

Guidelines for choosing u and $d v$:

LIATE

Integral	$u=$	$d v=$
$\int x^{3} \ln x d x$	$\ln x$	$x^{3} d x$
$\int \sin x \ln \|\cos x\| d x$		
$\int x^{2} \cos x d x$		
$\int 3 x e^{-x} d x$		
$\int e^{x} \tan x d x$		

If LIATE does not work:

- Let $d v$ be the most complicated portion of the integrand AND the one you know how to integrate
- Let u be that portion of the integrand whose derivative $d u$ is a simpler function than u itself

$$
\int x^{4} \sqrt{2-x^{3}} d x
$$

If we choose $\quad u=x^{4} \quad$ and $\quad d v=\sqrt{2-x^{3}} d x \quad$ we wouldn't know how to integrate $d v$.
However, from the section on integration by substitution, we would know how integrate the following

$$
\int x \stackrel{\square}{2-x^{3}} d x
$$

This means that for our integration by parts we need,

$$
u=\square, \quad d v=\square
$$

Using integration by parts several times:

Important

DO NOT switch choices for u and $d v$ in successive applications

Example: $\int x^{2} \cos x d x$

$$
\begin{aligned}
u & =x^{2}, & d u & =2 x d x \\
d v & =\cos x d x, & v & =\sin x
\end{aligned}
$$

Applying the integration by parts formula:

$$
\int x^{2} \cos x d x=\square-\int \square d x
$$

To solve the last integral we need to apply integration by parts one more time,

Right choice:	Wrong choice:
$u=\square$	$u=\square$
$d v=\square$	$d v=\square$

Example: $\int x^{5} e^{3 x} d x$

Example: $\int e^{x} \sin (2 x) d x$

$$
\begin{array}{rl}
u & =\square \\
d v & =\square u=\square \\
d v & v=\square
\end{array}
$$

One integration by parts:

$$
\int e^{x} \sin (2 x) d x=\square-\int \square d x
$$

To solve the last integral we should have

$$
\begin{aligned}
& u=\square \\
& d u=\square \\
& d v=\square \\
& v=\square \\
& \hline
\end{aligned}
$$

so that the second integration by parts gives:

$$
\begin{aligned}
& \int e^{x} \sin (2 x) d x=\square-\square+\int \square+\int e^{x} \sin (2 x) d x
\end{aligned}
$$

