1. Find the radius of convergence and interval of convergence of the series

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

(d)
$$\sum_{n=1}^{\infty} n^n x^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{x^n}{5^n n^5}$$

(f)
$$\sum_{n=1}^{\infty} \frac{n}{4^n} (x+1)^n$$

(g)
$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^n}$$

(h) $\sum_{n=1}^{\infty} \frac{n(x-4)^n}{n^3+1}$

2. Suppose that $\sum_{n=0}^{\infty} c_n x^n$ converges when x = -4 and diverges when x = 6. What can be said about the convergence or divergence of the following series.

(a)
$$\sum_{n=0}^{\infty} c_n 8^n$$

(b)
$$\sum_{k=0}^{\infty} (-1)^n c_n 9^n$$

3. Suppose that $\sum_{n=0}^{\infty} c_n x^n$ converges when x = 2 and diverges when x = -3. What can be said about the convergence or divergence of the following series.

(a)
$$\sum_{k=0}^{\infty} \frac{4^n}{5^{n+1}} c_n$$

(b) $\sum_{n=0}^{\infty} c_n (-3)^n$

(a)
$$f(x) = \frac{1}{1+x}$$

(b) $f(x) = \frac{3}{1-x^4}$
(c) $f(x) = \frac{x^2}{a^3 - x^3}$
(d) $f(x) = \ln(5-x)$
(e) $f(x) = \ln(x^2 + 4)$
(f) $f(x) = \frac{2x}{(1-x^2)^2}$
(g) $f(x) = \tan^{-1}(x^2)$

5. Evaluate the integral as a power series. What is the radius of convergence?

(a)
$$\int \frac{t}{1-t^8} dt$$

(b)
$$\int \frac{\ln(1-t)}{t} dt$$

(c)
$$\int \frac{x^2}{1+x^4} dx$$

6. Use partial fractions to find the power series of each of the following functions.

(a)
$$\frac{4}{(x-3)(x+1)}$$

(b) $\frac{5}{(x^2+4)(x^2-1)}$
(c) $\frac{3}{(x+2)(x-1)}$

c)
$$\int \frac{d}{1+x^4} dx$$