$\sum_{k=1}^{\infty} a_{k}$, here k is the index of summation and the series starts at $k=1$.
This notation is a convenient way of writing $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}$.

- Writing down individual terms:

$$
\begin{array}{ll}
- & \sum_{i=0}^{\infty} \frac{i-1}{2^{i+2}}=\frac{0-1}{2^{0+2}}+\frac{1-1}{2^{1+2}}+\frac{2-1}{2^{2+2}}+\frac{3-1}{2^{3+2}}+\cdots=-\frac{1}{2^{2}}+0 \quad+\frac{1}{2^{4}}+\frac{2}{2^{5}}+\cdots \\
-\quad & \sum_{n=2}^{\infty} \frac{n-3}{2^{n}}=\frac{2-3}{2^{2}}+\frac{3-3}{2^{3}}+\frac{4-3}{2^{4}}+\frac{5-3}{2^{5}}+\cdots=-\frac{1}{2^{2}}+0 \quad+\frac{1}{2^{4}}+\frac{2}{2^{5}}+\cdots
\end{array}
$$

- Basic Properties:

- If $\sum a_{n}$ converges, then $\sum c a_{n}$, for any constant c.
- if $\sum_{n=k}^{\infty} a_{n}$ and $\sum_{n=k}^{\infty} b_{n}$ are convergent, then $\sum_{n=k}^{\infty} a_{n} \pm \sum_{n=k}^{\infty} b_{n}=\sum_{n=k}^{\infty}\left(a_{n} \pm b_{n}\right)$ also converges.

If one of them diverges, the sum (or subtraction) also diverges. Note that both series start at the same point.

- Products of series: We cannot say anything about convergence from a product of two series since

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right) \neq \sum_{n=0}^{\infty}\left(a_{n} \cdot b_{n}\right)
$$

- Shifting: To shift the series we use a dummy variable. For example the series $\sum_{n=2}^{\infty} \frac{n-3}{2^{n}}$, can be shifted to start at zero if we use $i=n-2$, which implies $n=i+2$:

$$
\sum_{i=0}^{\infty} \frac{(i+2)-3}{2^{i+2}}=\sum_{i=0}^{\infty} \frac{i-1}{2^{i+2}}=\sum_{n=0}^{\infty} \frac{n-1}{2^{n+2}}
$$

Examples

- Write the series $\sum_{n=1}^{\infty} \frac{n^{2}}{1-3^{n+1}}$ as a series starting at $n=0$

$$
n=i+1: \quad \sum_{n=1}^{\infty} \frac{n^{2}}{1-3^{n+1}}=\sum_{i=0}^{\infty} \frac{(i+1)^{2}}{1-3^{(i+1)+1}}=\sum_{n=0}^{\infty} \frac{(n+1)^{2}}{1-3^{n+2}}
$$

- Write the series $\sum_{n=1}^{\infty} \frac{n^{2}}{1-3^{n+1}}$ as a series starting at $n=3$

$$
n=i-2: \quad \sum_{n=1}^{\infty} \frac{n^{2}}{1-3^{n+1}}=\sum_{i=3}^{\infty} \frac{(i-2)^{2}}{1-3^{(i-2)+1}}=\sum_{n=3}^{\infty} \frac{(n-2)^{2}}{1-3^{n-1}}
$$

