1. Find the radius of convergence and interval of convergence of the series
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$

- Use Ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{\sqrt{\frac{n+1}{n}}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{\sqrt{1+\frac{1}{n}}}=|x|
$$

By the Ratio test, the series converges when $|x|<1$, so the radius of convergence is $R=1$.

- Evaluate end points, $x= \pm 1$

When $x=-1$ the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ converges by the Alternating Series test.
When $x=1$ the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges because it is a $p$-series with $p=\frac{1}{2}<1$.
The interval of convergence is $[-1,1)$.
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n+1}$

- Use Ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{n+2} \cdot \frac{n+1}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left(|x| \cdot \frac{n+1}{n+2}\right)=|x| \cdot \lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{1+\frac{2}{n}}=|x| \cdot 1=|x|
$$

By the Ratio test, the series converges when $|x|<1$, so the radius of convergence is $R=1$.

- Evaluate end points, $x= \pm 1$

When $x=-1$ the series $\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges by the Integral test.
When $x=1$ the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1}$ converges by the Alternating Series test.
The interval of convergence is $(-1,1]$.
(c) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$

- Use Ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=|x| \cdot \lim _{n \rightarrow \infty} \frac{1}{n+1}=|x| \cdot 0=0<1
$$

By the Ratio test, the series converges for all $x$, so the radius of convergence is $R=\infty$.

- Evaluate end points

We don't need to evaluate end points since the radius of convergence is infinity so that the interval of convergence is $(-\infty, \infty)$.
(d) $\sum_{n=1}^{\infty} n^{n} x^{n}$

- Use Root test (easier)

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{n^{n}|x|^{n}}=\lim _{n \rightarrow \infty} n|x|=\infty, \text { if } x \neq 0
$$

So the radius of convergence is $R=0$.

- Evaluate end points

There are no end points to evaluate since this series only converges when $x=0$. The interval of convergence is $\{0\}$.
(e) $\sum_{n=1}^{\infty} \frac{x^{n}}{5^{n} n^{5}}$

- Use Ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{5^{n+1}(n+1)^{5}} \cdot \frac{5^{n} n^{5}}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{5}\left(\frac{n}{n+1}\right)^{5}=\frac{|x|}{5} \cdot 1=\frac{|x|}{5}
$$

By the Ratio test, the series converges when $\frac{|x|}{5}<1 \Rightarrow|x|<5$, so the radius of convergence is $R=5$.

- Evaluate end points, $x= \pm 5$

When $x=-5$ the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{5}}$ converges by the Alternating Series test.
When $x=5$ the series $\sum_{n=1}^{\infty} \frac{1}{n^{5}}$ converges because it is a $p$-series with $p=5>1$.
The interval of convergence is $[-5,5]$.
(f) $\sum_{n=1}^{\infty} \frac{n}{4^{n}}(x+1)^{n}$

- Use Ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(x+1)^{n+1}}{4^{n+1}} \cdot \frac{4^{n}}{n(x+1)^{n}}\right|=\frac{|x+1|}{4} \cdot \lim _{n \rightarrow \infty} \frac{n+1}{n}=\frac{|x+1|}{4}
$$

By the Ratio test, the series converges when $\frac{|x+1|}{4}<1 \Rightarrow|x+1|<4$, so the radius of convergence is $R=4$.

- Evaluate end points, $|x+1|<4 \Rightarrow-4<x+1<4 \Rightarrow-5<x<3$

When $x=-5$ the series $\sum_{n=1}^{\infty} \frac{n(-4)^{n}}{4^{n}}=\sum_{n=1}^{\infty}(-1)^{n} n$ diverges by the test for Divergence ( $n$th term test).
When $x=3$ the series $\sum_{n=1}^{\infty} \frac{n(4)^{n}}{4^{n}}=\sum_{n=1}^{\infty} n$ diverges by the test for Divergence.
The interval of convergence is $(-5,3)$.
(g) $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{n}}$

- Use Root test

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(x-2)^{n}}{n^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{|x-2|}{n}=0
$$

The series converges for all $x$, so that $R=\infty$. and the interval of convergence is $(-\infty, \infty)$.
(h) $\sum_{n=1}^{\infty} \frac{n(x-4)^{n}}{n^{3}+1}$

- Use Ratio test

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(x-4)^{n+1}}{(n+1)^{3}+1} \cdot \frac{n^{3}+1}{n(x-4)^{n}}\right| & =\lim _{n \rightarrow \infty}\left[|x-4| \cdot \frac{n+1}{n} \cdot \frac{n^{3}+1}{n^{3}+3 n^{2}+3 n+2}\right] \\
& =|x-4| \cdot \lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n}\right) \cdot \frac{1+\frac{1}{n^{3}}}{1+\frac{3}{n}+\frac{3}{n^{2}}+\frac{2}{n^{3}}}\right] \\
& =|x-4| \cdot 1=|x-4| .
\end{aligned}
$$

By the Ratio test, the series converges when $|x-4|<1$, so the radius of convergence is $R=1$.

- Evaluate end points, $|x-1|<1 \Rightarrow-1<x-4<1 \Rightarrow 3<x<5$

When $x=3$ the series $\sum_{n=1}^{\infty} \frac{n(-1)^{n}}{n^{3}+1}$ converges by the Absolute convergence test.
When $x=5$ the series $\sum_{n=1}^{\infty} \frac{n}{n^{3}+1}$ converges by the Comparison test. We compare it to the series
$\sum \frac{1}{n^{2}}$ which is a $p$-series with $p=1 / 2<1$ so that is convergent.
The interval of convergence is $[3,5]$.
2. Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=6$. What can be said about the convergence or divergence of the following series.
i. Since $\sum c_{n} x^{n}$ is convergent for $x=-4$ that means it converges for at least $-4 \leq x<4$
ii. Since $\sum c_{n} x^{n}$ is divergent for $x=6$ that means it diverges for at least $x \geq 6$ and $x<-6$.
(a) $\sum_{n=0}^{\infty} c_{n} 8^{n}$
In this case $x=8$, so that by (ii) above this series diverges
(b) $\sum_{k=0}^{\infty}(-1)^{n} c_{n} 9^{n}=\sum_{k=0}^{\infty} c_{n}(-9)^{n} \quad$ In this case $x=-9$, so that by (ii) above this series diverges or divergence of the following series.
i. Since $\sum c_{n} x^{n}$ is convergent for $x=2$ that means it converges for at least $-2<x \leq 2$
ii. Since $\sum c_{n} x^{n}$ is divergent for $x=-3$ that means it diverges for at least $x>3$ and $x \leq-3$.
(c) $\sum_{k=0}^{\infty} \frac{4^{n}}{5^{n+1}} c_{n}=\frac{1}{5} \sum_{k=0}^{\infty}\left(\frac{4}{5}\right)^{n} c_{n} \quad$ In this case $x=\frac{4}{5}$, so that by (i) above this series converges
(d) $\sum_{n=0}^{\infty} c_{n}(-3)^{n} \quad$ In this case $x=-3$, so that by (ii) above this series diverges
4. Find a power series representation for the function and determine the interval of convergence

To solve these problems we use the formula for the geometric series

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

For this series we know that it converges when $|r|<1$ or $-1<r<1$. The radius of convergence is $R=1$ and we need to evaluate the end points to determine the interval of convergence.

- When $r=-1$ the series become $\sum_{n=0}^{\infty}(-1)^{n}$, which is divergent
- When $r=1$ the series become $\sum_{n=0}^{\infty} 1^{n}$, which is divergent

Then the Interval of convergence is $I=(-1,1)$.
(a) $f(x)=\frac{1}{1+x}$

Rewrite the function as

$$
f(x)=\frac{1}{1+x}=\frac{1}{1-(-x)}
$$

So that $r=-x$ and the series representation is

$$
f(x)=\sum_{n=0}^{\infty}(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \text { the root test gives }|-x|<1 \text { or }|x|<1 \text { for convergence }
$$

And $R=1$ and $I=(-1,1)$.
(b) $f(x)=\frac{3}{1-x^{4}}$

Rewrite the function as

$$
f(x)=\frac{3}{1-x^{4}}=3\left[\frac{1}{1-\left(x^{4}\right)}\right]
$$

So that $r=x^{4}$ and the series representation is

$$
f(x)=3\left[\sum_{n=0}^{\infty}\left(x^{4}\right)^{n}\right]=\sum_{n=0}^{\infty} 3 x^{4 n}, \text { the root test gives }\left|x^{4}\right|<1 \text { for convergence } \Rightarrow|x|<1
$$

And $R=1$ and $I=(-1,1)$.
(c) $f(x)=\frac{x^{2}}{a^{3}-x^{3}}$

Rewrite the function as

$$
f(x)=\frac{x^{2}}{a^{3}-x^{3}}=\frac{x^{2}}{a^{3}} \cdot \frac{1}{1-\frac{x^{3}}{a^{3}}}=\frac{x^{2}}{a^{3}} \cdot \sum_{n=0}^{\infty} r^{n}
$$

So that $r=\frac{x^{3}}{a^{3}}$ and the series representation is

$$
f(x)=\frac{x^{2}}{a^{3}}\left[\sum_{n=0}^{\infty}\left(\frac{x^{3}}{a^{3}}\right)^{n}\right]=\sum_{n=0}^{\infty} \frac{x^{3 n+2}}{a^{3 n+3}}
$$

Using the ratio test we get

$$
\begin{array}{r}
\lim _{n \rightarrow \infty}\left|\left[\frac{x^{(3 n+3)+2}}{a^{(3 n+3)+3}}\right]\left[\frac{a^{3 n+3}}{x^{3 n+2}}\right]\right|=\lim _{n \rightarrow \infty}\left|\frac{a^{3 n+3}}{a^{3 n+6}} \cdot \frac{x^{3 n+5}}{x^{3 n+2}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{3}}{a^{3}}\right|, \text { which gives }\left|\frac{x^{3}}{a^{3}}\right|<1 \\
\Rightarrow\left|x^{3}\right|<\left|a^{3}\right| \Rightarrow|x|<|a|
\end{array}
$$

So that $R=|a|$ and $I=(-|a|,|a|)$.
(d) $f(x)=\ln (5-x)$

First consider the equality

$$
\ln (5-x)=-\int \frac{1}{5-x} d x
$$

We would like to express the integrand as a series, for that we rewrite it as

$$
\frac{1}{5-x}=\frac{1}{5} \cdot \frac{1}{1-\frac{x}{5}}
$$

So that $r=\frac{x}{5}$ and the series representation is

$$
\begin{aligned}
f(x)=-\frac{1}{5} \int \frac{1}{1-\frac{x}{5}} d x=-\frac{1}{5} \int\left[\sum_{n=0}^{\infty}\left(\frac{x}{5}\right)^{n}\right] d x=C-\frac{1}{5} \sum_{n=0}^{\infty} \frac{x^{n+1}}{5^{n}(n+1)} & =C-\sum_{n=0}^{\infty} \frac{x^{n+1}}{5^{n+1}(n+1)} \\
& =C-\sum_{n=1}^{\infty} \frac{x^{n}}{5^{n} n}
\end{aligned}
$$

We find the constant using $f(x)=\ln (5-x)$; for example for $x=0$ we have

$$
f(0)=\ln (5)=C-\sum_{n=1}^{\infty} \frac{(0)^{n}}{5^{n} n}=C-0=C
$$

The the series representation is

$$
f(x)=\ln (5)-\sum_{n=1}^{\infty} \frac{x^{n}}{5^{n} n}
$$

Using the ratio test
$\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{x^{n}} \cdot \frac{5^{n}}{5^{n+1}} \cdot \frac{n+1}{n}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{5} \cdot \frac{n+1}{n}\right|=\left|\frac{x}{5}\right| \lim _{n \rightarrow \infty} \frac{n+1}{n}=\left|\frac{x}{5}\right|$, which gives $\left|\frac{x}{5}\right|<1 \Rightarrow|x|<5$
And $R=5$.
When $x= \pm 5$ the series become $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}$ which converges by the Alternating Series Test and $I=[-5,5]$.
(e) $f(x)=\ln \left(x^{2}+4\right)$

First consider the equality

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+4}=\frac{2 x}{4}\left[\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}\right]
$$

We would like to express the term inside the brackets as a series with $r=-\frac{x^{2}}{4}$

$$
f^{\prime}(x)=\frac{2 x}{4}\left[\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}\right]=\frac{2 x}{4}\left[\sum_{n=0}^{\infty}\left(-\frac{x^{2}}{4}\right)^{n}\right]=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2^{2 n+1}}
$$

To find $f(x)$ we need to integrate the series

$$
f(x)=\int \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2^{2 n+1}} d x=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{2^{2 n+1}(2 n+2)}=\ln (4)+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{(n+1) 2^{2 n+2}}
$$

Here we use the fact that $f(0)=\ln (4)$, so $C=\ln (4)$.
The series converges when $\left|-\frac{x^{2}}{4}\right|<1 \Rightarrow x^{2}<4 \Rightarrow|x|<2$, so $R=2$.
If $x= \pm 2$ the series becomes $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n+1}$, which converges by the Alternating Series Test and $I=[-2,2]$.
(f) $f(x)=\frac{2 x}{\left(1-x^{2}\right)^{2}}$

First we find the power series representation of the function

$$
\frac{1}{1-x^{2}}=\sum_{n=0}^{\infty} x^{2 n}, \text { since } r=x^{2}
$$

Next we multiply this series by itself to find the quadratic form $\frac{1}{\left(1-x^{2}\right)^{2}}$,

$$
\begin{aligned}
\left(\frac{1}{1-x^{2}}\right)\left(\frac{1}{1-x^{2}}\right) & =\left(1+x^{2}+x^{4}+x^{6}+\cdots\right)\left(1+x^{2}+x^{4}+x^{6}+\cdots\right) \\
& =1+x^{2}+x^{4}+x^{6}+x^{2}+x^{4}+x^{6}+x^{8}+x^{4}+x^{6}+x^{8}+x^{10}+x^{6}+x^{8}+x^{10}+x^{12} \\
& =1+2 x^{2}+3 x^{4}+4 x^{6}+5 x^{8}+\cdots=\sum_{n=0}^{\infty}(n+1) x^{2 n}
\end{aligned}
$$

To find $f(x)$ we need to multiply the series by $2 x$

$$
f(x)=\sum_{n=0}^{\infty} 2(n+1) x^{2 n+1} .
$$

Using the ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+3}}{x^{2 n+1}} \cdot \frac{n+2}{n+1}\right|=\left|x^{2}\right| \lim _{n \rightarrow \infty} \frac{n+2}{n+1}=\left|x^{2}\right| .
$$

The series converges when $\left|x^{2}\right|<1$, so $R=1$.
If $x= \pm 1$ the series becomes $\sum_{n=0}^{\infty} \pm 2(n+1)$, which diverge by nth-test and $I=(-1,1)$.
(g) $f(x)=\tan ^{-1}\left(x^{2}\right)$

First consider the equality

$$
f^{\prime}(x)=\frac{2 x}{x^{4}+1}=2 x\left[\frac{1}{1-\left(-x^{4}\right)}\right]
$$

We would like to express the term inside the brackets as a series with $r=-x^{4}$

$$
f^{\prime}(x)=2 x\left[\frac{1}{1-\left(-x^{4}\right)}\right]=2 x\left[\sum_{n=0}^{\infty}\left(-x^{4}\right)^{n}\right]=2 x\left[\sum_{n=0}^{\infty}(-1)^{n} x^{4 n}\right]=\sum_{n=0}^{\infty}(-2)^{n} x^{4 n+1}
$$

To find $f(x)$ we need to integrate the series

$$
f(x)=\int \sum_{n=0}^{\infty}(-2)^{n} x^{4 n+1} d x=C+\sum_{n=0}^{\infty}(-2)^{n} \frac{x^{4 n+2}}{4 n+2}=\sum_{n=0}^{\infty}(-2)^{n} \frac{x^{4 n+2}}{4 n+2}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1}
$$

Here we use the fact that $f(0)=\tan ^{-1}(0)=0$, so $C=0$.
Using the ration test

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}}{(-1)^{n}} \cdot \frac{x^{4 n+6}}{x^{4 n+2}} \cdot \frac{2 n+3}{2 n+1}\right|=\left|(-1) x^{4}\right| \lim _{n \rightarrow \infty} \frac{2 n+3}{2 n+1}=\left|x^{4}\right| .
$$

The series converges when $\left|x^{4}\right|<1$, so $R=1$.
If $x= \pm 1$ the series becomes $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$, which converges by the Alternating Series Test and $I=[-1,1]$.
5. Evaluate the integral as a power series. What is the radius of convergence?
(a) $\int \frac{t}{1-t^{8}} d t$

First we express the integrand as a power series:

$$
\frac{t}{1-t^{8}}=t \cdot \frac{1}{1-\left(t^{8}\right)}=t \cdot \sum_{n=0}^{\infty}\left(t^{8}\right)^{n}=t \cdot \sum_{n=0}^{\infty} t^{8 n}=\sum_{n=0}^{\infty} t^{8 n+1}
$$

The series for $\frac{1}{1-t^{8}}$ converges when $\left|t^{8}\right|<1$ or $|t|<1$, so $R=1$.
Next we evaluate the integral

$$
\int \frac{t}{1-t^{8}} d t=\int\left[\sum_{n=0}^{\infty} t^{8 n+1}\right] d t=C+\sum_{n=0}^{\infty} \frac{t^{8 n+2}}{8 n+2}
$$

(b) $\int \frac{\ln (1-t)}{t} d t$

First we express the integrand as a power series, for that we only consider the natural log:

$$
\ln (1-t)=-\int \frac{1}{1-t} d t=-\int\left[\sum_{n=0}^{\infty} t^{n}\right] d t=C-\sum_{n=0}^{\infty} \frac{t^{n+1}}{n+1}=-\sum_{n=0}^{\infty} \frac{t^{n+1}}{n+1}
$$

The series for converges when $|t|<1$ or $|t|<1$, so $R=1$.
Next we evaluate the integral

$$
\int \frac{\ln (1-t)}{t} d t=\int\left[\frac{1}{t} \cdot\left(-\sum_{n=0}^{\infty} \frac{t^{n+1}}{n+1}\right)\right] d t=-\int\left[\sum_{n=0}^{\infty} \frac{t^{n}}{n+1}\right] d t=C+\sum_{n=0}^{\infty} \frac{t^{n+1}}{(n+1)^{2}}
$$

(c) $\int \frac{x^{2}}{1+x^{4}} d x$

First we express the integrand as a power series:

$$
\frac{x^{2}}{1+x^{4}}=x^{2} \cdot \frac{1}{1-\left(-x^{4}\right)}=x^{2} \cdot \sum_{n=0}^{\infty}\left(-x^{4}\right)^{n}=x^{2} \cdot \sum_{n=0}^{\infty}(-1)^{n} x^{4 n}=\sum_{n=0}^{\infty}(-1)^{n} x^{4 n+2}
$$

The series for converges when $\left|-x^{4}\right|=\left|x^{4}\right|<1$ or $|x|<1$, so $R=1$.
Next we evaluate the integral

$$
\int \frac{x^{2}}{1+x^{4}} d x=\int\left[\sum_{n=0}^{\infty}(-1)^{n} x^{4 n+2}\right] d x=C+(-1)^{n} \frac{x^{4 n+3}}{4 n+3}
$$

6. Use partial fractions to find the power series of each of the following functions.
(a) $\frac{4}{(x-3)(x+1)}$

$$
\frac{4}{(x-3)(x+1)}=\frac{A}{x-3}+\frac{B}{x+1} \quad \Rightarrow \quad 4=A(x+1)+B(x-3)
$$

which gives $A=1$ and $B=-1$.
Next we find the two power series:

$$
\begin{aligned}
\frac{1}{x-3} & =-\frac{1}{3}\left[\frac{1}{1-\left(\frac{x}{3}\right)}\right]=-\frac{1}{3}\left[\sum_{n=0}^{\infty}\left(\frac{x}{3}\right)^{n}\right]=-\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n+1}} \\
-\frac{1}{x+1} & =-\frac{1}{1-(-x)}=-\sum_{n=0}^{\infty}(-x)^{n}=-\sum_{n=0}^{\infty}(-1)^{n} x^{n}=\sum_{n=0}^{\infty}(-1)^{n+1} x^{n}
\end{aligned}
$$

Then the power series representation of the function is

$$
f(x)=\frac{4}{(x-3)(x+1)}=-\frac{1}{x+1}+\frac{1}{x-3}=\sum_{n=0}^{\infty}(-1)^{n+1} x^{n}-\sum_{n=0}^{\infty} \frac{x^{n}}{3^{n+1}}=\sum_{n=0}^{\infty}\left[(-1)^{n+1}-\frac{1}{3^{n+1}}\right] x^{n}
$$

(b) $\frac{5}{\left(x^{2}+4\right)\left(x^{2}-1\right)}$

$$
\begin{aligned}
\frac{5}{\left(x^{2}+4\right)\left(x^{2}-1\right)}=\frac{5}{\left(x^{2}+4\right)(x-1)(x+1)} & =\frac{A x+B}{x^{2}+4}+\frac{C}{x-1}+\frac{D}{x+1} \\
5 & =(A x+B)\left(x^{2}-1\right)+C\left(x^{2}+4\right)(x+1)+D\left(x^{2}+4\right)(x-1)
\end{aligned}
$$

which gives $A=0, B=-1, C=1 / 2$, and $D=-1 / 2$
The individual power series are given by

$$
\begin{aligned}
-\frac{1}{4+x^{2}} & =-\frac{1}{4}\left[\frac{1}{1-\left(-\frac{x^{2}}{4}\right)}\right]=-\frac{1}{4}\left[\sum_{n=0}^{\infty}\left(-\frac{x^{2}}{4}\right)^{n}\right]=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{2 n}}{4^{n+1}} \\
\frac{1}{2(x-1)} & =-\frac{1}{2}\left[\frac{1}{1-x}\right]=-\frac{1}{2}\left[\sum_{n=0}^{\infty} x^{n}\right]=-\frac{1}{2} \sum_{n=0}^{\infty} x^{n} \\
-\frac{1}{2(x+1)} & =-\frac{1}{2}\left[\frac{1}{1-(-x)}\right]=-\frac{1}{2}\left[\sum_{n=0}^{\infty}(-x)^{n}\right]=-\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} x^{n}
\end{aligned}
$$

Then the power series representation of the function is

$$
\begin{aligned}
f(x)=\frac{5}{\left(x^{2}+4\right)\left(x^{2}-1\right)} & =-\frac{1}{4+x^{2}}+\frac{1}{2(x-1)}-\frac{1}{2(x+1)} \\
& =\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{2 n}}{4^{n+1}}-\frac{1}{2} \sum_{n=0}^{\infty} x^{n}-\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n} x^{n}=\sum_{n=0}^{\infty}\left[\frac{(-1)^{n+1}}{4^{n+1}}-1\right] x^{2 n}
\end{aligned}
$$

(c) $\frac{3}{(x+2)(x-1)}$

$$
\begin{aligned}
\frac{3}{(x+2)(x-1)} & =\frac{A}{x+2}+\frac{B}{x-1} \\
3 & =A(x-1)+B(x+2)
\end{aligned}
$$

which gives $A=-1$ and $B=1$.
The individual power series are given by

$$
\begin{aligned}
-\frac{1}{x+2} & =-\frac{1}{2}\left[\frac{1}{1-\left(-\frac{x}{2}\right)}\right]=-\frac{1}{2}\left[\sum_{n=0}^{\infty}\left(-\frac{x}{2}\right)^{n}\right]=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{n}}{2^{n+1}} \\
\frac{1}{x-1} & =-\frac{1}{1-x}=-\sum_{n=0}^{\infty} x^{n}
\end{aligned}
$$

Then the power series representation of the function is

$$
\begin{aligned}
f(x) & =\frac{3}{(x+2)(x-1)}=-\frac{1}{x+2}+\frac{1}{x-1}=\sum_{n=0}^{\infty}(-1)^{n+1} \frac{x^{n}}{2^{n+1}}-\sum_{n=0}^{\infty} x^{n} \\
& =\sum_{n=0}^{\infty}\left[\left(-\frac{1}{2}\right)^{n+1}-1\right] x^{n}
\end{aligned}
$$

