We have two options:

1. Calculate the series using the formula for Taylor expansion

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n = f(z) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

2. Use the series representation of a known function

Function	Maclaurin Series	Interval of Convergence
$f(x) = \frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$	-1 < x < 1
$f(x) = e^x$	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$-\infty < x < \infty$
$f(x) = \sin x$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$-\infty < x < \infty$
$f(x) = \cos x$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$	$-\infty < x < \infty$
$f(x) = \ln(1+x)$	$\sum_{n=0}^{\infty} (1-)^{n+1} \frac{x^n}{n}$	$-1 < x \le 1$
$f(x) = \tan^{-1} x$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$	$-1 \le x \le 1$
$f(x) = (1+x)^r$	$\sum_{n=0}^{\infty} \left(\begin{array}{c} r\\n\end{array}\right) x^n$	-1 < x < 1
	$\left(\begin{array}{c}r\\n\end{array}\right) = \frac{r(r-1)(r-2)\cdots(r-n+1)}{n!}$	

Examples: To find the Taylor expansion of the given function at the given center, decide whether it is better to use option 1 or option 2 above

- $f(x) = \frac{1}{x}$ at a = 1
- $f(x) = \cos(2x)$ at $a = \pi$
- $f(x) = \frac{1}{(x-1)^2}$ at a = 0
- $f(x) = e^{x^2}$ at a = 0
- $f(x) = \frac{x}{4x 2x^2 1}$ at a = 2
- $f(x) = x \sin(3x)$ at a = 0

Find the 8th Taylor polynomial of $f(x) = \cos(2x)$ at $a = \pi$

n	$f^{(n)}(x)$	$f^{(n)}(\pi)$
0		
1		
2		
3		
4		
5		