Definition: A function $F(x)$ is called an antiderivative of $f(x)$ on an interval if

$$
F^{\prime}(x)=\square .
$$

for all x in that interval.

Problem: Find the derivative of the following functions,

$$
\begin{array}{ll}
F(x)=x^{5}+1, & F^{\prime}(x)=\square \\
F(x)=x^{5}-20, & F^{\prime}(x)=\square \\
F(x)=x^{5}+\sqrt{3}, & F^{\prime}(x)=\square \\
F(x)=x^{5}, & F^{\prime}(x)=\square
\end{array}
$$

Result: If F is an antiderivative of f on an interval, then the most general antiderivative of f on that interval is

$$
F(x)+C,
$$

where C is an arbitrary constant.

Function	General Antiderivative
$b f(x)$	$b F(x)+C$
$f(x) \pm g(x)$	$F(x) \pm G(x)+C$
x^{n}	
$\frac{1}{x}$	
e^{x}	
$\sin x$	
$\cos x$	
$\sec 2 x$	
$\sec x \tan x$	

Exercises

Find the following indefinite integrals

1. $\int\left(x^{2}+x^{-1}+3\right) d x$
2. $\int \sqrt{x} d x$
3. $\int \cos x d x$
4. $\int \sin x d x$
5. $\int\left(\frac{1}{x^{3}}+x^{4}-x\right) d x$
6. $\int \sec ^{2} x d x$
7. $\int \sec x \tan x d x$
