A collection of objects is said to form a sequence if the collection is ordered so that it has a first member, a second member, a third member, and so on. Below are two examples of sequences of numbers, the numbers in the sequences are called terms.

> SEQUENCE 1:

SEQUENCE 2:
$3,6,9,12,15$
$3,6,9,12,15, \ldots$
You can think of a sequence as a function whose domain is a set of consecutive integers. If a domain is not specified, it is understood that the domain starts with 1.

DOMAIN: $1 \begin{array}{llllll}2 & 2 & 4 & 5\end{array}$ The domain gives the relative position of each term: 1st, 2 nd , 3 rd , and so on. RANGE: $\quad 3 \quad 6 \quad 9 \quad 12 \quad 15 \quad$ The range gives the terms of the sequence.

Sequence 1 is a finite sequence because it has a last term. Sequence 2 is an infinite sequence because it continues without stopping. Both sequences have the general rule $a_{n}=3 n$ where a_{n} represents the $\mathrm{n}^{\text {th }}$ term of the sequence, $\left\{a_{n}\right\}_{1}^{\infty}$. The general rule can also be written using function notation: $f(n)=3 n$.

1. Write the first 4 terms of the sequence with general terms:

- $a_{n}=3 n+1$
- $\left\{(-2)^{n+1}\right\}$

2. For each sequence, write a rule for the $\mathrm{n}^{\text {th }}$ term

- $-\frac{1}{3}, \frac{1}{9},-\frac{1}{27}, \frac{1}{81}, \ldots$
- $2,6,12,20, \ldots$

If $\left\{a_{n}\right\}$ is a sequence, and if $f(x)$ is a continuous function with $f(n)=a_{n}$ for all $n>N$ for some number N then

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)
$$

3. Determine if each sequence converges or diverges

- $a_{n}=\frac{e^{2 n}}{n}$

- $a_{n}=\frac{6}{n+3}$

- $a_{n}=\frac{n^{2}-10}{n^{2}-20}$

- $\left\{(-1)^{n}\right\}$

- $\left\{\frac{(-1)^{n}}{n}\right\}$

