Integration by parts formula

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int f(x) g^{\prime}(x) d x & =f(x) g(x)-\int f^{\prime}(x) g(x) d x
\end{aligned}
$$

This technique is most useful when f can be differentiated repeatedly and g can be integrated repeatedly without difficulty. As a rule of thumb, you must choose $f(x)$ such that its derivative is simpler than $f(x)$.

Some things to considering when integrating by parts

1. LIATE

In most cases it is convenient to set $f(x)$ (or u) to be a function on this list

- Logarithm
- Inverse trigonometric function
- Algebraic function
- Trigonometric function
- Exponential

2. Integrate more than once

Some times you will need to keep integrating by parts until the resulting integral is simple enough.

Example

Find the integral

$$
\int x^{2} e^{x} d x
$$

To apply LIATE note that we choose u to be the algebraic function, since Exponential functions come after Algebraic function in the LIATE scheme,

$$
\begin{array}{rl}
u=x^{2}, & d u=2 x d x \\
d v=e^{x} d x & v=e^{x}
\end{array}
$$

so that

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-\int 2 x e^{x} d x
$$

here we will need to apply integration by parts to the last integral one more time,

$$
\begin{gathered}
\int x^{2} e^{x} d x=x^{2} e^{x}-\int 2 x e^{x} d x \\
\int x^{2} e^{x} d x=x^{2} e^{x}-\left[2 x e^{x}-\int 2 e^{x} d x\right]=x^{2} e^{x}-2 x e^{x}+\int 2 e^{x} d x
\end{gathered}
$$

we can solve the last integral easily, giving us the solution

$$
\int x^{2} e^{x} d x=x^{2} e^{x}-2 x e^{x}+2 e^{x}+C
$$

3. Tabular Method

In the last example we had to apply the Integration by Parts Formula multiple times. There is a convenient way to simplify our work. This is done by creating a table as illustrated in the following example.

Example

Find the integral

$$
\int x^{3} \sin (3 x) d x
$$

following LIATE, $u=x^{3}$ and $v=\sin (3 x)$, so that we need to differentiate u and integrate v, we perform these operations in a table .

Differentiate u	Integrate v
x^{3}	$\sin (3 x)$
$3 x^{2}$	$-\frac{1}{3} \cos (3 x)$
$6 x$	$-\frac{1}{9} \sin (3 x)$
6	$\frac{1}{27} \cos (3 x)$
0	$\frac{1}{81} \sin (3 x)$

Then we "follow" the arrows to obtain our integral:

$$
\begin{aligned}
\int x^{3} \sin (3 x) d x & =+\left(x^{3}\right)\left(-\frac{1}{3} \cos (3 x)\right)-\left(3 x^{2}\right)\left(-\frac{1}{9} \sin (3 x)\right)+(6 x)\left(\frac{1}{27} \cos (3 x)\right)-(6)\left(\frac{1}{81} \sin (3 x)\right) \\
& =-\frac{x^{3}}{3} \cos (3 x)+\frac{x^{2}}{3} \sin (3 x)+\frac{2 x}{9} \cos (3 x)-\frac{2}{27} \sin (3 x)
\end{aligned}
$$

4. $d v=d x$

Sometimes is useful to consider $d v=d x$.

Example

Find the integral

$$
\int \ln x d x
$$

Taking

$$
\begin{array}{rlrl}
u=\ln x, & & d u=\frac{1}{x} d x \\
d v & =1 d x, & & v=x,
\end{array}
$$

gives

$$
\int \ln x d x=\ln x \cdot x-\int\left[\frac{1}{x} \cdot x\right] d x=x \ln x-\int d x=x \ln x-x+C
$$

5. Recurring integrals

Sometimes you need to reorganize terms by looking at terms that are repeated through the integration process.

Example

Find the integral

$$
\int e^{x} \sin x d x
$$

if we apply LIATE, we get

$$
\begin{array}{cl}
u=\sin x, & d u=\cos x d x \\
d v=e^{x} d x & v=e^{x},
\end{array}
$$

so that

$$
\int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x
$$

we apply LIATE again to the last part

$$
\int e^{x} \sin x d x=e^{x} \sin x-\int e^{x} \cos x d x
$$

obtaining

$$
\begin{aligned}
\int e^{x} \sin x d x & =e^{x} \sin x-\left[e^{x} \cos x+\int e^{x} \sin x d x\right] \\
& =e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x \\
\text { (add the last integral to both sides) } & \Rightarrow \\
2 \int e^{x} \sin x d x & =e^{x} \sin x-e^{x} \cos x \\
\text { (dividing by 2 on both sides) } & \Rightarrow \\
\int e^{x} \sin x d x & =\frac{e^{x} \sin x-e^{x} \cos x}{2}
\end{aligned}
$$

since this is an indefinite integral DO NOT FORGET the constant of integration!!

$$
\int e^{x} \sin x d x=\frac{e^{x} \sin x-e^{x} \cos x}{2}+C
$$

6. General remarks

- To choose between u and $d v$, if you only know how to integrate only one of the two, that's the one you integrate!
- When in doubt integrate by parts.
- Recurring integrals comes up often when we are dealing with the product of two functions with "nonterminating" derivatives. By this we mean that you can keep differentiating functions like e^{x} and trigonometric functions indefinitely and never reach zero. Polynomials on the other hand will eventually "terminate" and their nth derivative (where n is the degree of the polynomial) is identically zero.

