

1. \mathbf{n}^{th} -term test for divergence

For a series of the form

$\lim_{n \to \infty} a_n$	=	0	The test is inconclusive
$\lim_{n \to \infty} a_n$	=	∞ (or DNE)	The series diverges
$\lim_{n \to \infty} a_n$	¥	0	The series diverges

This test can only check for **divergence**

•
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

•
$$\sum_{n=2}^{\infty} \ln(n)$$

2. Geometric Series

If |r| < 1 the series converges to $\frac{a}{1-r}$.

if $|r| \ge 1$ the series diverges.

When a series has n only as an exponent, it can be modified to be a geometric series.

Examples: Determine whether the following series converge or diverge and if convergent find its value

•
$$\sum_{n=0}^{\infty} 9^{-n+2} 4^{n+1}$$

•
$$\sum_{n=1}^{\infty} \frac{(-4)^{3n}}{5^{n-1}}$$

•
$$\sum_{n=1}^{\infty} 4^{2n} 3^{-3n}$$

3. Integral Test

Assume that for a given series we can find a function such that $a_n = f(n)$, then the series $\sum_{n=k}^{\infty} a_n$ and the integral

 $\int_{k}^{\infty} f(x) dx$ both converge or both diverge.

Before we use the integral test we need to check whether f(x) is continuous, positive and decreasing. If f(x) doesn't satisfy *every condition* then the integral test cannot be used.

Example:

(c) To determine if the function is decreasing we look for intervals where the first derivative is negative:

For the values of x that correspond to the summation, $x \ge 3$, the first derivative is

Are the three conditions satisfied?

4. p-Series

A *p*-series is a series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$. To determine when this series converges, let's use the integral test.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{p}} dx = \lim_{b \to \infty} \frac{x^{1-p}}{1-p} \Big|_{1}^{b} = \lim_{b \to \infty} \frac{b^{1-p}}{1-p} - \frac{1}{1-p}$$

From this, it is clear that when p = 1 the integrals (and the series) will diverge. To understand the other cases (p < 1 and p > 1) recall that

$$\lim_{t \to \infty} \frac{1}{t^c} = 0 \qquad \text{and} \qquad \lim_{t \to \infty} t^c = \infty,$$

for any **positive** constant c. Since the limit from the integral can be written as

$$\lim_{b \to \infty} b^{1-p},$$

we can conclude that when 1 - p > 0, the integral diverges and when 1 - p < 0 the integral converges. This give us the general rules for the convergence of the *p*-series as summarized below.

The series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$
converges for	p > 1
diverges for	$p \leq 1$

This series are not included in the exam cheat sheet

•
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^3}$$

•
$$\sum_{n=1}^{\infty} n^3 + \frac{1}{n^2}$$

5. Comparison Test Let $\sum a_n$, $\sum c_n$, and $\sum d_n$ be series with nonnegative terms. Suppose that for some integer N

 $d_n \le a_n \le c_n,$ for all n > N

- If $\sum c_n$ converges, then $\sum a_n$ also converges
- If $\sum d_n$ diverges, then $\sum a_n$ also diverges

Examples: Determine whether the following series converge or diverge

• $\sum_{n=1}^{\infty} \left(\frac{1}{n^2} + 1\right)^2$

$$\bullet \ \sum_{n=2}^{\infty} \frac{n-1}{\sqrt{n^6+1}}$$

- 6. Limit comparison tests Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).
 - If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
 - If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
 - If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Put the "known" series in the denominator If the comparison test is inconclusive, use this test next using the same comparison series

•
$$\sum_{n=1}^{\infty} \frac{4n^2 - n}{n^3 + 9}$$

7. Absolute convergence

Note that we cannot say anything about divergence.

•
$$\sum_{n=3}^{\infty} \frac{(-1)^{n+1}(n+1)}{n^3+1}$$

8. The ratio test

Suppose that

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L$$

- If L < 1 the series $\sum a_n$ converges absolutely
- If L > 1 the series $\sum a_n$ diverges
- If L = 1 this test gives no information

Useful when the series involves factorials

$$\bullet \ \sum_{n=1}^{\infty} \frac{3^{1-2n}}{n^2+1}$$

•
$$\sum_{n=0}^{\infty} \frac{(2n)!}{5n+1}$$

•
$$\sum_{n=3}^{\infty} \frac{e^{4n}}{(n-2)!}$$

9. The root test

Suppose that

$$\lim_{n \to \infty} |a_n|^{1/n} = L$$

- If L < 1 the series $\sum a_n$ converges absolutely
- If L > 1 the series $\sum a_n$ diverges
- If L = 1 this test gives no information

Examples: Determine whether the following series converge or diverge

• $\sum_{n=1}^{\infty} \left(\frac{3n+1}{4-2n}\right)^{2n}$

•
$$\sum_{n=4}^{\infty} \frac{(-5)^{1+2n}}{2^{5n-3}}$$

10. Alternating series

Suppose that $\{a_n\}_{n=1}^{\infty}$ is a non-increasing sequence of positive numbers and $\lim_{n\to\infty} a_n = 0$. Then the following alternating series converges,

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$$

We need to check three things:

(a) The series is alternating, that is we have a series $\sum a_n$ and either

 $a_n = (-1)^n b_n$ or . $a_n = (-1)^{n+1} b_n$

where $b_n \ge 0$ for all n.

- (b) $\lim_{n \to \infty} b_n = 0$, and
- (c) $\{b_n\}$ is a decreasing sequence

If all three conditions are satisfied, the series $\sum a_n$ converges

•
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{7+2n}$$

•
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+3}}{n^3 + 4n + 1}$$