

Integration by parts formula

$$\int u \, dv = u \, v - \int v \, du$$
$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

This technique is most useful when f can be differentiated repeatedly and g can be integrated repeatedly without difficulty. As a rule of thumb, you must choose f(x) such that its derivative is simpler than f(x).

Some things to considering when integrating by parts

1. LIATE

In most cases it is convenient to set f(x) (or u) to be a function on this list

- \bullet Logarithm
- Inverse trigonometric function
- Algebraic function
- Trigonometric function
- Exponential

2. Integrate more than once

Some times you will need to keep integrating by parts until the resulting integral is simple enough.

Example

Find the integral $\int x^2 e^x dx$,

To apply LIATE note that we choose u to be the algebraic function, since Exponential functions come after Algebraic function in the LIATE scheme,

$$u = x^{2}, \qquad du = 2xdx$$
$$dv = e^{x}dx \qquad v = e^{x},$$

so that

$$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx,$$

here we will need to apply integration by parts to the last integral one more time,

$$\int x^2 e^x dx = x^2 e^x - \int 2x \, e^x dx,$$

$$\int x^2 e^x dx = x^2 e^x - \left[\frac{2x}{2}e^x - \int 2e^x dx\right] = x^2 e^x - 2x e^x + \int 2e^x dx,$$

we can solve the last integral easily, giving us the solution

$$\int x^2 e^x dx = x^2 e^x - 2xe^x + 2e^x + C.$$

3. Tabular Method

In the last example we had to apply the Integration by Parts Formula multiple times. There is a convenient way to simplify our work. This is done by creating a table as illustrated in the following example.

Example

Find the integral

$$\int x^3 \sin(3x) dx,$$

following LIATE, $u = x^3$ and $v = \sin(3x)$, so that we need to *differentiate* u and *integrate* v, we perform these operations in a table .

Then we "follow" the arrows to obtain our integral:

$$\int x^3 \sin(3x) dx = + \left(x^3\right) \left(-\frac{1}{3}\cos(3x)\right) - \left(3x^2\right) \left(-\frac{1}{9}\sin(3x)\right) + \left(6x\right) \left(\frac{1}{27}\cos(3x)\right) - \left(6\right) \left(\frac{1}{81}\sin(3x)\right) \\ = -\frac{x^3}{3}\cos(3x) + \frac{x^2}{3}\sin(3x) + \frac{2x}{9}\cos(3x) - \frac{2}{27}\sin(3x).$$

4. dv = dx

Sometimes is useful to consider dv = dx.

Example

Find the integral

$$\int \ln x dx.$$

Taking

$$u = \ln x,$$
 $du = \frac{1}{x} dx$
 $dv = 1 dx,$ $v = x,$

gives

$$\int \ln x \, dx = \ln x \cdot x - \int \left[\frac{1}{x} \cdot x\right] dx = x \ln x - \int dx = x \ln x - x + C.$$

5. Recurring integrals

Sometimes you need to reorganize terms by looking at terms that are repeated through the integration process.

Example

Find the integral

$\int e^x \sin x dx,$

if we apply LIATE, we get

 $du = \cos x dx$ $u = \sin x$, $dv = \frac{e^x}{e^x} dx$ $v = e^x$,

so that

$$\int e^x \sin x dx = e^x \sin x - \int e^x \cos x dx$$

we apply LIATE again to the last part

(add the last inte

$$\int e^x \sin x dx = e^x \sin x - \int e^x \cos x dx,$$

obtaining

$$\int e^x \sin x dx = e^x \sin x - \left[e^x \cos x + \int e^x \sin x dx \right]$$
$$= e^x \sin x - e^x \cos x - \int e^x \sin x dx$$
he last integral to both sides) \Rightarrow
$$2 \int e^x \sin x dx = e^x \sin x - e^x \cos x$$
(dividing by 2 on both sides) \Rightarrow

$$\int e^x \sin x dx = \frac{e^x \sin x - e^x \cos x}{2}$$

since this is an indefinite integral DO NOT FORGET the constant of integration!!

$$\int e^x \sin x dx = \frac{e^x \sin x - e^x \cos x}{2} + C.$$

6. General remarks

- To choose between u and dv, if you only know how to integrate only one of the two, that's the one you integrate!
- When in doubt integrate by parts.
- Recurring integrals comes up often when we are dealing with the product of two functions with "nonterminating" derivatives. By this we mean that you can keep differentiating functions like e^x and trigonometric functions indefinitely and never reach zero. Polynomials on the other hand will eventually "terminate" and their nth derivative (where n is the degree of the polynomial) is identically zero.