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Suppose you are designing a part for a system. For convenience, you assume
that the shape of this part will be given by rotating a curve, about the z-axis,
as shown in the figure.

You wish to calculate the amount of material required to cover the part, that
is you need to calculate its surface area.

Surface area of a solid of revolution

We start by approximating the curve using linear segments, and then rotating each segment, as

shown in the figure below

For each of the sections, known as a frustum, we can calculate the surface area
as
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in our approximation, the frustum 7 will have
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The surface area of the solid will be given by the sum of the surface areas of each frustum,
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If we take the limit when each section is infinitesimally small (Az — 0 or equivalently n — c0), we
obtain
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Where we used the fact that

A, = lim znzw[f(xi_l)-i-f(xi)] 1+(Ay>2m

lim f(z;_1) = Alifilof(xi) = f(z)
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In general,

Ay = / 2myds rotation about x — axis

A, = 2mxds rotation about y — axis
where,
ds = \/1+ (%)de, ify=f(z), a<az<b
ds = 1+<‘§—;>2dy, ifx=g(y), c<y<d

Example: Determine the surface area of the solid obtained by rotating y = /z, for 0 < y < 1 about
the y-axis.

We first find ds as
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Next we need to find the limits of the integral, when y = 0, x = 0 and when y = 1, x = 1, so that
our surface area is found as
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To solve this integral we use the substitution

u =913 + 1, du = 12x%d:£,
and the integral becomes
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