Solve the differential equation

$$
\frac{d y}{d x}=\frac{x^{2}}{(x-1)^{3}},
$$

with the following initial condition

$$
y(2)=1
$$

To solve the ODE we need to separate terms with y from terms with x

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x^{2}}{(x-1)^{3}} \\
d y & =\frac{x^{2}}{(x-1)^{3}} d x
\end{aligned}
$$

and integrate both sides

$$
\int d y=\int \frac{x^{2}}{(x-1)^{3}} d x
$$

Here we focus on the integral on the right hand side. to solve we use partial fractions:

$$
\frac{x^{2}}{(x-1)^{3}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}
$$

Multiplying both sides by $(x-1)^{3}$ gives

$$
\begin{aligned}
x^{2} & =A(x-1)^{2}+B(x-1)+C \\
& =A x^{2}-2 A x+A+B x-B+C .
\end{aligned}
$$

The resulting system of equations for A, B and C is

$$
\begin{aligned}
& 1=A \\
& 0=-2 A+B \\
& 0=A-B+C
\end{aligned}
$$

with solution $A=1, B=2$ and $C=1$.
Then our integral reduces to

$$
\int \frac{x^{2}}{(x-1)^{3}} d x=\int \frac{1}{x-1} d x+\int \frac{2}{(x-1)^{2}} d x+\int \frac{1}{(x-1)^{3}} d x
$$

We can solve all three integrals using the substitution $u=x-1, d u=d x$

$$
\begin{aligned}
\int \frac{x^{2}}{(x-1)^{3}} d x & =\int \frac{1}{x-1} d x+\int \frac{2}{(x-1)^{2}} d x+\int \frac{1}{(x-1)^{3}} d x \\
& =\int \frac{d u}{u}+\int \frac{2 d u}{u^{2}}+\int \frac{d u}{u^{3}} \\
& =\ln |u|-2 \frac{1}{u}-\frac{1}{2 u^{2}}+C \\
& =\ln |x-1|-\frac{2}{x-1}-\frac{1}{2(x-1)^{2}}+C .
\end{aligned}
$$

Now we can find the solution of our ODE

$$
\begin{aligned}
\int d y & =\int \frac{x^{2}}{(x-1)^{3}} d x \\
y & =\ln |x-1|-\frac{2}{x-1}-\frac{1}{2(x-1)^{2}}+C
\end{aligned}
$$

To find the constant we use the initial condition $y(2)=1$

$$
\begin{aligned}
y & =\ln |x-1|-\frac{2}{x-1}-\frac{1}{2(x-1)^{2}}+C \\
y(2) & =\ln |2-1|-\frac{2}{2-1}-\frac{1}{2(2-1)^{2}}+C \\
1 & =\ln (1)-\frac{2}{1}-\frac{1}{2 \cdot 1}+C \\
1 & =0-2-\frac{1}{2}+C
\end{aligned}
$$

solving for C gives $C=\frac{7}{2}$, and the solution of our ODE is

$$
y=\ln |x-1|-\frac{2}{x-1}-\frac{1}{2(x-1)^{2}}+\frac{7}{2}
$$

Exercise

1. What will be the solution if the initial condition is $y(2)=-1$?
2. Without solving, what would be the procedure if the numerator of the ODE is x^{4}, instead of x^{2} ?
