Consider the inverse sine,

$$
f(x)=\sin ^{-1} x=\arcsin x .
$$

if

$$
y=\sin ^{-1} x
$$

then

$$
x=\square .
$$

Assume we would like to find y^{\prime}, then we need to differentiate both sides such that

$$
1=\square
$$

where we have used the chain rule to differentiate the right hand side.
Solving for y^{\prime} gives,

$$
y^{\prime}=\square,
$$

To finish this we need to find $\cos y$ in terms of x :
We know that $\sin y=x$, so that the corresponding right triangle is

From the triangle we find

$$
\cos y=\square
$$

so that

$$
y^{\prime}=\square \text {. }
$$

Exercise:

Find the derivative of $\tan ^{-1} x$

