Suppose you are designing a part for a system. For convenience, you assume that the shape of this part will be given by rotating a curve, about the x-axis, as shown in the figure.
You wish to calculate the amount of material required to cover the part, that is you need to calculate its surface area.

Surface area of a solid of revolution

We start by approximating the curve using linear segments, and then rotating each segment, as shown in the figure below

For each of the sections, known as a frustum, we can calculate the surface area as
$A_{s}=2 \pi r \ell=2 \pi\left(\frac{r_{1}+r_{2}}{2}\right) \ell=\pi\left(r_{1}+r_{2}\right) \ell$,
in our approximation, the frustum i will have

$$
r_{1}=f\left(x_{i-1}\right) \quad r_{2}=f\left(x_{i}\right), \quad \ell=\left|P_{i-1}-P_{i}\right|=\sqrt{\Delta x^{2}+\Delta y^{2}}
$$

The surface area of the solid will be given by the sum of the surface areas of each frustum,

$$
A_{s}=\sum_{i=1}^{n} \pi\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \sqrt{\Delta x^{2}+\Delta y^{2}}=\sum_{i=1}^{n} \pi\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}} \Delta x
$$

If we take the limit when each section is infinitesimally small $(\Delta x \rightarrow 0$ or equivalently $n \rightarrow \infty)$, we obtain

$$
\begin{aligned}
A_{s} & =\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} \pi\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}} \Delta x\right] \\
& =\int 2 \pi f(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

Where we used the fact that

$$
\lim _{\Delta x \rightarrow 0} f\left(x_{i-1}\right)=\lim _{\Delta x \rightarrow 0} f\left(x_{i}\right)=f(x)
$$

In general,

$$
\begin{array}{ll}
A_{s}=\int 2 \pi y d s & \text { rotation about } x-\text { axis } \\
A_{s}=\int 2 \pi x d s & \text { rotation about } y-\text { axis }
\end{array}
$$

where,

$$
\begin{aligned}
d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x, & \text { if } y=f(x), \quad a \leq x \leq b \\
d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y, & \text { if } x=g(y), \quad c \leq y \leq d
\end{aligned}
$$

Exercise: Determine the surface area of the solid obtained by rotating $y=\sqrt[3]{x}$, for $0 \leq y \leq 1$ about the y-axis.

