dx

f(x+dx) - f(x)

Definition of a derivative

We are looking for the rate of change of a function at a point,

- Approximate to an interval:
- Find the *raw* change:
- Find the rate of change on the interval:
- Approximate to the point:

$\frac{f(x+dx) - f(x)}{dx}$ $\frac{df(x)}{dx} = f'(x) = \lim_{dx \to 0} \frac{f(x+dx) - f(x)}{dx}$

Derivate rules

• Product rule: $(f \cdot g)' = f' \cdot g + f \cdot g'$ • Quotient rule: $\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$ • Power rule: $(x^n)' = n x^{n-1}$ • Addition/subtraction: $(f \pm g)' = f' \pm g'$ • Multiplication by a constant: (cf(x))' = c(f(x))'• Chain rule: $(f(g(x)))' = g'(x) \cdot f'(g(x))$ • Derivatives of inverse functions: If f(g(x)) = x, then by the chain rule $g'(x) = \frac{1}{f'(g(x))}$

Logarithms and exponentials

• $\log(a \cdot b) = \log a + \log b$ • $\log\left(\frac{a}{b}\right) = \log a - \log b$ $\log x^a = a \log x$ $a^x = e^{x \log a}$

Integrals

• Indefinite integrals: $\int f(x)dx = F(x) + C, \text{ where } F'(x) = f(x)$ • Definitive integrals: $\int_{a}^{b} f(x)dx = F(b) - F(a)$ • Addition/subtraction: $\int (f \pm g) dx = \int f dx \pm \int g dx$ • Multiplication by a constant: $\int cf(x)dx = c \int f(x)dx$