1. Find the radius of convergence and interval of convergence of the series
(a) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$
(b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n+1}$
(c) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(d) $\sum_{n=1}^{\infty} n^{n} x^{n}$
(e) $\sum_{n=1}^{\infty} \frac{x^{n}}{5^{n} n^{5}}$
(f) $\sum_{n=1}^{\infty} \frac{n}{4^{n}}(x+1)^{n}$
(g) $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n^{n}}$
(h) $\sum_{n=1}^{\infty} \frac{n(x-4)^{n}}{n^{3}+1}$
2. Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=-4$ and diverges when $x=6$. What can be said about the convergence or divergence of the following series.
(a) $\sum_{n=0}^{\infty} c_{n} 8^{n}$
(b) $\sum_{k=0}^{\infty}(-1)^{n} c_{n} 9^{n}$
3. Suppose that $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges when $x=2$ and diverges when $x=-3$. What can be said about the convergence or divergence of the following series.
(a) $\sum_{k=0}^{\infty} \frac{4^{n}}{5^{n+1}} c_{n}$
(b) $\sum_{n=0}^{\infty} c_{n}(-3)^{n}$
4. Find a power series representation for the function and determine the interval of convergence
(a) $f(x)=\frac{1}{1+x}$
(b) $f(x)=\frac{3}{1-x^{4}}$
(c) $f(x)=\frac{x^{2}}{a^{3}-x^{3}}$
(d) $f(x)=\ln (5-x)$
(e) $f(x)=\ln \left(x^{2}+4\right)$
(f) $f(x)=\frac{2 x}{\left(1-x^{2}\right)^{2}}$
(g) $f(x)=\tan ^{-1}\left(x^{2}\right)$
5. Evaluate the integral as a power series. What is the radius of convergence?
(a) $\int \frac{t}{1-t^{8}} d t$
(b) $\int \frac{\ln (1-t)}{t} d t$
(c) $\int \frac{x^{2}}{1+x^{4}} d x$
6. Use partial fractions to find the power series of each of the following functions.
(a) $\frac{4}{(x-3)(x+1)}$
(b) $\frac{5}{\left(x^{2}+4\right)\left(x^{2}-1\right)}$
(c) $\frac{3}{(x+2)(x-1)}$
