

Formula:

Guidelines for choosing u and dv:

LIATE

Integral	u =	dv =
$\int x^3 \ln x dx$	$\ln x$	$x^3 dx$
$\int \sin x \ln \cos x dx$		
$\int x^2 \cos x dx$		
$\int 3x e^{-x} dx$		
$\int e^x \tan x dx$		

If LIATE does not work:

- Let dv be the most complicated portion of the integrand AND the one you know how to integrate
- Let u be that portion of the integrand whose derivative du is a simpler function than u itself

$$\int x^4 \sqrt{2 - x^3} \, dx$$

If we choose $u = x^4$ and $dv = \sqrt{2 - x^3} dx$ we wouldn't know how to integrate dv.

However, from the section on integration by substitution, we would know how integrate the following

This means that for our integration by parts we need,

Using integration by parts several times:

Important

DO NOT switch choices for u and dv in successive applications

Example:
$$\int x^2 \cos x \, dx$$

 $u = x^2, \qquad du = 2x \, dx$
 $dv = \cos x \, dx, \qquad v = \sin x$

Applying the integration by parts formula:

To solve the last integral we need to apply integration by parts one more time,

Example: $\int x^5 e^{3x} dx$

One integration by parts:

To solve the last integral we should have

so that the second integration by parts gives:

