Definition: A function F(x) is called an antiderivative of f(x) on an interval if

$$F'(x) =$$

for all x in that interval.

Problem: Find the derivative of the following functions,

$$F(x) = x^{5} + 1, \qquad F'(x) =$$

$$F(x) = x^{5} - 20, \qquad F'(x) =$$

$$F(x) = x^{5} + \sqrt{3}, \qquad F'(x) =$$

$$F(x) = x^{5}, \qquad F'(x) =$$

Result: If F is an antiderivative of f on an interval, then the most general antiderivative of f on that interval is

$$F(x) + C,$$

where C is an arbitrary constant.

Function	General Antiderivative
b f(x)	b F(x) + C
$f(x) \pm g(x)$	$F(x) \pm G(x) + C$
x^n	
$\frac{1}{x}$	
e^x	
$\sin x$	
$\cos x$	
$\sec^2 x$	
$\sec x \tan x$	

Exercises

Find the following indefinite integrals

1.
$$\int (x^2 + x^{-1} + 3) dx$$

2.
$$\int \sqrt{x} \, dx$$

3.
$$\int \cos x \, dx$$

 $4. \int \sin x \, dx$

5.
$$\int \left(\frac{1}{x^3} + x^4 - x\right) \, dx$$

$$6. \int \sec^2 x \, dx$$

7.
$$\int \sec x \, \tan x \, dx$$