Parametric equations
For certain applications it is not possible to express the relationship between different variables as $y=f(x)$ or $x=g(y)$, the most common example is the equation of a circle centered at (a, b) with radius r.

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

To deal with these types of problems we introduce parametric equations, for this we define x and y as functions of a third variable, t,

$$
x=f(t) \quad y=g(t)
$$

By varying t we can define a set of points $(f(t), g(t))$. The graph of that collection of points is called a parametric curve.

Example

Sketch the parametric curve for the following set of parametric equations

$$
x=3-3 t, \quad y=2 t, \quad 0 \leq t \leq 1
$$

t	x	y
0	3	0
0.2	2.4	0.4
0.4	1.8	0.8
0.6	1.2	1.2
0.8	0.6	1.6
1	0	2

From parametric to algebraic equations

Sometimes we can eliminate the parameter t and obtain an equation in terms of y and x, we call this the algebraic equation to differentiated from the original parametric equation.

Example

Continuing with our previous example

$$
x=3-3 t, \quad y=2 t, \quad 0 \leq t \leq 1
$$

We can solve for t in one equation and substitute in the other:

$$
\begin{aligned}
t & =1-\frac{x}{3} \\
y & =2 t=2\left(1-\frac{x}{3}\right) \\
y & =-\frac{2}{3} x+2
\end{aligned}
$$

Which we recognize as the equation of the line with y-intersect $(0,2)$ and slope $-2 / 3$.
We have to be careful here, because from the parametric equation this is not defined for all x and y. The correct answer should be

$$
y=-\frac{2}{3} x+2, \quad 0 \leq x \leq 3, \quad 0 \leq y \leq 2
$$

Orientation

If we consider t to represent time and $x-y$ to represent the position of a particle in the plane at different times, then it is easy to see that the parametric curve has a "orientation," roughly this would be the direction in which t is increasing. This means that two parametric equations can look alike, but differ from one another on their orientation.

Example

Find the parametric equations and a parameter interval for the motion of a particle that starts at $(a, 0)$ and traces the circle $x^{2}+y^{2}=a^{2}$.

The parametric equations for a circle are

$$
x(t)=a \cos (t), \quad y(t)=a \sin (t), \quad 0 \leq t \leq 2 \pi
$$

1. The particle goes around the circle once counterclockwise

Here x is going from 1 to 0 to -1 to 0 , while y is going 0 to 1 to 0 to -1 . The parametric equations are

$$
x(t)=a \cos (t), \quad y(t)=a \sin (t), \quad 0 \leq t \leq 2 \pi
$$

2. The particle goes around the circle once clockwise

Here x is going from 1 to 0 to -1 to 0 , while y is going 0 to -1 to 0 to 1 . The parametric equations are

$$
x(t)=a \cos (t), \quad y(t)=-a \sin (t), \quad 0 \leq t \leq 2 \pi
$$

3. The particle goes around the circle twice clockwise

While x and y still follow the equations from part 2 , the range of t changes and the parametric equations are

$$
x(t)=a \cos (t), \quad y(t)=-a \sin (t), \quad 0 \leq t \leq 4 \pi
$$

