1. $\mathbf{n}^{\text {th }}$-term test for divergence

For a series of the form

$$
\begin{array}{ll}
\sum_{n=1}^{\infty} a_{n} & \\
\lim _{n \rightarrow \infty} a_{n}=0 & \text { The test is inconclusive } \\
\lim _{n \rightarrow \infty} a_{n}=\infty(\text { or DNE }) & \text { The series diverges } \\
\lim _{n \rightarrow \infty} a_{n} \neq 0 & \text { The series diverges }
\end{array}
$$

- $\sum_{n=1}^{\infty} \frac{2 n^{2}+1}{n^{2}-2}$
- $\sum_{n=1}^{\infty} \frac{1}{n}$
- $\sum_{n=2}^{\infty} \ln (n)$
- $\sum_{n=1}^{\infty} n e^{-n}$

2. Geometric Series

$$
\sum_{n=1}^{\infty} a r^{n-1}
$$

If $|r|<1$ the series converges to $\frac{a}{1-r}$.
if $|r| \geq 1$ the series diverges.

When a series has n only as an exponent, it can be modified to be a geometric series.

Examples: Determine whether the following series converge or diverge and if convergent find its value

- $\sum_{n=0}^{\infty} 9^{-n+2} 4^{n+1}$
- $\sum_{n=1}^{\infty} \frac{(-4)^{3 n}}{5^{n-1}}$
- $\sum_{n=1}^{\infty} 4^{2 n} 3^{-3 n}$

3. Integral Test

Assume that for a given series we can find a function such that $a_{n}=f(n)$, then the series $\sum_{n=k}^{\infty} a_{n}$ and the integral $\int_{k}^{\infty} f(x) d x$ both converge or both diverge.

Before we use the integral test we need to check whether $f(x)$ is continuous, positive and decreasing. If $f(x)$ doesn't satisfy every condition then the integral test cannot be used.

Example:

Determine whether the following series converge or diverge $\sum_{n=3}^{\infty} \frac{3}{n^{2}-3 n+2}$
The corresponding function is $f(x)=\frac{3}{x^{2}-3 x+2}=\frac{3}{(\square)(\square)}$
(a) The function is discontinuous at $x=\square$ and $x=\square$,
(b) The function will be negative in the interval \square
(c) To determine if the function is decreasing we look for intervals where the first derivative is negative:

$$
f^{\prime}(x)=\square
$$

For the values of x that correspond to the summation, $x \geq 3$, the first derivative is \square Are the three conditions satisfied?
4. p-Series

A p-series is a series of the form $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$. To determine when this series converges, let's use the integral test.

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{1}{x^{p}} d x=\left.\lim _{b \rightarrow \infty} \frac{x^{1-p}}{1-p}\right|_{1} ^{b}=\lim _{b \rightarrow \infty} \frac{b^{1-p}}{1-p}-\frac{1}{1-p}
$$

From this, it is clear that when $p=1$ the integrals (and the series) will diverge. To understand the other cases ($p<1$ and $p>1$) recall that

$$
\lim _{t \rightarrow \infty} \frac{1}{t^{c}}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} t^{c}=\infty
$$

for any positive constant c. Since the limit from the integral can be written as

$$
\lim _{b \rightarrow \infty} b^{1-p}
$$

we can conclude that when $1-p>0$, the integral diverges and when $1-p<0$ the integral converges. This give us the general rules for the convergence of the p-series as summarized below.

$$
\begin{array}{rc}
\text { The series } & \sum_{n=1}^{\infty} \frac{1}{n^{p}} \\
\text { converges for } & p>1 \\
\text { diverges for } & p \leq 1
\end{array}
$$

This series are not included in the exam cheat sheet

Examples: Determine whether the following series converge or diverge

- $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{3}}$
- $\sum_{n=1}^{\infty} n^{3}+\frac{1}{n^{2}}$

5. Comparison Test Let $\sum a_{n}, \sum c_{n}$, and $\sum d_{n}$ be series with nonnegative terms. Suppose that for some integer N

$$
d_{n} \leq a_{n} \leq c_{n}, \quad \text { for all } \quad n>N
$$

- If $\sum c_{n}$ converges, then $\sum a_{n}$ also converges
- If $\sum d_{n}$ diverges, then $\sum a_{n}$ also diverges

The "known" series are usually geometric or p-series

Examples: Determine whether the following series converge or diverge

- $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}+1\right)^{2}$
- $\sum_{n=2}^{\infty} \frac{n-1}{\sqrt{n^{6}+1}}$

6. Limit comparison tests Suppose that $a_{n}>0$ and $b_{n}>0$ for all $n \geq N$ (N an integer).

- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c>0$, then $\sum a_{n}$ and $\sum b_{n}$ both converge or both diverge.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0 \underline{\text { and }} \sum b_{n}$ converges, then $\sum a_{n}$ converges.
- If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$ and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.

Put the "known" series in the denominator
If the comparison test is inconclusive, use this test next using the same comparison series

Examples: Determine whether the following series converge or diverge

- $\sum_{n=1}^{\infty} \frac{4 n^{2}-n}{n^{3}+9}$
- $\sum_{n=1}^{\infty} \frac{\sqrt{2 n^{2}+4 n+1}}{n^{3}+9}$

7. Absolute convergence

If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
Note that we cannot say anything about divergence.

Examples: Determine whether the following series converge or diverge

- $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^{3}+1}$
- $\sum_{n=1}^{\infty} \frac{(-1)^{n-3}}{\sqrt{n}}$
- $\sum_{n=3}^{\infty} \frac{(-1)^{n+1}(n+1)}{n^{3}+1}$

8. The ratio test

Suppose that

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L
$$

- If $L<1$ the series $\sum a_{n}$ converges absolutely
- If $L>1$ the series $\sum a_{n}$ diverges
- If $L=1$ this test gives no information

Useful when the series involves factorials

Examples: Determine whether the following series converge or diverge

- $\sum_{n=1}^{\infty} \frac{3^{1-2 n}}{n^{2}+1}$
- $\sum_{n=0}^{\infty} \frac{(2 n)!}{5 n+1}$
- $\sum_{n=3}^{\infty} \frac{e^{4 n}}{(n-2)!}$

9. The root test

Suppose that

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=L .
$$

- If $L<1$ the series $\sum a_{n}$ converges absolutely
- If $L>1$ the series $\sum a_{n}$ diverges
- If $L=1$ this test gives no information

Examples: Determine whether the following series converge or diverge

- $\sum_{n=1}^{\infty}\left(\frac{3 n+1}{4-2 n}\right)^{2 n}$
- $\sum_{n=0}^{\infty} \frac{n^{1-3 n}}{4^{2 n}}$
- $\sum_{n=4}^{\infty} \frac{(-5)^{1+2 n}}{2^{5 n-3}}$

10. Alternating series

Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a non-increasing sequence of positive numbers and $\lim _{n \rightarrow \infty} a_{n}=0$. Then the following alternating series converges,

$$
\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}
$$

We need to check three things:

(a) The series is alternating, that is we have a series $\sum a_{n}$ and either

$$
a_{n}=(-1)^{n} b_{n} \quad \text { or } . \quad a_{n}=(-1)^{n+1} b_{n}
$$

where $b_{n} \geq 0$ for all n.
(b) $\lim _{n \rightarrow \infty} b_{n}=0$, and
(c) $\left\{b_{n}\right\}$ is a decreasing sequence

$$
\text { If all three conditions are satisfied, the series } \sum a_{n} \text { converges }
$$

Examples: Determine whether the following series converge or diverge

- $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{7+2 n}$
- $\sum_{n=0}^{\infty} \frac{(-1)^{n+3}}{n^{3}+4 n+1}$

