Find a power series representation of a function
To solve these problems we use the formula for the geometric series

$$
\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

The strategy is to rearrange the function so that it looks like the right-hand-side of this equation and determine what is the equivalent to r.

Examples: Find the power series representation of the given function

- $f(x)=\frac{2}{1-x} \quad$ rearranging gives

$$
f(x)=2[\square]
$$ in this case $r=$ \square

The power series representation is then $f(x)=2 \sum_{n=0}^{\infty} x^{n}$.

- $f(x)=\frac{1}{1-x^{2}}$, we compare with the formula for geometric series

$$
\begin{aligned}
& \frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n} \\
& \frac{1}{1-x^{2}}=\sum_{n=0}^{\infty} \square
\end{aligned}
$$

- $f(x)=\frac{1}{4-x}$, before we compare with the formula for geometric series we need to rearrange the series

$$
\frac{1}{4-x}=\frac{1}{4}[\square] \begin{aligned}
\frac{1}{1-r} & =\sum_{n=0}^{\infty} r^{n} \\
\frac{1}{1-\frac{x}{4}} & =\sum_{n=0}^{\infty} \square
\end{aligned}
$$

The power series representation is then $f(x)=\square$.

- $f(x)=\frac{1}{1+x}$, before we compare with the formula for geometric series we need to rearrange the series

$$
\frac{1}{1+x}=\frac{1}{1-\square}
$$

$$
\begin{gathered}
\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n} \\
\frac{1}{1-(-x)}=\sum_{n=0}^{\infty} \square
\end{gathered}
$$

The power series representation is then $f(x)=\square$.

Determine the radius and interval of convergence of a power series

$$
\text { We use the ratio test condition: } \quad \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 \text {. }
$$

Most of the time, the ratio test works. Do not forget the absolute values!
To find the interval of convergence, do not forget to check the end points.
Examples: Determine the radius and interval of convergence of the given power series

- $\sum_{n=0}^{\infty} \frac{x^{n}}{5^{n+1}} \Rightarrow \quad \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{x^{n}} \cdot \frac{5^{n+1}}{5^{n+2}}\right|=\lim _{n \rightarrow \infty} \square$,
taking out all the terms that do not have a n gives:

We end up with the inequality $\mid \square<1$ which can be expanded as $\square<x<\square$

To determine the interval of convergence we need to evaluate convergence at the end points:

- When $x=-5$ the series becomes $\sum_{n=0}^{\infty} \frac{(-5)^{n}}{5^{n+1}}=\square$
- When $x=5$ the series becomes $\sum_{n=0}^{\infty} \frac{(5)^{n}}{5^{n+1}}=\square$

Putting everything together gives the interval of convergence \square
and we can find the radius of convergence as half the length of the interval, so that $R=$ \square

- $\sum_{n=0}^{\infty} n!x^{n}$
- $\sum_{n=0}^{\infty} \frac{(x-2)^{n}}{(n+1) 3^{n}}$

Derivatives and Integrals of power series

Since derivatives and integrals are linear operators we can differentiate/integrate term by term

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 x^{n+1} & =2 x+2 x^{2}+2 x^{3}+2 x^{4}+\cdots \\
\frac{d}{d x}\left(\sum_{n=0}^{\infty} 2 x^{n+1}\right) & =\frac{d}{d x}(2 x)+\frac{d}{d x}\left(2 x^{2}\right)+\frac{d}{d x}\left(2 x^{3}\right)+\frac{d}{d x}\left(2 x^{4}\right)+\cdots \\
& =2+4 x+6 x^{2}+8 x^{3}+\cdots=\sum_{n=0}^{\infty} 2(n+1) x^{n}
\end{aligned}
$$

or equivalently treat the power series as a power rule:

$$
\frac{d}{d x}\left(\sum_{n=0}^{\infty} 2 x^{n+1}\right)=\sum_{n=0}^{\infty} 2 \frac{d}{d x}\left(x^{n+1}\right)=\sum_{n=0}^{\infty} 2\left((n+1) x^{n}\right)
$$

Same for integration:

$$
\int \sum_{n=0}^{\infty} 2 x^{n+1} d x=\sum_{n=0}^{\infty} 2 \int x^{n+1} d x=\sum_{n=0}^{\infty} 2\left(\frac{x^{n+2}}{n+2}\right)
$$

Example: Find the power series of the given function using derivatives or integrals of known power series

- $f(x)=\ln (1+x)$

Finding the derivative of $f(x)$ gives:

$$
f^{\prime}(x)=\square=\square
$$

since we can find the power series representation of $f^{\prime}(x)$ we have

$$
f(x)=\int f^{\prime}(x) d x=\square=\square+C
$$

Finally, we find the value of C by choosing a value of x, for example $x=0$:

- $\sum_{n=0}^{\infty} \frac{2 x}{(1+x)^{2}}$ Note that: $\quad \frac{d}{d x}\left(\frac{1}{1+x}\right)=\square$

