A rational function is a fraction in which the numerator and denominator are both polynomials. The degree of a polynomial is the power of the highest term in x.

- A proper fraction is one in which the numerator is a polynomial of lower degree than the denominator.
- An improper fraction is one in which the numerator is a polynomial of higher degree than the denominator.
- When decomposing into partial fractions, the resulting fractions are such that the numerator is exactly ONE degree less than the denominator
- Repeated factors get one fraction per repetition.

1. Improper and proper fractions

Expression	Degree numerator	Degree denominator	Type
$\frac{x^{2}+5}{x^{3}}$	2	3	proper
$\frac{x^{2}+5}{x}$			
$\frac{x^{4}}{x^{3}+1}$			
$\frac{x^{2}-x+3}{x^{5}+x^{3}-2 x-1}$			

2. Complete the general form of the numerator for the given denominators

- $\frac{A}{x+1}$
- $\quad 4-x^{2}$
- $\quad x^{3}$
- $\frac{x^{2}+1}{}$
- $\quad x$
- $\frac{x^{2}-1}{}$

3. Write the general form of the partial fractions

- $\frac{3 x+5}{(x-3)(2 x+1)}=\frac{A}{x-3}+\frac{B}{2 x+1}$
- $\frac{2}{(x-1)^{2}(x+2)}=$
- $\frac{4 x}{\left(x^{2}+x+1\right)(x-2)}=$
- $\frac{3 x+1}{\left(x^{2}+1\right)(x+2)}=\frac{}{x^{2}+1}+\frac{}{x+2}$

4. Solve the integral

$$
\int \frac{x^{4}+2 x^{2}+1}{x^{2}+3 x+2} d x
$$

