university of
SOUIHCAROLINA

Problem: The time-dependent temperature of an object changes at a rate proportional to the difference between the temperature of its surroundings and the temperature of the object. This relation is expressed as the Newton's Law of cooling and is written as:

$$
\rho c \frac{d T(t)}{d t}=-\frac{h A_{s}}{V}\left(T(t)-T_{s}(t)\right)
$$

where ρ is the density of the object, c is its specific heat, h is the heat transfer coefficient between the object and its surroundings, A_{s} is the surface area of the object, V is the volume of the object, and $T_{s}(t)$ is the temperature of the surroundings.
For simplicity, the equation can be expressed as,

$$
\frac{d T(t)}{d t}+m T(r)=m T_{s}(t), \quad \quad m=\frac{h A_{s}}{\rho c V}
$$

The solution of this equation can be found through the use of an integrating factor as,

$$
T(t)=m e^{-m t} \int T_{s}(t) e^{m t} d t
$$

Assume that the temperature of the surrounding medium is linearly changing in time as,

$$
T_{s}(t)=\alpha t+T_{0}
$$

where T_{0} is the initial temperature of the surroundings and α is the rate at which T_{s} is changing. The expression for the temperature is then given by,

$$
\begin{equation*}
T(t)=m e^{-m t} \int\left(\alpha t+T_{0}\right) e^{m t} d t \tag{1}
\end{equation*}
$$

Solution:

To solve Eqn. (1) we need to integrate by parts with

$$
\begin{aligned}
u & =\left(\alpha t+T_{0}\right), & d v & =e^{m t} d t \\
d u & =\alpha d t, & v & =\frac{1}{m} e^{m t}
\end{aligned}
$$

giving

$$
\begin{aligned}
T(t) & =m e^{-m t} \int\left(\alpha t+T_{0}\right) e^{m t} d t=m e^{-m t}\left[\left(\alpha t+T_{0}\right)\left(\frac{1}{m} e^{m t}\right)-\int\left(\frac{1}{m} e^{m t}\right) \alpha d t\right] \\
& =m e^{-m t}\left[\frac{1}{m}\left(\alpha t+T_{0}\right) e^{m t}-\frac{\alpha}{m} \int e^{m t} d t\right]=m e^{-m t}\left[\frac{1}{m}\left(\alpha t+T_{0}\right) e^{m t}-\frac{\alpha}{m^{2}} e^{m t}+C\right] \\
& =\alpha t+T_{0}-\frac{\alpha}{m}+C m e^{-m t}
\end{aligned}
$$

Problem 1: Assume that a thermometer with a spherical test section of radius $r=0.3 \mathrm{~cm}$ is initially at a temperature $T_{i}=50^{\circ} \mathrm{C}$, the density of the thermometer medium is $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$, its specific heat is $c=3000 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$, the heat transfer coefficient $h=1500 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$, the initial temperature of the surroundings $T_{0}=100^{\circ} \mathrm{C}$, and the rate of change of the surroundings temperature $\alpha=5^{\circ} \mathrm{C} / \mathrm{s}$. How does the temperature of the thermometer compares to that of the surrounding medium at long times? Plot the ratio of the thermometer's temperature to the surrounding temperature as a function of time.

Problem 2: Assume that for the problem above the surrounding temperature is changing periodically as $T_{s}(t)=\cos (2 \pi t)$. Find an expression for the temperature of the thermometer as a function of time.

