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These are the course notes for a class on The Mathematics of Game Shows which I taught
at the University of South Carolina (through their Honors College) in Fall 2016, and again
in Spring 2018. They are in the middle of revisions, being made as I teach the class a second
time.

Click here for the course website and syllabus:

Link: The Mathematics of Game Shows — Course Website and Syllabus

I welcome feedback from anyone who reads this (please e-mail me at thorne [at]math.
sc.edu).

The notes contain clickable internet links to clips from various game shows, hosted on
the video sharing site Youtube (www.youtube.com). These materials are (presumably) all
copyrighted, and as such they are subject to deletion. I have no control over this. Sorry! If
you encounter a dead link I recommend searching Youtube for similar videos. The Price Is
Right videos in particular appear to be ubiquitous.

I would like to thank Bill Butterworth, Paul Dreyer, and all of my students for helpful
feedback. I hope you enjoy reading these notes as much as I enjoyed writing them!
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1 Introduction
To begin, let’s watch some game show clips and investigate the math behind them.
Here is a clip from the game show Deal or No Deal:
Link: Deal Or No Deal — Full Episode

(If you are reading this on a computer with an internet connection, clicking on any line
labeled ‘Link’ should bring up a video on a web browser.)

Game Description (Deal or No Deal): A contestant is presented with 26 briefcases,
each of which contains some amount of money from $0.01 to $1,000,000; the amounts
total $3,418,416.01, and average $131477.53. The highest prizes are $500,000, $750,000,
and $1,000,000.

The contestant chooses one briefcase and sets it aside. That is the briefcase she is
playing for. Then, one at a time, she is given the opportunity the opportunity to open
other briefcases and see what they contain. This narrows down the possibilities for the
selected briefcase.

Periodically, the ‘bank’ offers to buy the contestant out, and proposes a ‘deal’: a fixed
amount of money to quit playing. The contestant either accepts one of these offers, or
keeps saying ‘no deal’ and (after opening all the other briefcases) wins the money in her
original briefcase.

The expected value of a game is the average amount of money you expect to win.
(We’ll have much more to say about this.) So, at the beginning of the game, the expected
value of the game is $131,477.53, presuming the contestant rejects all the deals. In theory,
that means that the contestant should be equally happy to play the game or to receive
$131,477.53. (Of course, this may not be true in practice.)

Now, consider this clip after the contestant has chosen six of the briefcases. Losing the
$500,000 was painful, but the others all had small amounts. After six eliminations, the total
amount of prize money remaining is $2,887,961.01, and the average is $144,398.05 — higher
than it was before. The banker offers him $40,000 to stop playing. Since that is much lower
than his expected value, understandably he refuses the offer and continues to play.

We now turn to the first game from this clip of The Price Is Right:

Link: ' The Price Is Right - Full Episode

Game Description (Contestants’ Row - The Price Is Right): Four contestants
are shown an item up for bid. In order, each guesses its price (in whole dollars). You
can’t use a guess that a previous contestant used. The winner is the contestant who bids
the closest to the actual price without going over.



https://www.youtube.com/watch?v=Xs5_bBJisJg
https://www.youtube.com/watch?v=TmKP1a03E2g

In the clip, the contestants are shown some scuba equipment, and they bid 750, 875,
500, and 900 in that order. The actual price is $994, and the fourth contestant wins.
What can we say about the contestants’ strategy?

Who bid wisely? We begin by describing the results of the bidding. Let n be the price
of the scuba gear.

e The first contestant wins if 750 < n < 874.

e The second contestant wins if 875 < n < 899.

e The third contestant wins if 500 < n < 749.

e The fourth contestant wins if 900 < n.

e If n < 500, then the bids are all cleared and the contestants start over.

We can see who did well before we learn how much the scuba gear costs. Clearly, the
fourth contestant did well. If the gear is worth anything more than $900 (which is plausible),
then she wins. The third contestant also did well: he is left with a large range of winning
prices — 250 of them to be precise. The second contestant didn’t fare well at all: although his
bid was close to the actual price, he is left with a very small winning range. This is typical
for this game: it is a big disadvantage to go early.

The next question to ask is: could any of the contestants have done better?

We begin with the fourth contestant. Here the answer is yes, and her strategy is dom-
inated by a bid of $876, which would win whenever 900 < n, and in addition when
876 < n < 899. In other words: a bid of 3876 would win every time a bid of $900 would, but
not vice versa. Therefore it is always better to instead bid $876.

Taking this analysis further, we see that there are exactly four bids that make sense: 876,
751, 501, or 1. Note that each of these bids, except for the one-dollar bid, screws over one
of her competitors, and this is not an accident: Contestant’s Row is a zero-sum game — if
someone else wins, you lose. If you win, everyone else loses.

The analysis gets much more subtle if we look at the third contestant’s options. Assume
that the fourth contestant will play optimally (an assumption which is very often not
true in practice). Suppose, for example, that the third contestant believes that the scuba
gear costs around $1000. The previous bids were $750 and $875. Should he follow the same
reasoning and bid $876? Maybe, but this exposes him to a devastating bid of $877.

There is much more to say here, but we go on to a different example.



Game Description (Jeopardy, Final Round): Three contestants start with a
variable amount of money (which they earned in the previous two rounds). They are
shown a category, and are asked how much they wish to wager on the final round. The
contestants make their wagers privately and independently.

After they make their wagers, the contestants are asked a trivia question. Anyone
answering correctly gains the amount of their wager; anyone answering incorrectly loses
it.

Link: Final Jeopardy — Shakespeare

Perhaps here an English class would be more useful than a math class! This game is
difficult to analyze; unlike our two previous examples, the players play simultaneously rather
than sequentially.

In this clip, the contestants start off with $9,400, $23,000, and $11,200 respectively. It
transpires that nobody knew who said that the funeral baked meats did coldly furnish forth
the marriage tables. (Richard III7 Really? When in doubt, guess Hamlet.) The contestants
bid respectively $1801, $215, and $7601.

We will save further analysis for later, but we will make one note now: the second
contestant can obviously win. If his bid is less than $600, then even if his guess is wrong he
will end up with more than $22,400.

In the meantime, imagine that the contestants started with $6,000, $8,000, and $10,000.
Then the correct strategy becomes harder to determine.


https://www.youtube.com/watch?v=DAsWPOuF4Fk

2 Probability

2.1 Sample Spaces and Events

At the foundation of any discussion of game show strategies is a discussion of probability.
You have already seen this informally, and we will work with this notion somewhat more
formally.

Definition 1 (Sample spaces and events): A sample space is the set of all possible
outcomes of a some process. An event is any subset of the sample space.

Example 2: You roll a die. The sample space consists of all numbers between one and
SiX.
Using formal mathematical notation, we can write

S =1{1,2,3,4,5,6}.

We can use the notation {...} to describe a set and we simply list the elements in it.
Let E be the event that you roll an even number. Then we can write

E =1{2,4,6}.
Alternatively, we can write
E={xeS : xiseven}.

Both of these are correct.

Example 3: You choose at random a card from a poker deck. The sample space is the
set of all 52 cards in the deck. We could write it

S ={Ad K& Q. J&, 10&%, I, S&, 7, Gk, Gk, 4&, 3&, 2&,
AG, KO, Q0, JO, 100,90, 80, 70,60, 50,40, 30, 20,
AQ, KD, Q0, J, 100,99, 89, 79, 60, 50, 49, 30, 20,
AR K0,QM, T0, 108,98, S8, 7M. 60,5k, 10, 38, 24}

but writing all of that out is annoying. An English description is probably better.




Example 4: You choose two cards at random from a poker deck. Then the sample
space is the set of all pairs of cards in the deck. For example, AMAC and 7&2{ are
elements of this sample space,

This is definitely too long to write out every element, so here an English description
is probably better. (There are exactly 1,326 elements in this sample space.) Some events
are easier to describe — for example, the event that you get a pair of aces can be written

E={AMAQ ABA), ARAS, ADAH, AV A, ABAS}

and has six elements. If you are playing Texas Hold’em, your odds of being dealt a pair

of aces is exactly % = ﬁ, or a little under half a percent.

Let’s look at a simple example from the Price Is Right — the game of Squeeze Play:

Link: The Price Is Right - Squeeze Play

Game Description (Squeeze Play (The Price Is Right)): You are shown a prize,
and a five- or six-digit number. The price of the prize is this number with one of the
digits removed, other than the first or the last.

The contestant is asked to remove one digit. If the remaining number is the correct
price, the contestant wins the prize.

In this clip the contestant is shown the number 114032. Can we describe the game in
terms of a sample space?

It is imporrtant to recognize that this question is not precisely defined. Your
answer will depend on your interpretation of the question! This is probably very
much not what you are used to from a math class.

Here’s one possible interpretation. Either the contestant wins or loses, so we can describe
the sample space as

S = {you win, you lose}.

Logically there is nothing wrong with this. But it doesn’t tell us very much about the
structure of the game, does it?
Here is an answer I like better. We write

S = {14032, 11032, 11432, 11402},

where we've written 14032 as shorthand for ‘the price of the prize is 14032’
Another correct answer is

S ={2,3,4,5},

where here 2 is shorthand for ‘the price of the prize has the second digit removed.’


https://www.youtube.com/watch?v=TR7Smevj1AQ

Still another correct answer is
S ={1,4,0,3},

where here 1 is shorthand for ‘the price of the prize has the 1 removed.’
All of these answers make sense, and all of them require an accompanying explanation
to understand what they mean.

The contestant chooses to have the 0 removed. So the event that the contestant wins
can be described as E = {11432}, E = {4}, or E = {0}, depending on which way you wrote
the sample space. (Don’t mix and match! Once you choose how to write your sample space,
you need to describe your events in the same way.) If all the possibilities are equally likely,
the contestant has a one in four chance of winning.

The contest guesses correctly and is on his way to Patagonial

Definition 5 (NV(5)): If S is any set (for example a sample space or an event), write
N(S) for the number of elements in it.

In this course we will always assume this number is finite.

Definition 6 (Probability): Suppose S is a sample space, in which we assume that
all outcomes are equally likely.

For each event E in S, the probability of £, denoted P(F), is

Example 7: You roll a die, so S ={1,2,3,4,5,6}.

1. Let E be the event that you roll a 4, i.e., E = {4}. Then P(E) = .
2. Let E be the event that you roll an odd number, i.e., E = {1,3,5}. Then P(FE) =
3_1

6 27

Example 8: You draw one card from a deck, with S as before.
1. Let E be the event that you draw a spade. Then N(E) = 13 and P(E) = £ =
2. Let E be the event that you draw an ace. Then N(E) =4 and P(E) = & = 1.




3. Let E be the event that you draw an ace or a spade. What is N(E)? There are
thirteen spades in the deck, and there are three aces which are not spades. Don’t
double count the ace of spades!

So N(E) =13 +3 =16 and P(E) = 16 = 4.

Example 9: In a game of Texas Hold’em, you are dealt two cards at random in first
position. You decide to raise if you are dealt a pair of sixes or higher, ace-king, or
ace-queen, and to fold otherwise.

The sample space has 1326 elements in it. The event of two-card hands which you
are willing to raise has 86 elements in it. (If you like, write them all out. Later we will
discuss how this number can be computed more efficiently!)

Since all two card hands are equally likely, the probability that you raise is %, or
around one in fifteen.

Now, here is an important example:

Warning Example 10: You roll two dice and sum the totals. What is the probability
that you roll a 77
The result can be anywhere from 2 to 12, so we have

S =1{2,3,4,5,6,7,8,9,10,11,12}

and E = {7}. Therefore, we might be led to conclude that P(E) = % = 1—11

Here is another solution. We can roll anything from 1 to 6 on the first die, and the
same for the second die, so we have

S = {11,12, 13,14, 15,16, 21,22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36,
41,42, 43,44, 45,46, 51,52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66}

We list all the possibilities that add to 7:
E ={16,25,34,43,52,61}

And so P(E) = & =

1
36 6°

We solved this problem two different ways and got two different answers. This illus-
trates the importance of our assumption that every outcome in a sample space
will be equally likely. This might or not be true in any particular situation. And one

10



can’t tell just from knowing what E and S are — one has to understand the actual situation
that they are modelling.

We know that a die (if it is equally weighted) is equally likely to come up 1, 2, 3, 4, 5,
or 6. So we can see that, according to our second interpretation, all the possibilities are still
equally likely because all combinations are explicitly listed. But there is no reason why all
the sums should be equally likely.

For example, consider the trip to Patagonia. If we assume that all outcomes are equally
likely, the contestant’s guess has a 1 in 4 chance of winning. But the contestant correctly
guessed that over $14,000 was implausibly expensive, and around $11,000 was more reason-
able.

Often, all events are approximately equally likely, and considering them to
be exactly equally likely is a useful simplifying assumption.

We now take up the game Rat Race from The Price Is Right. (We will return to this
example again later.)

Link: ' The Price Is Right - Rat Race

Game Description (Rat Race (The Price Is Right)): The game is played for

three prizes: a small prize, a medium prize, and a car.

There is a track with five wind-up rats (pink, yellow, blue, orange, and green). They
will be set off on a race, where they will finish in (presumably) random order.

The contestant has the opportunity to pick up to three of the rats: she guesses the
price of three small items, and chooses one rat for each successful attempt.

After the rats race, she wins prizes if one or more of her rats finish in the top three.
If she picked the third place rat, she wins the small prize; if she picked the second place
rat, she wins the medium prize; if he picked the first place rat, she wins the car. (Note
that it is possible to win two or even all three prizes.)

Note that except for knowing the prices of the small items, there is no strategy. The rats
are (we presume) equally likely to finish in any order.

In this example, the contestant correctly prices two of the items and picks the pink and
orange rats.

Problem 1. Compute the probability that she wins the car.

Solution 1. Here’s the painful solution: describe all possible orderings in which the rats
could finish. We can describe the sample space as

S = {POB, POR, POG, PBR, PBG, PRG, ...,...}

where the letters indicate the ordering of the first three rats to finish. Any such ordering is

equally likely. The sample space has sixty elements, and if you list them all you will see that
2

exactly twenty-four of them start with P or G. So the probability is Z—é =:.

11


https://www.youtube.com/watch?v=Kp8rhV5PUMw

Solution 2. Do you see the easier solution? To answer the problem we were asked, we
only care about the first rat. So let’s ignore the second and third finishers, and write the
sample space as

S={P,0,B,R,G}.

The event that she wins is
E ={P G},
and so P(F) = % =2
Solution 3 (Wrong). Here’s another possible solution, which turns out to be wrong.
It doesn’t model the problem well, and it’s very instructive to understand why.
As the sample space, take all combinations of one rat and which order it finishes in:

S = {Pink rat finishes first,
Pink rat finishes second,
Pink rat finishes third,
Pink rat finishes fourth,
Pink rat finishes fifth,
Yellow rat finishes first,
etc.}

This sample space indeed lists a lot of different things that could happen. But how would
you describe the event that the contestant wins? If the pink or orange rat finishes first,
certainly she wins. But what if the yellow rat finishes third? Then maybe she wins, maybe
she loses. There are several problems with this sample space:

e The events are not mutually exclusive. It can happen that both the pink rat finishes
second, and the yellow rat finishes first. A sample space should be described so that
exactly one of the outcomes will occur.

Of course, a meteor could strike the television studio, and Drew, the contestant, the
audience, and all five rats could explode in a giant fireball. But we’re building mathe-
matical models here, and so we can afford to ignore remote possibilities like this.

e In addition, you can’t describe the event ‘the contestant wins’ as a subset of the sample
space. What if the pink rat finishes fifth? The contestant also has the orange rat. It
is ambigious whether this possibility should be part of the event or not.

Advice: Note that it is a very good thing to come up with wrong ideas
— provided that one then examines them critically, realizes that they won’t work, and
rejects them. Indeed, very often when solving a problem, your first idea will often be
incorrect. Welcome this process — it is where the best learning happens.

12



This also means that you are not truly finished with a problem when you write down
an answer. You are only finished when you think about your answer, check your work
(if applicable), and make sure that your answer makes sense.

Solution 4. The contestant picked two rats, and we may list the positions in which they
finish. For example, write 25 if her rats came in second and fifth. Then we have

S ={12,13,14,15,23,24, 25,34, 35,45},
and the event that she wins is described by
E ={12,13,14, 15}
with

NE) 4 2

PE) = N " 10" 5

Solution 5. We list the positions in which the pink and orange rats finish, in that order.
Here we have

S ={12,21,13,31,14,41,15,51,23, 32, 24,42, 25,52, 35, 53,45, 54}

and
E =1{12,21,13,31,14,41,15,51},
with NE) 8 2
PlE)=—F=— =—.
(E) N(S) 20 5

Yet another correct solution!

Although one solution is enough, it is good to come up with multiple solutions. For one
thing, it helps us understand the problem better. Beyond that, different solutions might
generalize in different directions. For example, Solution 4 tells us all the information that
the contestant might care about, and is a good sample space for analyzing other problems
as well.

Problem 2. Compute the probability that she wins both the car and the meal delivery.

We could use the sample space given in Solution 4 above. We will instead present an

alternate solution here:
Here we care about the first two rats. We write

S = {PO, PB, PR, PG,0P,0B,0R,0G, BP, BO, BR, BG, RP, RO, RB, RG, GP,GO,GB, GR}.

The sample space has twenty elements in it. (20 = 5 x 4: there are 5 possibilities for the
first place finisher, and (once we know who wins) 4 for the second. More on this later.) The
event that she wins is

{PO,0PY,

13



since her two rats have to finish in the top two places — but either of them can finish first.
WehaveP(E):M: 2 _ 1

N(S) 20 — 10°
Problem 3. Compute the probability that she wins all three prizes.

Zero. Duh. She only won two rats! Sorry.

2.2 The Addition and Multiplication Rules

Working out these examples — and especially the Rat Race example — should give you the
intuition that there is mathematical structure intrinsic to these probability computations.
We will single out two rules that are particularly useful in solving problems.

Theorem 11 (The Addition Rule for Probability): Suppose E and F are two disjoint
events in the same sample space — i.e., they don’t overlap. Then

P(E or F) = P(E) + P(F).

The addition rule is an example of a mathematical theorem — a general mathematical
statement that is always true. In a more abstract mathematics course, we might prove each
theorem we state. Here, we will often informally explain why theorems are true, but it is
not our goal to offer formal proofs.

Example 12: You roll a die. Compute the probability that you roll either a 1, or a
four or higher.

Solution. Let E = {1} be the event that youroll a 1, and £ = {4, 5,6} be the event
that you roll a 4 or higher. Then

P(E or F)=P(FE)+ P(F) =

|
+

| W
I

[«20 N
I

Example 13: You draw a poker card at random. What is the probability you draw
either a heart, or a black card which is a ten or higher?

Solution. Let E be the event that you draw a heart. As before, P(E) = £.
Let F' be the event that you draw a black card ten or higher, i.e.,

F={Ad K& Q&, /&, 10& AN K& QN S 108}
Then P(F) = 12

= 52°
So we have 13 10 93
P(Eor F)= — 4+ — = —.
(EorF) =+ 5 =5

14



Example 14: You draw a poker card at random. What is the probability you draw
either a heart, or a red card which is a ten or higher?

Solution. This doesn’t have the same answer, because hearts are red. If we want to
apply the addition rule, we have to do so carefully.

Let E be again the event that you draw a heart, with P(E) = g

Now let F' be the event that you draw a diamond which is ten or higher:

F={A0,K$,Q0, J¢, 100}

Now together E and F' cover all the hearts and all the red cards at least ten, and there
is no overlap. So we can use the addition rule.

13 5 18
P(E or F) = P(E) + P(F) = 2 + = = —.

We won't state it formally as a theorem, but the additon rule also can be applied analo-
gously with more than two events.

Example 15: Consider the Rat Race contestant from earlier. What is the probability
that she wins any two of the prizes?

Solution 1. We will give a solution using the addition rule. (Later, we will give
another solution using the Multiplication Rule.)

Recall that her chances of winning the car and the meal delivery were 1—10. Let us call
this event C'M instead of E.

Now what are her chances of winning the car and the guitar? (Call this event CG.)
Again %. If you like, you can work this question out in the same way. But it is best
to observe that there is a natural symmetry in the problem. The rats are all alike and
any ordering is equally likely. They don’t know which prizes are in which lanes. So the
probability has to be the same.

Finally, what is P(MG), the probability that she wins the meal service and the
guitar? Again % for the same reason.

Finally, observe these events are all disjoint, because she can’t possibly win more than

two. So the probability is three times %, or 1%.

Here is a contrasting situation. Suppose the contestant had picked all three small prices
correctly, and got to choose three of the rats. In this case, the probability she wins both the
car and the meal service is %, rather than %. (You can either work out the details yourself,
or else take my word for it.)

But this time the probability that she wins two prizes is not 1—30 + 13—0 + 13—0, because now

the events CM, CG, and MG are not disjoint: it is possible for her to win all three prizes,

15



and if she does, then all of CM, CG, and MG occur!
It turns out that in this case the probability that she wins at least two is =, and the

10°
probability that she wins exactly two is %

The Multiplication Rule. The multiplication rule computes the probability that two
events I/ and F' both occur. Here they are events in different sample spaces.

Theorem 16 (The Multiplication Rule): If £ and F' are events in different sample
spaces, then we have
P(E and F) = P(E) x P(F).

Although this formula is not always valid, it ¢s valid in either of the following circum-
stances:

e The events E and F' are independent.

e The probability given for F' assumes that the event E occurs (or vice versa).

Example 17: You flip a coin twice. What is the probability that you flip heads both
times?

Solution. We can use the multiplication rule for this. The probability that you flip
heads if you flip a coin once is % Coin flips are independent: flipping heads the first
time doesn’t make it more or less likely that you will flip heads the second time. So we
multiply the probabilities to get 1 L

1—_
3 X371

Alternatively, we can give a direct solution. Let

S={HH HT,TH,TT}

and
E={HH}.
Since all outcomes are equally likely,
N(E) 1
PE)= —=+=-
(E) N(S) 4

Like the addition rule, we can also use the multiplication rule for more than two events.

Example 18: You flip a coin twenty times. What is the probability that you flip heads
every time?

16



Solution. If we use the multiplication rule, we see that the probability is

1 1 1
X oeoo X — = —
2

x 920 ~ 1048576

N | =
N —

This example will illustrate the second use of the Multiplication Rule.

Example 19: Consider the Rat Race example again (as it happened in the video).
What is the probability that the contestant wins both the car and the meal service?

Solution. This is not hard to do directly, but we illustrate the use of the multipli-
cation rule.

The probability that she wins the car is %, as it was before. So we need to now
compute the probability that she wins the meal service, given that she won the car.

This time the sample space consists of four rats: we leave out whichever one won the
car. The event is that her remaining one rat wins the meal service, and so the probability
of this event is L.

1
By the multiplication rule, the total probability is

2
- X
5

1
4 10

Example 20: What is the probability that the contestant wins the car, and the car

only?

Solution. This is similar to before, so we will be brief. The probability that she
wins the car is %; given this, the probability that her remaining rat loses is % So the
answer is

2 1 1
- X == -.
5 2 5

Example 21: Suppose a Rat Race contestant prices all three prizes correctly and has
the opportunity to race three rats. What is the probability she wins all three prizes?

Solution. The probability she wins the car is g, as before: the sample space consists
of the five rats, and the event that she wins consists of the three rats she chooses. (Her
probability is % no matter which rats she chooses, under our assumption that they finish
in a random order.)
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Now assume that she wins the first prize. Assuming this, the probability that she
wins the meals is % = % The sample space consists of the four rats other than the first
place finisher, and the event that she wins the meals consists of the two rats other than
the first place finishers.

Now assume that she wins the first and second prizes. The probability she wins the
guitar is %: the sample space consists of the three rats other than the first two finishers,
and the event that she wins the meals consists of the single rat other than the first two

finishers.

There is some subtlety going on here! To illustrate this, consider the following:

Example 22: Suppose a Rat Race contestant prices all three prizes correctly and has
the opportunity to race three rats. What is the probability she wins the meal service?

Solution. There are five rats in the sample space, she chooses three of them, and
each of them is equally likely to finish second. So her probability is % (same as her
probability of winning the car).

But didn’t we just compute that her odds of winning the car are %? What we're
seeing is something we’ll investigate much more later. This probability % is a conditional
probability: it assumes that one of the rats finished first, and illustrates what is hopefully
intuitive: if she wins first place with one of her three rats, she is less likely to also win second
place.

Let’s see an incorrect application of the multiplication rule along these lines:

Warning Example 23: Suppose we compute again the probability that she wins all
three prizes with three rats. She has a % probability of winning first, a % probability of
winning second, and a g probability of winning third. By the multiplication rule, the
probability that all of these events occur is

3 3 3 27

— X =X = =—,
5 5 5 125
What is wrong with this reasoning is that these events are not independent. Once
one of her rats wins, she only has two remaining rats (out of four) to win the other two
prizes, and so these probabilities must be recalculated.

In the previous examples, it would have been relatively simple to avoid using the mul-
tiplication rule, and instead to write out an entire sample space as appropriate. Here is an
example that would be very time-consuming to do that way, but is easy using the multipli-
cation rule:
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Example 24: You draw two cards at random from a poker deck. What is the probability
that you get two aces?

Solution. The probability that the first card is an ace is 5 or 13: there are 52 cards,

52 7 13
and 4 of them are aces.

We now compute the probability that the second card is an ace, given that the first
card was an ace. There are now 51 cards left in the deck, and only 3 of them are aces.
So this probability is 53—1 = %7
So the probability that both cards are aces is

1 1 1

13717 221°

Here is a poker example. A poker hand consists of five cards, and it is a flush if they are
all of the same suit.

Example 25: You draw five cards at random from a poker deck. What is the probability
that you draw a flush?

Solution. The most straightforward solution (no shortcuts) uses both the addition
and multiplication rules. We first compute the probability of drawing five spades, in each
case presuming the previous cards were all spades. By the multiplication rule, this is

13 12 11 10 9 33
52 51 50 29 4  oo6d0 00
By symmetry, the same is true of the probability of drawing five hearts, or five diamonds,

or five clubs. Since these events are all mutually exclusive, we can add them to get
4 -0.0005 = 0.002,

or a roughly 1 in 500 chance.

Shortcut. The above solution is completely correct. Here is an optional shortcut.
We are happy with the first card, no matter what it is. The probability that the
second card is of the same suit is then é—f, and the probability that the third matches the
11

first two is 55, and so on. So the total probability is

12 11 10 9 33
_______ = — =~ 0. 2.
51 50 49 48 16660 0.00

1

We computed the probability of all suits simultaneously. We didn’t multiply by é—g =7

at the beginning, and we didn’t multiply by 4 at the end.
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In general, it is not very important to be able to find such shortcuts. The first solution
is, after all, completely correct.

However, it is highly recommended that, after you find one solution, you read others.
Understanding how different solution methods can lead to the same correct answer is highly
valuable for building your intuition.

Warning Example 26: Try to use the same solution method to compute the odds of
being dealt a straight: five cards of consecutive denominations (and any suits).
You won’t get anywhere. (Try it!) We’ll need to develop our tools further.

Press Your Luck. Here is a bit of game show history. The following clip comes from
the game show Press Your Luck on May 19, 1984.

Link: Press Your Luck — Michael Larson

The rules are complicated, and we won’t explain them fully. But in summary, as long as
contestants have any remaining spins, they have the opportunity to ‘press their luck’ (keep
spinning) or pass their spins to another player. (You may use or pass any spins that you
have ‘earned’, but if they are passed to you then you must take them.) Contestants keep
any money or prizes that they earn, but the cartoon characters are ‘Whammies’ and if you
land on one then you lose everything.

Here Michael Larsen smashed the all-time record by winning $110,237. The truly fasci-
nating clip starts at around 17:00, where Larson continues to press his luck, to the host’s
increasing disbelief. Over and over and over again, Larson not only avoided the whammies
but continued to hit spaces that allowed for an extra spin.

Example 27: What is the probability of this happening?

Solution. This is an exercise not only in probability computations, but also in
observation and modeling. The question is not totally precise, and we have to make it
precise before we can answer it. Moreover, we will have to introduce some simplifying
assumptions before we can take a decent crack at it. All of this can be done in different
ways, and this is one of multiple possible answers. (Indeed, during class, some
students presented answers which were more thorough than this!)

If your logic is sound then you should get something roughly similar — this is what it
is like to do math ‘in the real world’!

Watching the video, we see that on 28 consecutive spins, Larson avoided all the
whammies and hit a space that afforded him an extra spin. We will ask the probability
of that.

However, the configuration of the board keeps changing! Whammies, money, and
extra spins keep popping in and out. We may observe that on average there are
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approximately five spaces worth money and an extra spin. Since there are 18 spaces, we
will assume that the probability of landing on a ‘good space’ is %. This is probably not
exactly true, but it is at least approximately true.

With the modeling done, the math is easy. All the spins are independent, and the
probability of Larson pulling off such a feat is

50\ 28
(E) ~ 0.000000000000026%.

If you see such a low probability, but the event actually happened, you should question
your assumptions. Here our most fundamental assumption is that the process is random. In
truth, as you may have guessed, there are patterns in the board’s movement. Larson had
taped previous episodes of this show, painstakingly watched them one frame at a time, and
figured out what the patterns were. In short, he had cheated.

Warning Example 28: This business of interpreting real-world data in different ways
can be taken too far, especially if one cherry-picks the data with an eye towards obtaining
a desired conclusion.

This is spectacularly illustrated by the following famous research paper:

Link: Neural correlates of interspecies perspective taking in the post-mortem
Atlantic Salmon

Here was the task successfully performed by the salmon:
The salmon was shown a series of photographs depicting human individu-
als in social situations with a specified emotional valence. The salmon was
asked to determine what emotion the individual in the photo must have been
experiencing.

An impressive feat, especially considering:

The salmon was approximately 18 inches long, weighed 3.8 lbs, and was not
alive at the time of scanning.

Card Sharks. You might be interested!] in the following clip of the game Card Sharks:

!This game was treated more extensively in a previous version of the notes, but the computations were
rather messy, and so are mostly left out here.
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Link: |Card Sharks

At each stage of the game, you can figure out the probability that you can successfully guess
whether the next card will be higher or lower. You can thus deduce the winning strategy.

Theoretically the game is not too difficult, but in practice the computations can be very
messy.

Ellen’s Game of Games — Hot Hands. Ellen’s Game of Games is a new game show,
launched by host Ellen DeGeneres in 2017. Like The Price Is Right, the game involves lots
of mini-games.

Here are two consecutive playings of Hot Hands:

Link: [Ellen’'s Game of Games — Hot Hands

I could not find accurate rules for the game listed on the Internet (the Wikipedia page
is conspicuously wrong); perhaps, they change at DeGeneres’ whim. Roughly, they seem to
be as follows:

Game Description (Ellen’s Game of Games — Hot Hands): The contestant is
shown photos of celebrities, and has 30 seconds to identify as celebrities as she can, with
at most three seconds for each one. She wins an amount of money that increases with
the number of correct guesses.

Some things are left ambiguous. For example, suppose the contestant immediately passed
on any celebrity she didn’t immediately recognize; would she have to wait three seconds, and
would she be shown arbitrarily many celebrities?

As actually played, the game is hard to analyze mathematically, but we can analyze the
following oversimplification of the game: assume that the contestant has the opportunity to
identify exactly ten celebrities.

The outcome is not random: either she knows the celebrity or she doesn’t. If you ever
get the chance to play this game, then these notes won’t be as useful as a random back issue
of People magazine. Nevertheless, we can ask a couple of questions:

Example 29: If the contestant has the chance to guess at ten celebrities, and has a
50-50 chance at each, what is the chance of guessing them all correctly?

Solution. Hopefully this is easy by now, the answer is

nY 1
(5) "~ 1024
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Example 30: If the contestant has the chance to guess at ten celebrities, and has a
50-50 chance at each, what is the chance of guessing at least nine correctly?

Solution. By the same reasoning, the probability of any particular sequence of an-
swers is ﬁ. For example, the following sequence has probability W124: first question
wrong, second question right, third question right, fourth question right, fifth question
wrong, sixth question right, seventh question wrong, eighth question wrong, ninth ques-
tion right, tenth question right.

We could have, independently, listed ‘right’ or ‘wrong’ after each of the question
numbers. The point is that we made a particular choice, and no matter which particular
choice we made the probability is the same.

So we want to use the addition rule, and add up all the different ways in which she

could get at least nine questions correct:
e She could get all ten questions correct.
e She could get the first question wrong, and the remaining questions correct.
e She could get the second question wrong, and the remaining questions correct.

e There are eight more possibilities like this. Indeed, there are ten questions, and
she could get any one of them wrong and answer all the remaining ones correctly.

So we have listed 11 distinct events — one, getting all the questions correct, and the
remaining ten getting any one of the other 10 questions wrong and the others correct.

Each has probability ﬁ? so the total probability is ul)ﬁ.

Here is another question: what is the probability of getting exactly five questions right?
The answer turns out to be %: there are exactly 252 distinct ways in which she could get
exactly five questions right. How to compute that?!
We could list them all out explicitly, but that sounds... a little bit tedious. We see that
to be good at probability, we need to be good at counting. The art of counting, without
actually counting, is called combinatorics. We develop a couple of principles in the next

section, and we will return to this topic again in Chapter [4]

2.3 Permutations and Factorials

Here is a clip of the Price Is Right game Ten Chances:

Link: The Price Is Right — Ten Chances
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Game Description (The Price Is Right — Ten Chances): The game is played for
a small prize, a medium prize, and a car, in that order.

The small prize has two (distinct) digits in its price, and the contestant is shown
three digits — the two digits in the prize of the prize, plus an extra one. She must guess
the price of the small prize by using two of these digits in some order. On a correct guess
she wins it and moves on to the next prize.

She then must guess the price of the medium prize: it has three (distinct) digits in
its price, and she is shown four.

Finally, if she wins the medium prize she gets to play for the car: it has five digits in
its price, and this time she is shown all five digits without any decoy.

She has ten chances, total, to win as many of the prizes as she can.

So, for example, for the car the contestant is shown the digits 6, 8, 1, 0, and 7. Her first
guess is $18,670 — sounds reasonable enough, but it’s wrong.

Example 31: In the clip, the price of the small prize (a popcorn maker) contains two
digits from {4,0,5}. If all possibilities are equally likely to be correct, what are her odds
of guessing correctly on the first try?

Solution 1. The sample space of all possibilities is
{04, 05, 40, 45, 50, 54}.

The contestant guesses 45, but in any case we hypothesized that each was equally likely

to occur, so her odds of winning are %.

Solution 2. We use the multiplication rule. There are three different possibilities
for the first digit, and exactly one of them is correct. The probability that she gets the
first digit correct is therefore %

If she got the first digit correct, then there are two remaining digits, and the proba-

bility that she picks the correct one is %
Thus the probability of getting both correct is % X % = %.

Note also that unless she does something particularly dumb, she is guaranteed to have
at least four chances at the other two prizes.

You might notice, by the way, that our assumption that the possibilities are equally likely
is unrealistic. Surely the popcorn maker’s price is not 04 dollars? They're not that cheap,
and even if they were, you’d write 4 and not 04.

Indeed:
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Example 32: If the contestant had watched The Price Is Right a lot, she’d know
that the prices all end in zero. If she uses this fact to her advantage, now what is her
probability of guessing correctly on the first try?

Solution. The sample space gets shrunk to
{40,50},

so she has a 1 in 2 chance.

For the karaoke machine, she chooses three digits from {2,9,0,7}. One can compute
similarly that her probability of guessing right on any particular try is i (or % if you know
the last digit is zero).

Finally, the price of the car has the digits {6,8,1,0,7} and this time she uses all of them.
The sample space is too long to effectively write out. So we work out the analogue of Solution
2 above: Her odds of guessing the first digit are % If she does so, her odds of guessing the
second digit is %1 (since she has used one up). If both these digits are correct, her odds of
guessing the third digit is % If these three are correct, her odds of guessing the fourth digit
are % Finally, if the first four guesses are correct then the last digit is automatically correct

by process of elimination. So the probability she wins is

1 1 1 1 1
- X =X=X=X1=—

5 4 3 2 120

Here the number 120 is equal to 5!, or 5 factorial. In math, an exclamation point is read
‘factorial’ and it means the product of all the numbers up to that point. We have

1 =1 =1
20 =1x2 =2
3l =1x2x3 =6
4 =1x2x3x4 =24
Bl =1x2x3x4x5 =120
6! =1x2x3x4x5x6 = 720
TN =1x2x3x4x5x6xT7 = 5040
8l =1 Xx2x3x4x5Xx6xT7Tx8 = 40320
9 =1x2x3x4x5Xx6xXxT7Tx8x%x9 = 362880
10 =1x2x3x4x5x6x%x7x8x9x10 = 3628800,

and so on. We also write 0! = 1. Why 1 and not zero? 0! means ‘don’t multiply anything’,
and we think of 1 as the starting point for multiplication. (It is the multiplicative identity,
satisfying 1 x = x for all z.) So when we compute 0! it means we didn’t leave the starting
point.
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These numbers occur very commonly in the sorts of questions we have been considering,
for reasons we will shortly see.

Example 33: The contestant wins the first two prizes in seven chances, and has three
chances left over. If each possibility for the price of the car is equally likely, then what
is the probability that she wins it?

Solution. The answer is three divided by N(S), the number of elements in the
sample space. So if we could just compute N(S), we'd be done.

Here there is a trick! She guesses 18670, and we know that the probability that this
is correct is ﬁ: one divided by the number of total possible guesses. But we already
computed the probability: it’s Elo' Therefore, we know that N(5) is 120, without actually
writing it all out!

We just solved our first combinatorics problem: we figured out that there were 120 ways
to rearrange the numbers 6,8, 1,0,7 without actually listing all the possibilities. We now
formalize this principle.

Definition 34 (Strings and permutations): A string is any sequence of numbers,
letters, or other symbols. For example, 01568 and 22045 are strings of numbers, ABC
and zyz are strings of letters. Order matters: 01568 is not the same string as 05186.

A permutation of a string 7" is any reordering of 7T'.

So, for example, if T" is the string 1224, then 2124, 4122, 1224, and 2142 are all permuta-
tions of T'. Note we do consider T itself to be a permutation of T', for the same reason that
we consider 0 a number. It is called the trivial permutation.

We have the following:

Theorem 35 (Counting permutations): Let 7" be a string with n symbols, all of
which are distinct. Then there are exactly n! distinct permutations of 7.

As with our earlier theorems, the hypothesis is necessary: the string 1224 has a repeated
symbol, and there are not 4! = 24 permutations of it, but in fact only 12 of them. We will
see later how to count permutations when the strings have repeated symbols.

Why is the theorem true? Think about how to arrange the strings: there are n possibilities
for the first symbol (all different, because the symbols are all distinct), n — 1 for the second,
n — 2, and so on. This is essentially like the multiplication rule, only for counting instead of
probability.

We now return to our Ten Chances contestant. Recall that, after the two small prizes,
she has three chances to win the car.
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Example 36: Suppose that the contestant has watched The Price Is Right a lot and
so knows that the last digit is the zero. Compute the probability that she wins the car,
given three chances.

Solution. Here her possible guesses consist of permutations of the string 6817,
followed by a zero. There are 4! = 24 of them, so her winning probability is 2—:1 = %.

Her winning probability went up by a factor of exactly 5 — corresponding to the fact
that % of the permutations of 68107 have the zero in the last digit. Equivalently, a
random permutation of 68107 has probability % of having the zero as the last digit.

This is still not optimal. For example, suppose the contestant had guessed 81670. To
any reader that considers that a likely price of a Ford Fiesta... 1 have a car to sell you.

Example 37: Suppose that the contestant knows that the the last digit is the zero
and the first digit is the one. Compute the probability that she wins the car, given three
chances.

Solution. Her guesses now consist of permutations of the string 867, with a 1 in

front and followed by a zero. There are 3! = 6 of them. She has three chances, so her

. . . 3 _ l
chance of winning is ¥ = 3.

Note that it is only true of Ten Chances that car prices always end in zero — not of The
Price Is Right in general. Here is a contestant who is very excited until she realizes the odds
she is against:

Link: The Price Is Right — Three Strikes for a Ferrari

Game Description (The Price Is Right — Three Strikes): The game is played for
a car; the price will usually be five digits but may occasionally be six. All the digits in
the price of the car will be distinct.

Five (or six) tiles, one for each digit the price, are mixed in a bag with three ‘strike’
tiles. Each turn, she draws one of the tiles. If it is a strike, it is removed from play. If
it is a digit, she has the opportunity to guess its position in the price of the car. If she
guesses correctly, her guess is illuminated on the scoreboard and the tile is removed from
play. If she guesses incorrectly, then the tile is returned to the bag.

She continues drawing and guessing until either (1) she has correctly identified the
positions of all the digits in the price, in which case she wins the car; or (2) she draws
all three strikes, in which case she loses.
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2.4 Exercises

Most of these should be relatively straightforward, but there are a couple of quite difficult
exercises mixed in here for good measure.
Starred exercises indicate optional exercises.

1. Card questions. In each question, you choose at random a card from an ordinary deck.
What is the probability you —

(a) Draw a spade?
(

)
b) Draw an ace?
(c) Draw a face card? (a jack, queen, king, or an ace)
)

(d) Draw a spade or a card below five?
2. Dice questions:

(a) You roll two dice and sum the total. What is the probability you roll exactly a
five? At least a ten?” Solution. The sample space consists of 36 possibilities, 11

through 66. The first event can be described as {14, 23, 32,41} and has probability
% = % The second can be described as {46, 55, 64, 56, 65,66} and has probability
6 _
% = 6
(b) You roll three dice and sum the total. What is the probability you roll at least a
147 (This question is kind of annoying if you do it by brute force. Can you be

systematic?) Solution. There are several useful shortcuts. Here is a different
way than presented in lecture. The sample space consists of 6 x 6 x 6 = 216
elements, 111 through 666. The event of rolling at least a 14 can be described as
{266(3),356(6), 366(3),446(3),455(3),456(6),466(3), 555(1), 556(3), 566(3), 666(1)}.

The number in parentheses counts the number of permutations of that dice roll,
all of which count. For example, 266, 626, and 662 are the permutations of 266.

There are 35 possibilities total, so the probability is 2‘%.

3. (*) You flip 3 coins. What is the probability of no heads? one? two? three? Repeat,
if you flip four coins.

4. (*) You flip two coins and a die. What is the probability that the number showing on
the die exceeds the number of heads you flipped?

5. The following questions concern the dice game of craps:
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Game Description (Craps): In craps, you roll two dice repeatedly. The rules
for the first roll are different than the rules for later rolls.

On the first roll, if you roll a 7 or 11, you win immediately, and if you roll a 2, 3,
or 12, you lose immediately. Otherwise, whatever you rolled is called “the point”
and the game continues.

If the game continues, then you keep rolling until you either roll ‘the point’ again,
or a seven. If you roll the point, then you win; if you roll a seven (on the second
roll or later), you lose.

(a) In a game of craps, compute the probability that you win on your first roll.
Conversely, compute the probability that you lose on your second roll. Solution.

The probability of winning on your first roll is the probability of rolling a 7 or 11:
5636 = 3 = o
For the second question, I intended to ask the probability that you lose on your
first roll. Oops. Let’s answer the question as asked. There are multiple possible
interpretations, and here is one. Let us compute the probability that you lose on
the second round, presuming that the game goes on to a second round. This is

the probability of rolling a 6 or %.

(b) In a game of craps, compute the probability that the game goes to a second round
and you win on the second round. Solution. This can happen in one of six

possible ways: you roll a 4 twice in a row, a 5 twice in a row, or similarly with a
6, 8, 9, or 10.

o1 . . 3
The pr20bab1hty of rolling a 4 is 3,
is (33—6) . Similarly with the other dice rolls; the total probability is

3 2 4 2 5 2 5 2 4 2 3 2
1 — E— — —_— — — p—
0 (a) +(a) () + () + () (a0)
9+164+25+25+164+9 100 25
1296 1206 324

(¢) In a game of craps, compute the probability that the game goes to a second round
and you lose on the second round. Solution. Multiply the probability that the

game goes onto a second round (easily checked to be 2) by the probability %

3
computed earlier, so %.

so the probability of rolling a 4 twice in a row

(d) In a game of craps, compute the probability that you win.

Solution. With probability % you win on your first round. We will now compute
the probability that you win later, with the point equal to n, for n equal to 4, 5,
6, 8, 9, or 10. We will then add these six results. Write the probability of rolling
n on one roll of two dice as g5, so that a is 3, 4, or 5 depending on n.
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e As we computed before, the probability of winning on the second round (with
point n) is (%)2.
e On each round after the first, there is a probability 2522 of rolling something

other than 7 or the point. This is the probability that the game goes on to
another round.

e So, the probability of winning on the third round is the probability of: rolling
the point on the first round, going another turn in the second round, rolling

the point on the third round. This is (%)2 . (3%5“) .

e Similarly, the probability of winning with point n on the fourth round is
( u )2 . (30_“)2, and so on. The total of all these probabilities is

36 36
0o O \k
G (%)

e For |r| < 1, we have the infinite sum formula Y ;7 r* = . Plugging this
in, the above expression is

2

(%)2 ' 63+6a B 36(g+ a)

So we add this up for @ = 3 (twice, for n = 4 or 5), a = 4 (twice), and a = 5
(twice). We get
o (9, 16, 25\ 13
36-9  36-10 36-11) 495
Adding the to the first round probability of % we get

2 134 244

0195~ 195°

This is a little less than a half. As expected, the house wins.

6. Consider the game Press Your Luck described above. Assume (despite rather convine-
ing evidence to the contrary) that the show is random, and that you are equally likely
to stop on any square on the board.

(a) On each spin, estimate the probability that you hit a Whammy. Justify your
answer.

(Note: This is mostly not a math question. You have to watch the video clip for
awhile to answer it.)

(b) On each spin, estimate the probability that you do not hit a Whammy.

(c) If you spin three times in a row, what is the probability you don’t hit a whammy?
Five? Ten? Twenty-eight? (If your answer is a power of a fraction, please also
use a calculator or a computer to give a decimal approximation.)
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7. Consider the game Rat Race described above.

(a)

(b)
()

(d)

Suppose that the contestant only prices one item correctly, and so gets to pick
one rat. What is the probability that she wins the car? That she wins something?
That she wins nothing?

What if the c