} < \frac{1}{3^n} = \left(\frac{1}{3}\right)^n, \quad \text{for all } n \ge 1.$$
The geometric series $\sum \left(\frac{1}{3}\right)^n$ converges, since $1/3 < 1$, so that our series converges by the comparison test.
$$\boxed{\text{Convergent}}$$

5. $\sum_{n=1}^{\infty} \frac{(-2)^n}{n^n}$ Use Root test $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left|\frac{(-2)^n}{n^n}\right|} = \lim_{n \to \infty} \frac{2}{n} = 0 < 1$ Convergent 6. $\sum_{n=1}^{\infty} n^2 e^{-n^3}$ Use Integral test Let $f(x) = x^2 e^{-x^3}$. Then f is continuous and positive in $[1, \infty)$, and $f'(x) = \frac{x(2-3x^3)}{e^{x^3}} < 0$ for $x \ge 1$, so f is decreasing in $[1,\infty)$. We can apply the integral test, $\int_{1}^{\infty} x^{2} e^{-x^{3}} dx = \lim_{b \to \infty} \left| \int_{1}^{b} x^{2} e^{-x^{3}} dx \right| = \lim_{b \to \infty} \left[-\frac{1}{3} e^{-x^{3}} \right]_{1}^{b} = 0 - \left(-\frac{1}{3} e^{-1} \right) = \frac{1}{3e}.$ Here we used substitution to solve the integral. Since the integral converges, the series also converges. Convergent 7. $\sum_{n=2}^{\infty} \sin n$ Use test of divergence Since $\lim_{n \to \infty} \sin n$ does not exist, the series diverges. Divergent 8. $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$ Use Limit Comparison test $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^2 e^{-n}}{e^{-n}} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^2 = 1 > 0$ Since the series $\sum e^{-n}$ is a convergent geometric series with $|r| = \frac{1}{e} < 1$, the series $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$ also converges. Convergent

Worksheet - Series - 2

9.
$$\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$$
Use Alternating Series test
$$\sum_{n=2}^{\infty} (-1)^{n+1} a_n = \sum_{n=2}^{\infty} (-1)^{n+1} a_n = \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$$
Since $a_n = \frac{1}{n \ln n}$, we need to check that is decreasing and the limit of a_n when n goes to infinity.

• Since $n \ge 0$ for $x \ge 2$, the a_n 's are positive and decreasing

• $\lim_{n \to \infty} \frac{1}{n \ln n} = 0$
Convergent

10.
$$\sum_{k=1}^{\infty} \frac{k+5}{5^k}$$
Use Ratio test
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{k \to \infty} \left| \frac{k+6}{5^{k+1}} \cdot \frac{5^k}{k+5} \right| = \frac{1}{5} \lim_{n \to \infty} \frac{k+6}{k+5} = \frac{1}{6} \cdot 1 = \frac{1}{6} < 1$$
Convergent

11.
$$\sum_{n=1}^{\infty} \left(-\frac{n}{5} \right)^n$$
Use test of divergence of alternating series
$$\lim_{n \to \infty} \left(\frac{n}{5} \right)^n = \infty, \quad \Rightarrow \quad \lim_{n \to \infty} \left(-\frac{n}{5} \right)^n \quad \text{does not exists}$$

$$\boxed{\text{Divergent}}$$

12.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^2+4}$$
Use alternating series test
$$a_n = \frac{n^2}{n^3+4}$$
• To check if it is decreasing we use the first derivative of a function
$$\left(\frac{x^2}{x^3+4} \right)' = \frac{(x^3+4)(2x) - x^2(3x^2)}{(x^3+4)^2} = \frac{x(2x^3+8-3x^3)}{(x^3+4)^2} = \frac{x(8-x^3)}{(x^3+4)^2} < 0 \text{ for } x > 2$$
•
$$\lim_{n \to \infty} \frac{n^2}{n^3+4} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n^3}} = 0$$
Convergent

13.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$$
Use Absolute convergence and integral test
$$\int_1^{\infty} \frac{1}{n^4} \left| \sum_{n=1}^{\infty} \frac{1}{n^4} \left| \sum_{n=1}^{\infty} \frac{1}{n^4} \right| = \sum_{n=1}^{\infty} \frac{1}{n^4} \text{ using the integral test}$$
We check the convergence of
$$\sum_{n=1}^{\infty} \left| \int_1^{1} \frac{1}{x^4} dx \right| = \lim_{h \to \infty} \left[\int_1^{1} \frac{1}{x^4} dx \right] = \lim_{h \to \infty} \left[-\frac{1}{3x^3} \right]_1^h = 0 - \left(-\frac{1}{3} \right) = \frac{1}{3}$$
Since the integral converges, the series
$$\sum_{n=1}^{\infty} \frac{1}{n^4} \text{ convergent}$$
14.
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{5^n}$$
Use the Ratio test
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{b_n} \right| = \lim_{n \to \infty} \left| \frac{n^2 + 2n + 2}{5^{n+1}} \cdot \frac{5^n}{n^2 + 1} \right| = \frac{1}{5} \cdot \lim_{n \to \infty} \frac{n^2 + 2n + 2}{n^2 + 1} = \frac{1}{5} \cdot \lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{2}{n^2}}{1 + \frac{1}{n^2}} = \frac{1}{5} \cdot 1 = \frac{1}{5} < 1$$
Convergent
15.
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{3n^4 + 1}$$
Use Comparison test
$$\frac{n^2 - 1}{3n^4 + 1} < \frac{n^2}{3n^4 + 1} < \frac{n^2}{3n^4} = \frac{1}{3} \frac{1}{n^2}$$
The series
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges by the Integral test (see problem 13), then by the comparison test, our series converges.
$$\frac{10}{\sum_{n=1}^{\infty} \frac{(-2n)}{n+1}}^{5^n}$$
Use the Ratio test
$$\lim_{n \to \infty} \sqrt[n]{\left| \left(\frac{-2n}{n+1} \right)^{5^n} \right|} = \lim_{n \to \infty} \frac{2^2 n^2}{(n+1)^5} = 32 \lim_{n \to \infty} \frac{1}{(1 + 1/n)^5} = 32 \cdot 1 = 32 > 1$$

$$\frac{10}{\text{Divergent}}$$

17. $\sum_{k=1}^{\infty} \frac{k \ln k}{(k+1)^3}$

Use Integral test test and comparison test

$$\frac{k\ln k}{(k+1)^3} < \frac{k\ln k}{k^3} = \frac{\ln k}{k^2}$$

We integrate the last expression using integration by parts

$$\int_{1}^{\infty} \frac{\ln x}{x^2} \, dx = \lim_{b \to \infty} \left[\int_{1}^{b} \frac{\ln x}{x^2} \, dx \right] = \lim_{b \to \infty} \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{b} = \lim_{b \to \infty} \left[-\frac{\ln b}{b} - \frac{1}{b} \right] - (-0 - 1) = 1$$

Here we used L'Hopital's to evaluate the first term in the limit.

Since the integral converges, the series converges and by the comparison test our original series also converges.

Convergent

18.
$$\sum_{n=1}^{\infty} \left(\sqrt[n]{2} - 1\right)$$

Use Limit comparison test with $a_n = \sqrt[n]{2}$ and $b_n = 1/n$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\sqrt[n]{2}}{\frac{1}{n}} = \lim_{x \to \infty} \frac{2^{1/x} - 1}{1/x} \stackrel{LH}{=} \lim_{x \to \infty} \frac{2^{1/x} \cdot \ln 2 \cdot (-1/x^2)}{-1/x^2} = \lim_{x \to \infty} (2^{1/x} \cdot \ln 2) = 1 \cdot \ln 2 = \ln 2 > 0$$

Since $\sum b_n$ diverges (integral test) so does $\sum a_n$ and since $\sum \sqrt[n]{2}$ diverges, the series $\sum (\sqrt[n]{2} - 1)$ diverges.

Divergent

$$19. \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$$
Use Root test
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|\left(\frac{n}{n+1}\right)^{n^2}|} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^{n^2/n} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} e^{\ln(\frac{n}{n+1})^n}$$

$$= \exp\left[\lim_{n \to \infty} n \cdot \ln\left(\frac{n}{n+1}\right)\right] \stackrel{LH}{=} \exp\left[-1\right] = \frac{1}{e} < 1$$
Convergent
$$20. \sum_{n=1}^{\infty} \left(\frac{n^2+1}{2n^2+1}\right)^n$$
Use Root test
$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|\left(\frac{n^2+1}{2n^2+1}\right)^n|} = \lim_{n \to \infty} \frac{n^2+1}{2n^2+1} = \frac{1}{2} < 1$$
Convergent

21. $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n-1}$

22. $\sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}}$

Use Comparison test

 $\frac{\sqrt{n}}{n-1} > \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$

Since the series $\sum \frac{1}{\sqrt{n}}$ diverges (Integral test), our series diverges by the Comparison test.

Divergent Use Root test $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left|\frac{(2n+1)^n}{n^{2n}}\right|} = \lim_{n \to \infty} \frac{2n+1}{n^2} = \lim_{n \to \infty} \frac{\frac{2}{n} + \frac{1}{n^2}}{1} = 0 < 1$ Convergent

23.
$$\sum_{n=1}^{\infty} \frac{1}{n^4} \sin\left(\frac{n\pi}{2}\right)$$
Use Absolute convergence and integral tests
Note that $\sin\left(\frac{n\pi}{2}\right) = 0$ if n is even and $(-1)^k$ if $n = 2k + 1$, so that

$$\sum_{n=1}^{\infty} \frac{1}{n^4} \sin\left(\frac{n\pi}{2}\right) = \sum_{n=1}^{\infty} \frac{1}{(2n+1)^4} \cdot (-1)^n$$
Since the series $\sum \frac{1}{(2n+1)^4}$ converges by the integral test, our alternating series $\sum \frac{(-1)^n}{(2n+1)^4}$ converges by the absolute convergence test.
Convergent
24.
$$\sum_{n=1}^{\infty} \frac{10^n}{(n+1) \cdot 4^{2n+1}}$$
Use the Ratio test

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{10^{n+1}}{(n+2) \cdot 4^{2n+3}} \cdot \frac{(n+1) \cdot 4^{2n+1}}{10^n} \right| = \lim_{n \to \infty} \left(\frac{10}{4^2} \cdot \frac{n+1}{n+2} \right) = \frac{5}{8} < 1$$

Convergent

Worksheet - Series - 2

25.
$$\sum_{n=3}^{\infty} \frac{n+2}{(n+1)^3}$$
Use the Limit comparison test with $a_n = \frac{n+2}{(n+1)^3}$ and $b_n = \frac{1}{n^2}$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{n+2}{(n+1)^3}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^2(n+2)}{(n+1)^2} = \lim_{n \to \infty} \frac{1+\frac{2}{n}}{(1+\frac{1}{n})^3} = 1 > 0$$
Since $\sum \frac{1}{n^2}$ is a convergent series (Integral test), our series also converges.
Convergent
26.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 2}$$
Use Alternating series test
We need to check two things:
• To check if it is decreasing we use the first derivative
$$\left(\frac{x}{x^2 + 2}\right)' = \frac{(x^2 + 2)(1) - x(2x)}{(x^2 + 2)^2} = \frac{2 - x^2}{(x^2 + 2)^2} < 0 \text{ for } x \ge \sqrt{2}$$
• Check if the limit is equal to zero
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n}{n^2 + 2} = \lim_{n \to \infty} \frac{1}{n + \frac{2}{n}} = 0$$

Convergent