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1 Introduction

To begin, let’s watch some game show clips and investigate the math behind them.
Here is a clip from the game show Deal or No Deal:

Link: Deal Or No Deal — Full Episode

(If you are reading this on a computer with an internet connection, clicking on any line
labeled ‘Link’ should bring up a video on a web browser.)

Game Description (Deal or No Deal): A contestant is presented with 26 briefcases,
each of which contains some amount of money from $0.01 to $1,000,000; the amounts
total $3,418,416.01, and average $131477.53. The highest prizes are $500,000, $750,000,
and $1,000,000.

The contestant chooses one briefcase and sets it aside. That is the briefcase she is
playing for. Then, one at a time, she is given the opportunity the opportunity to open
other briefcases and see what they contain. This narrows down the possibilities for the
selected briefcase.

Periodically, the ‘bank’ offers to buy the contestant out, and proposes a ‘deal’: a fixed
amount of money to quit playing. The contestant either accepts one of these offers, or
keeps saying ‘no deal’ and (after opening all the other briefcases) wins the money in her
original briefcase.

The expected value of a game is the average amount of money you expect to win.
(We'll have much more to say about this.) So, at the beginning of the game, the expected
value of the game is $131,477.53, presuming the contestant rejects all the deals. In theory,
that means that the contestant should be equally happy to play the game or to receive
$131,477.53. (Of course, this may not be true in practice.)

Now, consider this clip after the contestant has chosen six of the briefcases. Losing the
$500,000 was painful, but the others all had small amounts. After six eliminations, the total
amount of prize money remaining is $2,887,961.01, and the average is $144,398.05 — higher
than it was before. The banker offers him $40,000 to stop playing. Since that is much lower
than his expected value, understandably he refuses the offer and continues to play.

We now turn to the first game from this clip of The Price Is Right:
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https://www.youtube.com/watch?v=Xs5_bBJisJg

Link: The Price Is Right - Full Episode

Game Description (Contestants’ Row - The Price Is Right): Four contestants
are shown an item up for bid. In order, each guesses its price (in whole dollars). You
can’t use a guess that a previous contestant used. The winner is the contestant who bids
the closest to the actual price without going over.

In the clip, the contestants are shown some scuba equipment, and they bid 750, 875,
500, and 900 in that order. The actual price is $994, and the fourth contestant wins.
What can we say about the contestants’ strategy?

Who bid wisely? We begin by describing the results of the bidding. Let n be the price
of the scuba gear.

e The first contestant wins if 750 < n < 874.

e The second contestant wins if 875 < n < 899.
e The third contestant wins if 500 < n < 749.
e The fourth contestant wins if 900 < n.

e If n < 500, then the bids are all cleared and the contestants start over.

We can see who did well before we learn how much the scuba gear costs. Clearly, the
fourth contestant did well. If the gear is worth anything more than $900 (which is plausible),
then she wins. The third contestant also did well: he is left with a large range of winning
prices — 250 of them to be precise. The second contestant didn’t fare well at all: although his
bid was close to the actual price, he is left with a very small winning range. This is typical
for this game: it is a big disadvantage to go early.

The next question to ask is: could any of the contestants have done better?

We begin with the fourth contestant. Here the answer is yes, and her strategy is dom-
inated by a bid of $876, which would win whenever 900 < n, and in addition when
876 < n < 899. In other words: a bid of $876 would win every time a bid of $900 would, but
not vice versa. Therefore it is always better to instead bid $876.

Taking this analysis further, we see that there are exactly four bids that make sense: 876,
751, 501, or 1. Note that each of these bids, except for the one-dollar bid, screws over one
of her competitors, and this is not an accident: Contestant’s Row is a zero-sum game — if
someone else wins, you lose. If you win, everyone else loses.

The analysis gets much more subtle if we look at the third contestant’s options. Assume
that the fourth contestant will play optimally (an assumption which is very often not
true in practice). Suppose, for example, that the third contestant believes that the scuba
gear costs around $1000. The previous bids were $750 and $875. Should he follow the same
reasoning and bid $8767 Maybe, but this exposes him to a devastating bid of $877.

There is much more to say here, but we go on to a different example.
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https://www.youtube.com/watch?v=TmKP1a03E2g

Game Description (Jeopardy, Final Round): Three contestants start with a
variable amount of money (which they earned in the previous two rounds). They are
shown a category, and are asked how much they wish to wager on the final round. The
contestants make their wagers privately and independently.

After they make their wagers, the contestants are asked a trivia question. Anyone
answering correctly gains the amount of their wager; anyone answering incorrectly loses
it.

Link: Final Jeopardy — Shakespeare

Perhaps here an English class would be more useful than a math class! This game is
difficult to analyze; unlike our two previous examples, the players play simultaneously rather
than sequentially.

In this clip, the contestants start off with $9,400, $23,000, and $11,200 respectively. It
transpires that nobody knew who said that the funeral baked meats did coldly furnish forth
the marriage tables. (Richard II1I? Really? When in doubt, guess Hamlet.) The contestants
bid respectively $1801, $215, and $7601.

We will save further analysis for later, but we will make one note now: the second
contestant can obviously win. If his bid is less than $600, then even if his guess is wrong he
will end up with more than $22,400.

In the meantime, imagine that the contestants started with $6,000, $8,000, and $10,000.
Then the correct strategy becomes harder to determine.

2 Probability

2.1 Sample Spaces and Events

At the foundation of any discussion of game show strategies is a discussion of probability.
You have already seen this informally, and we will work with this notion somewhat more
formally.

Definition 1 (Sample spaces and events): A sample space is the set of all possible
outcomes of a some process. An event is any subset of the sample space.

Example 2: You roll a die. The sample space consists of all numbers between one and
SiX.
Using formal mathematical notation, we can write

S =1{1,2,3,4,5,6}.



https://www.youtube.com/watch?v=DAsWPOuF4Fk

We can use the notation {...} to describe a set and we simply list the elements in it.
Let E be the event that you roll an even number. Then we can write

E =1{2,4,6}.
Alternatively, we can write
E={xeS : ziseven}.

Both of these are correct.

Example 3: You choose at random a card from a poker deck. The sample space is the
set of all 52 cards in the deck. We could write it

S ={Ad K& Q. Jé, 10&, I, S&, 7d, Gk, G, 4&, 3&, 2&,
AG, KO, Q0, JO, 104,90, 80, 70,60, 50,40, 30, 20,
AQ, KD, Q0, J, 100,99, 89, 79, 60, 50, 49, 39, 20,
AR K0,QM, T0, 108,98, S8, 7M. 60,50, 18, 38, 24}

but writing all of that out is annoying. An English description is probably better.

Example 4: You choose two cards at random from a poker deck. Then the sample
space is the set of all pairs of cards in the deck. For example, A®MAC and 7&2{ are
elements of this sample space,

This is definitely too long to write out every element, so here an English description
is probably better. (There are exactly 1,326 elements in this sample space.) Some events
are easier to describe — for example, the event that you get a pair of aces can be written

E = {ABAD, ARAS, ABAR, ADAG, AV A%, ARAS}

and has six elements. If you are playing Texas Hold’em, your odds of being dealt a pair

of aces is exactly % = ﬁ, or a little under half a percent.

Let’s look at a simple example from the Price Is Right — the game of Squeeze Play:

Link: The Price Is Right - Squeeze Play



https://www.youtube.com/watch?v=TR7Smevj1AQ

Game Description (Squeeze Play (The Price Is Right)): You are shown a prize,
and a five- or six-digit number. The price of the prize is this number with one of the
digits removed, other than the first or the last.

The contestant is asked to remove one digit. If the remaining number is the correct
price, the contestant wins the prize.

In this clip the contestant is shown the number 114032. Can we describe the game in
terms of a sample space?

It is imporrtant to recognize that this question is not precisely defined. Your
answer will depend on your interpretation of the question! This is probably very
much not what you are used to from a math class.

Here’s one possible interpretation. Either the contestant wins or loses, so we can describe
the sample space as

S = {you win, you lose}.

Logically there is nothing wrong with this. But it doesn’t tell us very much about the
structure of the game, does it?
Here is an answer I like better. We write

S = {14032,11032, 11432, 11402},

where we’ve written 14032 as shorthand for ‘the price of the prize is 14032’.

Another correct answer is
S ={2,3,4,5},

where here 2 is shorthand for ‘the price of the prize has the second digit removed.’
Still another correct answer is

S ={1,4,0,3},

where here 1 is shorthand for ‘the price of the prize has the 1 removed.’
All of these answers make sense, and all of them require an accompanying explanation
to understand what they mean.

The contestant chooses to have the 0 removed. So the event that the contestant wins
can be described as E = {11432}, E = {4}, or E = {0}, depending on which way you wrote
the sample space. (Don’t mix and match! Once you choose how to write your sample space,
you need to describe your events in the same way.) If all the possibilities are equally likely,
the contestant has a one in four chance of winning.

The contest guesses correctly and is on his way to Patagonia!

Definition 5 (/V(5)): If S is any set (for example a sample space or an event), write
N(S) for the number of elements in it.

In this course we will always assume this number is finite.
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Definition 6 (Probability): Suppose S is a sample space, in which we assume that
all outcomes are equally likely.

For each event E in S, the probability of £, denoted P(F), is

Example 7: You roll a die, so S ={1,2,3,4,5,6}.

1. Let E be the event that you roll a 4, i.e., E = {4}. Then P(E) = .
2. Let E be the event that you roll an odd number, i.e., E = {1,3,5}. Then P(F) =
3_1

6 27

Example 8: You draw one card from a deck, with S as before.
1. Let E be the event that you draw a spade. Then N(E) = 13 and P(E) = 2 = 1.

2. Let E be the event that you draw an ace. Then N(E) =4 and P(E) = & = L.

3. Let E be the event that you draw an ace or a spade. What is N(E)? There are
thirteen spades in the deck, and there are three aces which are not spades. Don’t
double count the ace of spades!

So N(E) =13+3 =16 and P(E) = £ = &4

52 13°

Example 9: In a game of Texas Hold’em, you are dealt two cards at random in first
position. You decide to raise if you are dealt a pair of sixes or higher, ace-king, or
ace-queen, and to fold otherwise.

The sample space has 1326 elements in it. The event of two-card hands which you
are willing to raise has 86 elements in it. (If you like, write them all out. Later we will
discuss how this number can be computed more efficiently!)

Since all two card hands are equally likely, the probability that you raise is %, or
around one in fifteen.

Now, here is an important example:




Warning Example 10: You roll two dice and sum the totals. What is the probability
that you roll a 77
The result can be anywhere from 2 to 12, so we have

S =1{2,3,4,5,6,7,8,9,10,11,12}

and E = {7}. Therefore, we might be led to conclude that P(E) = % = 1—11

Here is another solution. We can roll anything from 1 to 6 on the first die, and the
same for the second die, so we have

S ={11,12,13,14, 15,16, 21,22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 36,
41,42, 43,44, 45,46, 51,52, 53,54, 55, 56, 61, 62, 63, 64, 65, 66}.

We list all the possibilities that add to 7:
E ={16,25,34,43,52,61}

And so P(E) = & =

1
36 6°

We solved this problem two different ways and got two different answers. This illus-
trates the importance of our assumption that every outcome in a sample space
will be equally likely. This might or not be true in any particular situation. And one
can’t tell just from knowing what E and S are — one has to understand the actual situation
that they are modelling.

We know that a die (if it is equally weighted) is equally likely to come up 1, 2, 3, 4, 5,
or 6. So we can see that, according to our second interpretation, all the possibilities are still
equally likely because all combinations are explicitly listed. But there is no reason why all
the sums should be equally likely.

For example, consider the trip to Patagonia. If we assume that all outcomes are equally
likely, the contestant’s guess has a 1 in 4 chance of winning. But the contestant correctly
guessed that over $14,000 was implausibly expensive, and around $11,000 was more reason-
able.

Often, all events are approximately equally likely, and considering them to
be exactly equally likely is a useful simplifying assumption.

We now take up the game Rat Race from The Price Is Right. (We will return to this
example again later.)

Link: The Price Is Right - Rat Race


https://www.youtube.com/watch?v=Kp8rhV5PUMw

Game Description (Rat Race (The Price Is Right)): The game is played for

three prizes: a small prize, a medium prize, and a car.

There is a track with five wind-up rats (pink, yellow, blue, orange, and green). They
will be set off on a race, where they will finish in (presumably) random order.

The contestant has the opportunity to pick up to three of the rats: she guesses the
price of three small items, and chooses one rat for each successful attempt.

After the rats race, she wins prizes if one or more of her rats finish in the top three.
If she picked the third place rat, she wins the small prize; if she picked the second place
rat, she wins the medium prize; if he picked the first place rat, she wins the car. (Note
that it is possible to win two or even all three prizes.)

Note that except for knowing the prices of the small items, there is no strategy. The rats
are (we presume) equally likely to finish in any order.

In this example, the contestant correctly prices two of the items and picks the pink and
orange rats.

Problem. Compute the probability that she wins the car.

Solution 1. Here’s the painful solution: describe all possible orderings in which the rats
could finish. We can describe the sample space as

S = {POB, POR, POG, PBR, PBG, PRG, ...,...}

where the letters indicate the ordering of the first three rats to finish. Any such ordering is
equally likely. The sample space has sixty elements, and if you list them all you will see that
exactly twenty-four of them start with P or G. So the probability is % = %

Solution 2. Do you see the easier solution? To answer the problem we were asked, we
only care about the first rat. So let’s ignore the second and third finishers, and write the
sample space as

S={PO,B,R,G}.
The event that she wins is
E ={P G},
N(E
and so P(F) = % =2
Solution 3 (Wrong). Here’s another possible solution, which turns out to be wrong.
It doesn’t model the problem well, and it’s very instructive to understand why.
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As the sample space, take all combinations of one rat and which order it finishes in:

S = {Pink rat finishes first,
Pink rat finishes second,
Pink rat finishes third,
Pink rat finishes fourth,
Pink rat finishes fifth,
Yellow rat finishes first,
etc.}

This sample space indeed lists a lot of different things that could happen. But how would
you describe the event that the contestant wins? If the pink or orange rat finishes first,
certainly she wins. But what if the yellow rat finishes third? Then maybe she wins, maybe
she loses. There are several problems with this sample space:

e The events are not mutually exclusive. It can happen that both the pink rat finishes
second, and the yellow rat finishes first. A sample space should be described so that
exactly one of the outcomes will occur.

Of course, a meteor could strike the television studio, and Drew, the contestant, the
audience, and all five rats could explode in a giant fireball. But we’re building mathe-
matical models here, and so we can afford to ignore remote possibilities like this.

e In addition, you can’t describe the event ‘the contestant wins’ as a subset of the sample
space. What if the pink rat finishes fifth? The contestant also has the orange rat. It
is ambigious whether this possibility should be part of the event or not.

Advice: Note that it is a very good thing to come up with wrong ideas
— provided that one then examines them critically, realizes that they won’t work, and
rejects them. Indeed, very often when solving a problem, your first idea will often be
incorrect. Welcome this process — it is where the best learning happens.

This also means that you are not truly finished with a problem when you write down
an answer. You are only finished when you think about your answer, check your work
(if applicable), and make sure that your answer makes sense.

Problem 2. Compute the probability that she wins both the car and the meal delivery.

Here we care about the first two rats. We write
S ={PO,PB,PR,PG,OP,0OB,0OR,0G, BP, BO, BR, BG, RP, RO, RB, RG,GP,GO,GB,GR}.

The sample space has twenty elements in it. (20 = 5 x 4: there are 5 possibilities for the
first place finisher, and (once we know who wins) 4 for the second. More on this later.) The
event that she wins is

(PO,OP)
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_ N(E) _ 2 1

Problem 3. Compute the probability that she wins all three prizes.

Zero. Duh. She only won two rats! Sorry.

2.2 The Addition and Multiplication Rules

The Addition Rule (1). Suppose E and F are two disjoint events in the same sample
space — i.e., they don’t overlap. Then

P(E or F) = P(E) + P(F).

Example 2.1 You roll a die. Compute the probability that you roll either a 1, or a four or
higher.

Let E = {1} be the event that you roll a 1, and E = {4,5,6} be the event that you roll a
4 or higher. Then
1 3 4 2
P(Eor F)=PE)+P(F)==-+-=-=—.
(Bor F)=P(E)+ P(F)= ¢+ 2= 2=~
Example 2.2 You draw a poker card at random. What is the probability you draw either a
heart, or a black card which is a ten or higher?

Let E be the event that you draw a heart. As before, P(E) = 2.

Let F' be the event that you draw a black card ten or higher, i.e.,

F={Ad K& Q&, /& 10& AN, K& QN J& 108}

Then P(F) = .

So we have 13 10 93
P(Eor F)=—+4 —=—.
(BorF) =5+ 5 = 5
Example 2.3 You draw a poker card at random. What is the probability you draw either a
heart, or a red card which is a ten or higher?

This doesn’t have the same answer, because hearts are red. If we want to apply the
addition rule, we have to do so carefully.

Let E be again the event that you draw a heart, with P(E) = £2.

Now let F' be the event that you draw a diamond which is ten or higher:

F={A0,K$,Q0, J¢, 100}

Now together E and F cover all the hearts and all the red cards at least ten, and there is no
overlap. So we can use the addition rule.

135 18

P(E or F) = P(E) + P(F) = = + =

52 52
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We can also use the addition rule with more than two events, as long as they don’t
overlap.

Example 2.4 Consider the Rat Race contestant from earlier. What is the probability that
she wins any two of the prizes?

Solution 1. We will give a solution using the addition rule. (Later, we will give another
solution using the Multiplication Rule.)

Recall that her chances of winning the car and the meal delivery were %. Let us call this
event CM instead of E.

Now what are her chances of winning the car and the guitar? (Call this event CG.) Again
1—10. If you like, you can work this question out in the same way. But it is best to observe
that there is a natural symmetry in the problem. The rats are all alike and any ordering s
equally likely. They don’t know which prizes are in which lanes. So the probability has to be
the same.

Finally, what is P(MG), the probability that she wins the meal service and the guitar?
Again %0 for the same reason.

Finally, observe these events are all disjoint, because she can’t possibly win more than
two. So the probability is three times %, or %.

Here is a contrasting situation. Suppose the contestant had picked all three small prices
correctly, and got to choose three of the rats. In this case, the probability she wins both the
car and the meal service is %, rather than %. (You can either work out the details yourself,
or else take my word for it.)

But this time the probability that she wins two prizes is not 1—30 + 13_0 + 13—0, because now
the events CM, CG, and MG are not disjoint: it is possible for her to win all three prizes,
and if she does, then all of CM, CG, and MG occur!

It turns out that in this case the pr?c’)bability that she wins at least two is %, and the

probability that she wins ezactly two is ;.

The Multiplication Rule. The multiplication rule computes the probability that two
events I/ and F' both occur. Here they are events in different sample spaces.
The formula is the following:

P(F and F) = P(E) x P(F).
It is not always valid, but it is valid in either of the following circumstances:
e The events E and F' are independent.

e The probability given for F' assumes that the event E occurs (or vice versa).
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Example 2.5 You flip a coin twice. What is the probability that you flip heads both times?

We can use the multiplication rule for this. The probability that you flip heads if you flip

a coin once 1s % Since coin flips are independent (flipping heads the first time doesn’t make

it more or less likely that you will flip heads the second time) we multiply the probabilities to
get + x =1,
Alternatively, we can give a direct solution. Let

S={HH,HT,TH,TT}

and
E={HH}.
Since all outcomes are equally likely,
(=222
ON(S) 4

We can also use the multiplication rule for more than two events.

Example 2.6 You flip a coin twenty times. What is the probability that you flip heads every
time?

If we use the multiplication rule, we see at once that the probability is

1 1 1 1 1
X =X e X = =
2 2 2 220 1048576

This example will illustrate the second use of the Multiplication Rule.

Example 2.7 Consider the Rat Race example again (as it happened in the video). What is
the probability that the contestant wins both the car and the meal service?

Solution. The probability that she wins the car is %, as it was before. So we need to
now compute the probability that she wins the meal service, given that she won the car.

This time the sample space consists of four rats: we leave out whichever one won the car.
The event is that her remaining one rat wins the meal service, and so the probability of this
event is i.

By the multiplication rule, the total probability is

2 1 1

— X - = —.
5 4 10
Example 2.8 Suppose a Rat Race contestant prices all three prizes correctly and has the
opportunity to race three rats. What is the probability she wins all three prizes?

14



Solution. The probability she wins the car is 2 £, as before: the sample space consists
of the five rats, and the event that she wins consists of the three rats she chooses. (Her
probability is % no matter which rats she chooses, under our assumption that they finish in
a random order.)

Now assume that she wins the first prize. Assuming this, the probability that she wins
the meals is % = % The sample space consists of the four rats other than the first place
finisher, and the event that she wins the meals consists of the two rats other than the first
place finishers.

Now assume that she wins the first and second prizes. The probability she wins the
guitar is %: the sample space consists of the three rats other than the first two finishers, and

the event that she wins the meals consists of the single rat other than the first two finishers.

There is some subtlety going on here! To illustrate this, consider the following:

Example 2.9 Suppose a Rat Race contestant prices all three prizes correctly and has the
opportunity to race three rats. What is the probability she wins the meal service?

Solution. There are five rats in the sample space, she chooses three of them, and each of
them is equally likely to finish second. So her probability is g (same as her probability of
winning the car).

But didn’t we just compute that her odds of winning the car are %? What we're
seeing is something we’ll investigate much more later. This probability % is a conditional
probability: it assumes that one of the rats finished first, and illustrates what is hopefully
intuitive: if she wins first place with one of her three rats, she is less likely to also win second
place.

In particular, this reasoning illustrates the following misapplication of the multiplication
rule. Suppose We compute again the probability that she wins all three prizes with th1ee
rats. She has a f probability of winning first, a :f probability of winning second, and a g
probability of Wmmno third. By the multiplication rule, the probability that all of these

events occur is
27

125

ot W
ot W

X
o] W

What is wrong with this reasoning is that these events are not independent.

Michael Larson. Here is a bit of game show history. The following clip comes from the
game show Press Your Luck on May 19, 1984.

https://www.youtube.com/watch?v=UzggoA41Lwk

Here Michael Larsen smashed the all-time record by winning $110,237. The truly fasci-
nating clip starts at around 17:00, where Larson continues to press his luck, to the host’s
increasing disbelief. On 28 consecutive spins, Larson avoided all the whammies and each
time hit a space that afforded him an extra spin. There are eighteen squares on the board,
and on average there are approximately five spaces worth money and an extra spin.
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Example 2.10 Assume for simplicity that each time there are exactly five spaces (out of
eighteen) that Larson wants to hit, and that the outcome is random and that each square is
equally likely to occur.

If Larson spins twenty-eight times, compute the probability that he hits a good spot every
time.

Solution. This is a straightforward application of the multiplcation rule. The answer is
(1%)287 or approximately one in

3,771,117,128,139, 603.

Either Larson got very, very, very, VERY lucky....... or else the pattern is not
random and he figured it out.

Card Sharks. Here is another game show from the eighties that leads to interesting
probability computations.

Game Description (Card Sharks): Each of two contestants receives a lineup of five
cards. The first is shown to each contestant, and a marker is placed on the first card. The
objective of each round is to reach the last card.

A turn by the contestant consists of the following. She starts with the (face-up) card at
the marker, and may replace it with a random card if she chooses. She then guesses whether
the next card is higher or lower, which is then revealed.

If is the last card and her guess is correct, she wins the round. Otherwise, she may keep
guessing cards for as long as she likes untill one of three things happens: (1) she guesses the
last card correctly, and wins; (2) she guesses any card incorrectly, in which case the cards
she has guessed are all discarded and replaced with new cards (face down); (3) she chooses
to end the turn by moving her marker forward to the last card guessed correctly.

The round begins with a trivia question (I don’t describe the rules for that here), and
the winner gets to take a turn. If this turn ends with a freeze, the contestants go to another
trivia question; if it ends with a loss, the other contestant takes a turn.

There is also a bonus round which we won’t discuss here. (We could though; analyzing
this would make an interesting term project.)

Herd'] is a typical clip:

LSummary of the clip: (Please note. The trivia questions are off-color and arguably sexist. This is
unfortunately common on this show.) The contestants are Royce and Cynthia. Cynthia wins the first trivia
question. Her initial card is a king. She keeps it and guesses lower; the second card is a two. She guesses
higher; the third card is a nine. She freezes on position three.

Royce wins the next trivia question. His initial card is an eight; he changes it and gets a four. He guesses
higher; the second card is a six. He guesses higher; the third card is a nine. He freezes on position three.

Royce wins the next trivia question. He starts on position three and chooses to replace the nine, and gets
a three. He guesses higher; the fourth card is a five. He guesses higher; the fifth card is a king and Royce
wins the round.
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Here is our objective: Assuming that the trivia questions are a 50-50 tossup, determine
the optimal strategy in all situations. This problem is somewhat difficult (and our mental
heuristics for it are fairly spot on). But at least in principle, it is possible to give a complete
solution to this problem.

We won’t try to achieve this all at once. Instead, we’ll ask a number of probability
questions to get started:

Example 2.11 Consider Cynthia’s first turn, where she guesses ‘lower’. Compute the prob-
ability that she s correct.

Answer. The sample space consists of the 51 cards other than the king of clubs. Of
these, only seven are not lower: the four aces, and the three remaining kings. So 51 —7 = 44
cards are lower, and her chances are ‘51—‘11.

We also compute the probabilities at the next two rounds. She guesses the third card
will be higher than a 2. There are 50 cards remaining, and 47 of them are higher than a 2,
so her odds are %.

The next card was a 9. Of the 49 remaining cards, 27 are lower than a 9 and 19 are
higher. (And the three remaining nines are neither higher nor lower — so she would lose
no matter what she picked). If she chose to play, her odds of winning the next card would
be %, or slightly better than 50-50. She quite reasonably chooses to freeze and lock in her
position.

Now we skip ahead to Royce’s second round (when both Royce and Cynthia have frozen
on the third of five cards).

Here are several questions we can ask:

e Given that Royce has replaced his nine with a three, compute the probability that he
can win the round (assuming he doesn’t freeze).

e Before Royce sees the three, compute the probability that he can win the round.

e Given that Royce’s card is a five, compute the probability that he wins if he doesn’t
choose to freeze.

e If Royce chooses to freeze, answers the next trivia question correctly, and gets to go
again, compute the probability that he wins on his next attempt.
(Note that this is not the total probability he wins: he could lose on his next attempt,
but then answer another trivia question correctly and get yet another try.)

e If Royce chooses to freeze and Cynthia answers the next trivia question correctly, what
is the probability that she wins the next round (if she doesn’t freeze)?
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These questions get us closer to the question we're really interested in: should Royce freeze
on the five or not? As is often the case, the question we are interested in is quite difficult
and we build up to being able to answer it.

We tackle the first question.

Example 2.12 Given that Royce has replaced his nine with a three, compute the probability
that he can win the round. Assume that he doesn’t choose to freeze, and that his higher/lower
guess is always optimal.

Note that there are 48 cards left in the deck: a three, a four, a six, and a nine are all
missing.

It is easy to compute the probability that Royce’s first guess is correct: out of 48 remaining
cards, 41 are higher, so the probability i 1s . Now, assuming that Royce’s first guess is
correct, what is the probability that his second guess is correct?

Well ...... we don’t know. It depends on what the first card is. Later, we will see some
clever tricks for carrying out this sort of computation more easily. But for now, we outline
a ‘brute force’ computation:

e Royce’s first guess will be correct if the first card is a four, five, six, seven, eight, nine,
ten, jack, queen, king, or ace.

e Based on Royce’s first guess, we can determine what Royce should guess for the second
card and the probability that this guess will be correct.

Let’s do an example of this. Suppose the first card is a four; the probability of this
occurring is ;5. (This reduces to 15, but the pattern will be clearer if we do not reduce
our fractlons to lowest terms.)

16’

Then Royce should clearly guess that the second will be higher. There are 47 remaining
cards, of which 38 are higher than a four. So assuming that the first card is a four,
the probability that Royce wins is <=. Therefore, the probability that the first card is
a four and Royce wins is % X @

o We will therefore use both the addition and the multiplication rules by dividing into
cases: For each possible first card n (that doesn’t lose Royce the round immediately),
we compute the probability that the first card is n and that Royce wins the round.
This is the multiplication rule.

Since all of these possibilities are mutually exclusive, but one of them has to occur
if Royce is to win, we see that the probability that Royce wins is the total of the
probabilities we computed in the first step. This is the addition rule!

Let’s roll up our sleeves and do it. The proof won’t be pretty, but it is not as scary as it
looks.

e With probability = e the first card will be a four. Then Royce should guess higher, and
with probablhty the next card will be higher.
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e With probability - e the first card will be a five. Then Royce should guess higher, and
with probability 32 7 the next card will be higher.

e With probability - 15 the first card will be a six. Then Royce should guess higher, and
with probability 41 the next card will be higher.

e With probability - 15 the first card will be a seven. Then Royce should guess higher,
and with probability 47 the next card will be higher.

e With probability = i the first card will be an eight. Then Royce should guess higher,
and with probability 23 7 the next card will be higher.

e With probability =2 15 the first card will be a nine. Then Royce should guess lower, and
with probability £ 21 the next card will be lower.

e With probability 448 the first card will be a ten. Then Royce should guess lower, and
with probability 4= 27 the next card will be lower.

o With probability 448 the first card will be a jack. Then Royce should guess lower, and
with probablhty 31 the next card will be lower.

e With probability 448 the first card will be a queen. Then Royce should guess lower, and
with probability 45 the next card will be lower.

e With probability - 15 the first card will be a king. Then Royce should guess lower, and
with probability 49 the next card will be lower.

e With probability = 15 the first card will be an ace. Then Royce should guess lower, and
with probability 43 the next card will be lower.

(Note that all of the cases look more or less the same. Often, this is an indication that you
can look for shortcuts — but we won’t do so here.)
The total probability that Royce wins is therefore

3 38 4 34 3 31 4 27 423 3 24 4 27 4 31 4 35 4 39 4 43
B BT B0 B B Ry B B 847 4847 BT
This is equal to ;gég, which is already in lowest terms. Yeah, I know. You were hoping it
would be nice and simple, and that in retrospect you could have solved the problem in your
head. You couldn’t have. Neither could I. Sometimes math is like that.

This is roughly 58.2%, which is not bad at all.
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2.3 Permutations and factorials

This vided? illustrates a playing of the Price Is Right game Ten Chances:

https://www.youtube.com/watch?v=iY_gmGcDKXE

Game Description (Ten Chances (The Price Is Right)): The contestant is shown a
small prize, a medium prize, and a large prize. She has ten chances to win as many prizes
as she can.

The price of small prize has two numbers in it, and the contestant is shown three different
numbers. She then guesses the price of the first prize. She takes as many chances as she
needs to.

Once she wins the small prize, she attempts to win the medium prize. The price of the
medium prize has three numbers in it, and the contestant is shown four.

Finally, if she wins the medium prize, she attempts to win the car. Its price has five
numbers in it, and the contestant is shown these five.

Example 2.13 The price of the pasta maker contains two digits from {0,6,9}. Suppose
that each possibility is equally likely to be the price of the pasta maker.
If the contestant has one chance, what are her odds of winning?

Solution 1. We can give a straightforward solution by simply enumerating the sample
space of all possibilities. It is

{06, 09, 60, 69, 90, 96}

The contestant’s choice describes an event with one of these possibilities in it. Since we

hypothesized that each was equally likely to occur, her odds of winning are %.

Solution 2. We use the multiplication rule. There are three different possibilities for
the first digit, and exactly one of them is correct. The probability that she gets the first
digit correct is therefore 3.

Now, assume she got the first digit correct. (If she didn’t, she might have used up
the correct second digit already, and be doomed to botch that one also!) Then there are two
remaining digits, and the probability that she picks the correct one is %

Thus the probability of getting both correct is % X % = %.

Notice, incidentally, that our assumption that the possibilities are equally likely is not
realistic. Surely the pasta maker’s price is not 06 dollars? Especially since you’d write it 6

2Summary of the clip: She plays Ten Chances for a pasta maker, a lawnmower, and a car. The digits in
the pasta maker are 069, and she guesses the correct price of 90 on her second chance. The digits in the
mower are 0689, and she guesses the correct price of 980 on her third chance. (Her third chance overall;
she took only once to win the mower.) The digits in the car are 01568, and she guesses the correct price of
16, 580 on her first try (and wins).

Barker then hides beyond the prop ... and, uh, (please note) the contestant violates his personal space.
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and not 067 (Indeed, if you have watched the show a lot, you know that when there is a
zero the price always ends with it. Knowing this fact is a big advantage.)

Now, she is going to use up at most six of her chances on the pasta maker, so she gets to
move on to the mower. Here the price contains three digits from {0, 6,8,9}. This problem
can be solved in the same way. The relevant sample space is

{068,069, 086, 089, 096, 098, 608, 609, 630, 639, 690, 698, 806, 809, 860, 869, 890, 896, 906, 908, 960, 968, 980, 986

which has 24 elements in it, so her probability of winning is i. The analogue of solution 2
: 1,11 _ 1
glVeSZX§X§—ﬂ.

Finally, the price of the car has the digits {0, 1,5, 6,8} and this time she uses all of them.
The sample space is too long to effectively write out. So we work out the analogue of Solution
2: Her odds of guessing the first digit are % If she does so, her odds of guessing the second
digit is Z—i (since she has used one up). If both these digits are correct, her odds of guessing
the third digit is % If these three are correct, her odds of guessing the fourth digit are %
Finally, if the first four guesses are correct then the last digit is automatically correct by

process of elimination. So the probability she wins is
1 1 1

1
X —X =X —=X1=—.
4 3 2 120

o] =

Here the number 120 is equal to 5!, or 5 factorial. In math, an exclamation point is read
‘factorial” and it means the product of all the numbers up to that point. We have

11 =1 =1
2l =1x2 =2
3l =1x2x3 =6
4 =1x2x3x4 =24
5l =1x2x3x4x5 =120
6! =1x2x3x4x5x6 = 720
TN =1x2x3x4x5x6x7 = 5040
8l =1 Xx2x3x4x5Xx6xT7Tx8 = 40320
9 =1x2x3x4x5x6xT7Tx8x%x9 = 362880
10 =1x2x3x4x5Xx6x%x7x8x9x10 = 3628800,

and so on. We also write 0! = 1. Why 1 and not zero? 0! means ‘don’t multiply anything’,
and we think of 1 as the starting point for multiplication. (It is the multiplicative identity,
satisfying 1 x z = x for all x.) So when we compute 0! it means we didn’t leave the starting
point.

These numbers occur very commonly in the sorts of questions we have been considering,
for reasons we will shortly see.
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Example 2.14 The lucky contestant wins the first two prizes in only three chances, and has
seven chances left over. If each possibility for the price of the car is equally likely, then what
is the probability that she wins it?

The answer is seven divided by N (), the number of elements in the sample space. So if we
could just compute N(S), we’'d be done.

Here there is a trick! She guesses 16580, and we know that the probability that this
is correct is ﬁ: one divided by the number of total possible guesses. But we already

computed the probability: it’s ﬁ. Therefore, we know that N(S) is 120, without actually
writing it all out!

The mathematical discipline of combinatorics is the art of counting without counting.
We just solved our first combinatorics problem: we figured out that there were 120 ways
to rearrange the numbers 0, 1,5, 6,8 without actually listing them. We now formalize this
principle.

Definition 2.15 Let T be a string. For example, 01568 and 22045 are strings of numbers,
ABC and xyz are strings of letters, and @ — ©& 2B, is a string of symbols. Order matters:
01568 is not the same string as 05186.

A permutation of T is any reordering of T

So, for example, if T is the string 1224, then 2124, 4122, 1224, and 2142 are all permuta-
tions of T'. Note we do consider T itself to be a permutation of T', for the same reason that
we consider 0 a number. It is called the trivial permutation.

We have the following:

Proposition 2.16 Let T be a string with n distinct symbols. Then there are exactly n!
distinct permutations of T

In math, a proposition (or a theorem) is a statement of something true. We have stated
lots of true facts in these notes; here the title ‘Proposition’ indicates that this one is partic-
ularly important and worth your attention.

Please read the statement carefully. In particular, the conclusion is only guaranteed to
hold when the hypotheses also hold. If the hypotheses don’t hold, then the conclusion may
or may not be true. For example, if T" is the string 122, then the set of all permutations of
it is

{122,212,221}
which has 3 elements, and 3 # 3! = 6.

Note also that this solves our earlier Ten Chances question. The contestant’s guesses
are all permutations of the string 01568, of which there are 5! = 120. The sample space S
consists of all 120 permutations. The contestant can make seven guesses, so let E be the set
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of these 7 permutations. Since we have assumed that each possible guess is equally likely to

be correct, her odds (probability) of winning are 5.

We will now offer a proof of the proposition. Please don’t be too scared by the word
‘proof’: it just means a convincing explanation of why it is true. This course will not focus
on writing proofs, but it is good to gain practice reading them.

Proof: Suppose T is a string with n distinct symbols, and we want to construct a permuta-
tion of T'. symbol We first choose the first symbol. Since T" has n distinct symbols, we have
n choices for the first symbol.

No matter what we choose for the first symbol, there are n — 1 choices for the second
symbol (all but the one we picked already), so that there are n x (n — 1) choices for the first
two.

Similarly, there are n — 2 choices for the third symbol, and so on. This continues until
the last (the nth) symbol, for which there is exactly one choice. O

In math we often end proofs with a little square. If you like, you can end proofs with
the phrase QED, which is an abbreviation for ‘quod erat demonstrandum’ — Latin for ‘that
which was to be shown’. In practice, saying or writing ‘QED’ serves the same purpose as a
football player spiking the ball after he has scored a touchdown.

If you are especially observant, you will notice that the proof is very similar to our
explanation of the multiplication rule for probability. There is a good reason for this: the
same principle underlies both, and counting and probability are two sides of the same coin.

We now return to our Ten Chances contestant. Recall that she has seven chances to win
the car.

Example 2.17 Suppose that the contestant has watched The Price Is Right a lot and so
knows that the last digit is the zero. Compute the probability that she wins the car, given
seven chances.

Solution. Here her possible guesses consist of permutations of the string 1568, followed
by a zero. There are 4! = 24 of them, so her winning probability is %.

Her winning probability went up by a factor of exactly 5 — corresponding to the fact
that % of the permutations of 01568 have the zero in the last digit. Equivalently, a random
permutation of 01568 has probability % of having the zero ias the last digit.

Now, a smart contestant can do better. Suppose, for example, that she guessed 85610.
Mathematically it looks like a good guess .... but she is playing for a Chevy Cavalier. I
mean, really. We can rule out the 8 as the first digit, as well as the 6 and the 5.

Example 2.18 Suppose that the contestant knows that the the last digit is the zero and the
first digit is the one. Compute the probability that she wins the car, given seven chances.
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Solution. Her guesses now consist of permutations of the string 568, with a 1 in front
and followed by a zero. There are 3! = 6 of them. Assuming that the assumptions are correct
and that she doesn’t screw up, she is a sure bet to win the car.

Mathematically, her probability of winning is 1 (which is the same as 100%). Please don’t
answer that her probability is %. This doesn’t make much sense!

Note that it is only true of Ten Chances that car prices always end in zero — not of The
Price Is Right in general. Here is a contestant who is very excited until she realizes the odds
she is against:

https://www.youtube.com/watch?v=AAIU6knD7BA

2.4 Exercises

Most of these should be relatively straightforward, but there are a couple of quite difficult
exercises mixed in here for good measure.

1. Card questions. In each question, you choose at random a card from an ordinary deck.
What is the probability you —

(a) Draw a spade?
(b

)

) Draw an ace?

(c) Draw a face card? (a jack, queen, king, or an ace)
)

(d) Draw a spade or a card below five?
2. Dice questions:

(a) You roll two dice and sum the total. What is the probability you roll exactly a
five? At least a ten?

Solution. The sample space consists of 36 possibilities, 11 through 66. The first
event can be described as {14,23,32,41} and has probability % = %. The second

can be described as {46, 55, 64,56, 65,66} and has probability 3% = %.

(b) You roll three dice and sum the total. What is the probability you roll at least a
147 (This question is kind of annoying if you do it by brute force. Can you be
systematic?)

Solution. There are several useful shortcuts. Here is a different way than pre-
sented in lecture. The sample space consists of 6 x 6 x 6 = 216 elements, 111
through 666. The event of rolling at least a 14 can be described as

{266(3), 356(6), 366(3), 446(3), 455(3), 456(6), 466(3), 555(1), 556(3), 566(3), 666(1)}.

The number in parentheses counts the number of permutations of that dice roll,
all of which count. For example, 266, 626, and 662 are the permutations of 266.
There are 35 possibilities total, so the probability is 23—156.
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The dice game of craps is (in its most basic form) played as follows.

You roll two dice. If you roll a 7 or 11 on your first roll, you win immediately,
and if you roll a 2, 3, or 12 immediately, you lose immediately. Otherwise, your
total is called “the point” and you continue to roll again until you roll either the
point (again) or a seven. If you roll the point, you win; if you roll a seven, you
lose.

In a game of craps, compute the probability that you win on your first roll and
the probability that you lose on your second roll.

Solution. The probability of winning on your first roll is the probability of rolling
a7orll: ?’%—I—%:%:%.

For the second question, I intended to ask the probability that you lose on your
first roll. Oops. Let’s answer the question as asked. There are multiple possible
interpretations, and here is one. Let us compute the probability that you lose on
the second round, presuming that the game goes on to a second round. This is

the probability of rolling a 6 or é.

In a game of craps, compute the probability that the game goes to a second round
and you win on the second round.

Solution. This can happen in one of six possible ways: you roll a 4 twice in a

row, a b twice in a row, or similarly with a 6, 8, 9, or 10.

3
367

is (33—6)2. Similarly with the other dice rolls; the total probability is

3 2 4 2 5 2 5 2 4 2 3 2
1 = — = = — 2 ) =
0 (a) +(a) () + () + () + (a0)
9+164+25+25+164+9 100 25
1296 1206 324

The probability of rolling a 4 is so the probability of rolling a 4 twice in a row

In a game of craps, compute the probability that the game goes to a second round
and you lose on the second round.

Solution. Multiply the probability that the game goes onto a second round
(easily checked to be %) by the probability % computed earlier, so é.

In a game of craps, compute the probability that you win.

Solution. With probability % you win on your first round. We will now compute
the probability that you win later, with the point equal to n, for n equal to 4, 5,
6, 8, 9, or 10. We will then add these six results. Write the probability of rolling

n on one roll of two dice as 55, so that a is 3, 4, or 5 depending on n.

e As we computed before, the probability of winning on the second round (with
point n) is (%)2.
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e On each round after the first, there is a probability 2522 of rolling something

other than 7 or the point. This is the probability that the game goes on to
another round.

e So, the probability of winning on the third round is the probability of: rolling
the point on the first round, going another turn in the second round, rolling

the point on the third round. This is (3%)2 . (3?,’5“) )

e Similarly, the probability of winning with point n on the fourth round is
( < )2 . (30’“)2, and so on. The total of all these probabilities is

36 36
<a>2i 30 —a\"”
36 — 36

e For |r| < 1, we have the infinite sum formula Y 7 jr* = . Plugging this
in, the above expression is

2

(%)2 ' G?fa B 36(g+ a)

So we add this up for a = 3 (twice, for n = 4 or 5), a = 4 (twice), and a = 5

(twice). We get
) 9 N 16 N 25 134
36-9 36-10 36-11/) 495

Adding the to the first round probability of g we get
2 134 244

9 195 195
This is a little less than a half. As expected, the house wins.

3. Consider the game Press Your Luck described above. Assume (despite rather convinc-
ing evidence to the contrary) that the show is random, and that you are equally likely
to stop on any square on the board.

(a) On each spin, estimate the probability that you hit a Whammy. Justify your
answer.

(Note: This is mostly not a math question. You have to watch the video clip for
awhile to answer it.)

(b) On each spin, estimate the probability that you do not hit a Whammy.

(c) If you spin three times in a row, what is the probability you don’t hit a whammy?
Five? Ten? Twenty-eight? (If your answer is a power of a fraction, please also
use a calculator or a computer to give a decimal approximation.)

4. Consider the game Rat Race described above.
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(a) Suppose that the contestant only prices one item correctly, and so gets to pick
one rat. What is the probability that she wins the car? That she wins something?
That she wins nothing?

(b) What if the customer prices all three items correctly? What is the probability
that she wins the car? Something? Nothing? All three items?

(¢) Consider now the first part of the game, where the contestant is pricing each item.
Assume that she has a 50-50 chance of pricing each item correctly. What is the
probability she prices no items correctly? Exactly one? Exactly two? All three?

Comment on whether you think this assumption is realistic.
Solution. Foobar.

(d) Suppose now that she has a 50-50 chance of pricing each item correctly, and she
plays the game to the end. What is the probability she wins the car?

3 Expectation

3.1 Definitions and examples

We come now to the concept of expected value. We will give a few simple examples and
then give a formal definition.

Example 3.1 You play a simple dice game. You roll one die; if it comes up a siz, you win
10 dollars; otherwise you win nothing. On average, how much do you expect to win?

Solution. Ten dollars times the probability of winning, i.e.,
1
10x ==1.66...
6

So, for example, if you play this game a hundred times, on average you can expect to win
100 dollars.
Example 3.2 You play a variant of the dice game above. You roll one die; if it comes up a

siz, you still win 10 dollars. But this time, if it doesn’t come up a siz, you lose two dollars.
On average, how much do you expect to win?

Solution. We take into account both possibilities. We multiply the events that you win
10 dollars or lose 2 dollars and multiply them by their probabilities. The answer is

1 5
10 % =+ (—2) x 2 = 0.
x5 =2 x5

On average you expect to break even.
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Definition 3.3 Consider a random process whose outcome can be described as a real number.
Suppose that the possible outcomes are ay,as, . . .a,, which occur with respective probabilities
P1,P2,---,Pn- Then the expected value of this process is

> arpr = aip + aspy + -+ + appr.
k=1

If the outcomes represent the amount of money you win (positive) or lose (negative),
then the expected value is the amount you should expect to win on average.

Example 3.4 You roll a die and win a dollar amount equal to your die roll. Compute the
expected value of this game.

Solution. The possible outcomes are that you win 1, 2, 3, 4, 5, or 6 dollars, and each
happens with probability %. Therefore the expected value is

1><1+2><1+3><1+4><1+5><1+6><1—21—35
6 6 6 6 6 6 6

As another example, consider the Deal or No Deal clip from the introduction.
https://www.youtube.com/watch?v=I3BzYiCSTo8

This is quite simple to analyze, and indeed we did so in the introduction.

For example, after the second round, he has eliminated 11 briefcases and 15 remain,
which contain a total of $2,808,416, or an average of $187,227. If he keeps playing all the
way until the end, the expected value is equal to the average of the remaining briefcases.
The bank offers him a flat payment of $125,000 to quit. If he wants to maximize his expected
value, he should refuse this, and indeed he does.

We now consider some expected value computations arising from the popular game show
Wheel of Fortune.

Game Description (Wheel of Fortune, Simplified Version):  The contestants play
several rounds where they try to solve word puzzles and win money. (The contestant who
has won the most money then gets to play in a bonus round.)

The puzzle consists of a phrase whose letters are all hidden. In turn, each contestant
either attempts to solve the puzzle or spins the wheel. If the contestant attempts to
solve, he states a guess; if is correct, he wins all the money in his bank, and if it is wrong,
play passes to the next player.

The wheel contains lots of spaces with various dollar amounts or the word ‘bankrupt’.
When the contest spins, the wheel comes to rest on one of these spaces. If ‘bankrupt’,
the contestant loses all his money from this round and play passes to the next contestant.
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Otherwise, the contestant chooses a letter. If that letter appears in the puzzle (and has not
yet been guessed), then each of these letters is revealed and the contestant wins the amount
of money on his space for each time it appears. If the letter does not appear, the contestant
wins nothing and play passes to the next contestant.

These rules are incomplete: the contestants can ‘buy a vowel’; there are non-monetary
prizes on the board which work differently (you don’t win more than one of them if a letter
appears multiple times), other spaces like ‘lose a turn’, and so forth.

Consider the episode of Wheel of Fortune shown in this clip:
https://www.youtube.com/watch?v=A8bZUXi7zDE

Robert wins the first round in short order. After guessing only two letters (and buying a
vowel) he chooses to solve the puzzle. Was his decision wise?

Let us make some assumptions to simplify the problem and set up an expected value
computation:

e Robert wants to maximize the expected value of his winnings this round.

This is not completely accurate, especially in the final round; the contestants are
interested in winning more than the other two contestants, because the biggest winner
gets to play the bonus round. But it is reasonably close to accurate, especially early
in the running.

e Robert definitely knows the solution to the puzzle.

So, if he chooses to spin again, it’s to rack up the amount of prizes and money he wins.

e If Robert loses his turn, then he won’t get another chance and will therefore lose
everything.

In fact, there is a chance that each of the other two contestants will guess wrongly or
hit the ‘bankrupt’ or ‘lose a turn’ spots on the wheel. But this puzzle doesn’t look
hard: the first word don’t is fairly obvious; also, the second word looks like bet, get,
or let and B, G, and L are all in the puzzle. Robert is wise to assume he won’t get
another chance.

e We won’t worry too much about the ‘weird’ spots on the board.

The %—sized million dollar wedge is not what it looks like: it sits over (what I believe
is) a $500 wedge now, and offers the contestant the opportunity to win $1,000,000 in
the bonus round if he goes to the bonus round and doesn’t hit bankrupt before then
and solves the bonus puzzle correctly and chooses the million dollars randomly as one
of five prizes. It’s a long shot, although three contestants have indeed won the million.

So we freeze-frame the show and we count what we see. Out of 24 wedges on the wheel,
there are:
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e 16 ordinary money wedges on the wheel, with dollar amounts totalling $12,200.

Two ‘bankrupt’ wedges, a ‘lose a turn’ wedge, and an additional two thirds of a
bankrupt wedge surrounding the million.

A one-third size wedge reading ‘one million’.

The cruise wedge. This isn’t relevant to the contestant’s decision, because he wins the
cruise and reveals an ordinary wedge underneath. We can’t see what it is, so let’s say

$500.
e Two other positive wedges.

Let us now compute the expected value of another spin at the wheel. There are (with the
cruise wedge) 17 ordinary wedges worth a total of $12,700. If the contestant hits ‘bankrupt’
or ‘lose a turn’ he loses his winnings so far ($10,959 including the cruise). Let us guess that
the million wedge is worth, on average, $5,000 to the contestant and that the other two are
worth $2.000 each. His expected value from another spin is

9 1

2
21 - 12700 + 7R (—10959) + o1 2000 + = 24 5000 = —$452.39.

win

It is clear by a large margin to solve the puzzle and lock in his winnings.

Remark 3.5 You may be wondering where the 12700 came from. Here is one way to see
it: the seventeen wedges have an average of === 12700 dollars each, and there is a =% probabzlzty
of hitting one of them. So the contribution is

12700 17 12700

17 24 24

Now let us suppose that there was some consonant appearing in the puzzle twice. In that
case Robert would know that he could guess it and get double the amount of money he spun.
So, in our above computation, we double the 12700. (We should probably increae the 2000
and 5000 a little bit, but not double them. For simplicity’s sake we’ll leave them alone.) In
this case the expected value of spinning again is
22 2 1
<12 24+ —=-(-1 -2 = =—
700 - 2 + 24 - (—10959) + 21 000 + 24 - 5000 = —$76.77,

so slightly positive. If Robert has the stomach to risk his winnings so far, he should consider
spinning again.

For an example where Robert arguably chooses unwisely, skip ahead to 10:45 on the
video (the third puzzle) where he solves the puzzle with only $1,050 in the bank. In the
exercises, you are asked to compute the expected value of another spin. Note that there are
now two L’s and two R’s, so he can earn double the dollar value of whatever he lands on.
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There is now a $10,000 square on the wheel, and hitting ‘bankrupt’ only risks his $1,050.
(His winnings from the first round are safe.)

There is one factor in favor of solving now: an extra prize (a trip to Bermuda) for the
winner of the round. If it were me, I would definitely risk it. You do the math, and decide
if you agree.

(But see the fourth run, where I would guess he knows the puzzle and is running up the
score. )

The game Punch a Bunch from The Price Is Right has a similar (but much simpler)
mechanic:

Game Description (Punch-a-Bunch (The Price Is Right)): The contestant is shown
a punching board which contains 50 slots with the following dollar amounts: 100 (5), 250
(10), 500 (10), 1000 (10), 2500 (8), 5000 (4), 10,000 (2), 25,000 (1). The contestant can earn
up to four punches by pricing small items correclty. For each punch, the contestant punches
out one hole in the board.

The host proceeds through the holes punched one at a time. The host shows the contes-
tant the amount of money he has won, and he has the option of either taking it and ending
the game, or discarding and going on to the next hole.

So, if you just get one punch, there is no strategy: you just take whatever you get. In
this case the expected value is the total of all the prizes divided by 50, or 1%23% = 2060.

Here is a typical playing of Punch-a-Bunch:

https://www.youtube.com/watch?v=25THBiZNPpo

The contestant gets three punches, throws away 500 on his first punch, 1000 on his
second, and gets 10,000 on his third. Was he right to throw away the 10007

Clearly yes, as the expected value of one punch is 2,060. Indeed, in this example it is a
little bit higher: there is $101,500 in prizes left in 48 holes, for an average of $2,114.58. You
don’t have to do the math exactly: just remember that two of the small prizes are gone, so
the average of the remaining ones goes up slightly.

So let’s figure out optimal strategy for this game. The last two rounds are easy.

e On your last round, there is no strategy: you take whatever you get.

e On your next-to-last round, throw away anything less than $2500. You should keep the
$2500 prize if you're trying to maximize your expected value. It’s pretty close though;
I wouldn’t fault anyone who tried for the big prize. (If nothing else, it would make
better TV.)

e What about your third-to-last round?
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We are going to compute the expected value of the next-to-last round. We’ll assume that this
is also the contestant’s first round; otherwise, the contestant will have thrown away one or
two small prizes and the expected value will be slightly higher. (This is another example of
where we simplify our problem by making such an assumption. In this case, the assumption
is very nearly accurate.)

e The contestant might win $25,000 (35 chance), $10,000 (2 chance), $5,000 (z chance),
or $2,500 (E% chance). As we discussed earlier, the contestant should keep it and end
the game.

e The contestant might draw a card less than $2,500 (£2 chance). As we discussed earlier,
the contestant should throw it away. In this case, the contestant expects to win $2,060
(in fact, slightly more, as previously discussed) on average from the last punch.

So the expected value of the next-to-last round is

1 2 4 8 35
2 c— 41 C— - — 42500 - — 4 2060 - — = $3, 142.
5000 50 + 10000 0 + 5000 50 -+ 2500 = + 2060 20 $3,
So we see that on the contestant’s third-to-last round, he should throw away the $2,500 cards
in addition to everything cheaper, and only settle for $5,000 or more. The expected value of
the third-to-last round is

1 2 4 43
2 c—+1 - — - — 142 - — = $4,002.12.
2000 50—|— 0000 50—1—5000 50+3 50 $4,00

Therefore, if the contestant gets four punches, his strategy on the first round should be the
same: to keep anything $5,000 or more, and throw everything else away. The expected value
of a four-round game is

1 2 4 43
2 —+1 C— - — +4002 - — = $4,741.72.
2000 50 -+ 10000 50 + 5000 50 -+ 400 50 $4,741.7

A contestant can win only up to four punches. But we see that if the contestant got more,
he would eventually throw away the $5,000 cards too.

Who Wants To Be a Millionaire?
Here is a typical clip from Who Wants To Be a Millionaire:

https://www.youtube.com/watch?v=sTGx0qp3qB8

The rules in force for this episode were as follows.

Game Description (Who Wants to be a Millionaire?): The contestant is provided
with a sequence of 15 trivia questions, each of which is multiple choice with four possible
answers. They are worth an increasing amount of money: 100, 200, 300, 500, and then (in
thousands) 1, 2, 4, 6, 16, 32, 64, 125, 250, 500, 1000. (In fact, in this epsiode, the million
dollar question was worth $2,060,000.)
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At each stage he is asked a trivia question for the next higher dollar amount. He can
choose to answer, or to not answer and to keep his winnings so far. If he answers correctly,
he goes to the next level. If he answers incorrectly, the game is over. At the $1,000 and
$32,000 level his winnings are protected: he is guaranteed of winning at least that much
money. Beyond that, he forfeits any winnings if he ventures an incorrect answer.

He has three ‘lifelines’, each of which may be used exactly once over the course of the
game: ‘50-50°, which eliminates two of the possible answers; ‘phone a friend’; allowing him
to call a friend for help; and ‘ask the audience’, allowing him to poll the audience for their
opinion.

In general we want to ask the following question:

Question. The contestant is at level z, and (after using any applicable lifelines) estimates
that he has a probability § of answering correctly. Should he guess or not?

Let us assume that x > 32000 (that’s the interesting part of the show). Note that if
x = 32000, he should always guess since he is risking nothing.

Suppose then that x = 64000, and for now we’ll consider only the next question. We
will work with ¢ as a variable, and so our answer will be of the form ‘He should guess if he
believes his probability of answering correctly is greater than [something].” His winnings will
be 32000 if he is incorrect and 125000 if he is right; and these events have probability 1 — ¢
and ¢ respectively. Therefore, the expected value of guessing is

(1 —=9)-32000 + § - 125000 = 32000 + & - 93000.

When is this greater than 640007 We solve the inequality 32000 + 930006 > 64000, which
is equivalent to 930006 > 32000, or § > 32 = 32 This is a little bit bigger than %. So,
random guessing would hurt the contestant, but if (for example) he can eliminate two of the

answers, it makes sense for him to guess.

At the level x = 125000, our computations are similar. This time we have to solve the
inequality
32000 + 6 - (250000 — 32000) > 125000,

which is equivalent to § > %. This is bigger, which makes sense: proportionally he is risking

more — he would go down two levels, rather than just one.

Of course, working with only one question at a time is a little bit misleading. For
example, consider the $125,000 question. Even after phoning a friend (and using the last of
his lifelines), he has no idea. If he will only go one more question, it is clearly correct to
walk, but what if the $250,000 question is something he definitely knows?

Let us go one step further in our analysis (and you can see how to do still better). Suppose
that the contestant estimates that there is a 40% chance that the $250,000 question is one
he will know the answer to. If he does, he will guess it correctly, quit the next turn, and
walk away with $500,000. If he doesn’t, he won’t venture a guess and will walk away with

$500,000.
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In this case, reaching the $250,000 level is worth
0.4 x 500000 4 0.6 x 250000 = 350000.

So the contestant is risking $93,000 to win another $225,000. The expected value of guessing
is
(1 —9)-32000+ ¢ - 350000 = 32000 + ¢ - 318000,

and our inequality is
32000 + 3180004 > 125000,

which is equivalent to o > %. In this case it still doesn’t make sense for him to randomly

guess, but if his guess is even slightly better than random it does. (Moreover, if the contestant
estimates that there is a small chance that he would know the answer to the $500,000
question, this would mean that even a random guess was called for.)

3.2 Linearity of expectation

Example 3.6 You roll two dice and win a dollar amount equal to the sum of your die rolls.
Compute the expected value of this game.

Solution. (Hard Solution). The possible outcomes and the probabilities of each are
listed in the table below.

=]

The expected value is therefore

1 2 3 4 5 6 5 4 3 2 1
2X —+3X —4+4X —4+5X —4+06X —+TX —+8X —4+9Ix —+ 10X —+11 X —+12x —

367736 36 36 36 36 36 36 36 36 36
246412420430 442440436430 422412 252
B 36 T 36

or exactly 7 dollars.

You should always be suspicious when you do a messy computation and get a simple
result.

Solution. (Easy Solution). If you roll one die and get the dollar amount showing, we
already computed that the expected value of this game is 3.5.

The game discussed now is equivalent to playing this game twice. So the expected value
is3.5x2=".

Similarly, the expected value of throwing a thousand dice and winning a dollar amount
equal to the number of pips showing is (exactly) $3,500.
Here is another problem that illustrates the same principle.
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Example 3.7 Consider once again the game of Rat Race. Suppose that our contestant gets
to pick two out of five rats, that first place wins a car (worth $16,000), that second place
wins meal service (worth $2,000) and that third place wins a guitar (worth $500).

The hard solution would be to compute the probability of every possible outcome: the
contestant wins the car and the meals, the car and the guitar, the guitar and the meals, the
car only, the meals only, the guitar only, and nothing. What a mess!!! Instead, we’ll give an
easier solution.

Solution. Consider only the first of the contestant’s rats. Since this rat will win each
of the three prizes for the contestant with probability %, the expected value of this rat’s
winnings is

1 1 1
16000 x H -+ 2000 x H -+ 500 x E = 3700.

The second rat is subject to the same rules, so the expected value of its winnings is also
$3700. Therefore, the total expected value is $3, 700 + $3, 700 = $7, 400.

Indeed, the expected value of the game is $3,700 per rat won, so this computation gives
the answer no matter how many rats she wins.

There is a subtlety going on in this example, which is noteworthy because we didn’t
worry about it. Suppose, for example, that the first rat fails to even move from the starting
line. It is a colossal zonk for the contestant, who must pin all of her hopes on her one
remaining rat. Does this mean that her expected value plummets to $3,7007 No! It now
has a one in four chance of winning each of the three remaining prizes, so its expected value
is now

1 1 1
16000 x 1 + 2000 x 1 + 500 x 1= 4625.

Conversely, suppose that this rat races out from the starting block like Usain Bolt, and wins
the car! Then the expected value of the remaining rat goes down. (It has to: the car is off
the table, and the most it can win is $2,000.) Its expected value is a measly

1 1
2000 x 1 + 500 x 1= 625.
This looks terribly complicated, because the outcomes of the two rats are not inde-
pendent. If the first rat does poorly, the second rat is more likely to do well, and vice
versa.

The principle of linearity of expectation says that our previous computation is cor-
rect, even though the outcomes are not independent. If the first rat wins the car,
the second rat’s expected value goes down; if the first rat loses or wins a small prize, the
second rat’s expected value goes up; and these possibilities average out.

Principle of Linearity of Expectation. Suppose that we have a random process
which can be broken up into two or more separate processes. Then, the total expected value
is equal to the sum of the expected values of the smaller processes.
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This is true whether or not the smaller processes are independent of each other.

Often, games can be broken up in multiple ways. In the exercises you will redo the Rat
Race computation a different way: you will consider the expected value of winning just the
car, just the meals, and just the guitar — and you will verify that you again get the same
answer.

We can now compute the expected value of Rat Race as a whole! Recall that Rat Race
begins with the contestant attempting to price three small items correctly, and winning one
rat for each item that she gets right.

Example 3.8 Assume for each small item, the contestant has a 50-50 chance of pricing it
correctly. Compute the expected value of playing of Rat Race.

Solution. Recall from your homework exercises that the probability of winning zero,

one, two, or three rats is %, g, g, and %. Since the expected value of Rat Race is $3.700
per rat won, the expected value of the race is respectively $0, $3,700, $7,400, and $11,100.

Therefore the expected value of Rat Race is

1 3 3 3
0 x =+ 3700 x = + 7400 x — 4 11000 x = = 5550.
8 8 8 8
This solution is perfectly correct, but it misses a shortcut. We can use linearity of
expectation again!

Solution. Each attempt to win a small item has probability % of winning a rat, which
contributes $3,700 to the expected value. Therefore the expected value of each attempt is
3700 x % = 1850. By linearity of expectation, the expected value of three attempts is

1850 + 1850 + 1850 = 5550.

3.3 A further expected value example

The St. Petersburg Paradox. You play a game as follows. You start with $2, and you
play the following game. You flip a coin. If it comes up tails, then you win the $2. If it
comes up heads, then your stake is doubled and you get to flip again. You keep flipping the
coin, and doubling the stake for every flip of heads, until eventually you flip tails and the
game ends.

How much should you be willing to pay to play this game?

To say the same thing another way, your winnings depend on the number of consecutive
heads you flip. If none, you win $2; if one, you win $4; if two, you win $8, and so on. More
generally, if you flip k consecutive heads before flipping tails, you win 2! dollars. Unlike
most game shows, you never risk anything and so you will certainly continue flipping until
you flip tails.

We first compute the probability of every possible outcome:
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e With probability £, you flip tails on the first flip and win $2.

e With probability iv you flip heads on the first flip and tails on the second flip: the
probability for each is % and you multiply them. If this happens, you win $4.

e With probability %, you flip heads on the first two flips and tails on the third flip: the

3
probability for each is % so the probability is (%) . If this happens, you win $8.

e Now, we’ll handle all the remaining cases at once. Let k be the number of consecutive

k+1
heads you flip before flipping a tail. Then, the probability of this outcome is <%) :

we’'ve made k + 1 flips and specified the result for each of them.

Your winnings will be 2! dollars: you start with $2, and you double your winnings
for each of the heads you flipped.

We now compute the expected value of this game. This time there are infinitely many possible
outcomes, but we do the computation in the same way. We multiply the probabilities by the
expected winnings above, and add:

1 1 1 1
2.2 4.= - 16- — +...=%1 1 1 14... =
$ 2+$ 4+$8 8+$616+ $1 4+ %1+ %1+ %1+ 00

The expected value of the game is infinite, and you should be willing to pay an infinite amount
of money to play it. This does not seem to make sense.

By contrast, consider the following version of the game. It has the same rules, only the
game has a maximum of 100 flips. If you flip 100 heads, then you don’t get to keep playing,
and you're forced to settle for 219! dollars, that is, $2,535,301,200,456,458,802,993,406,410,752.

The expected value of this game is a mere

1o 1 .1 1 1 1
2~ 454438 —+8$16-——4- - -+$210 4 $2100. _—_ — $14+$14+514+$1+- - -+$14+$2 = $102.
825484 4884816 o 82T 4827 oy = $14 814814814 +81482 = §

Now think about it. If you won the maximum prize, and it was offered to you in $100 bills,
it would weigh?| 2.5 x 10% kilograms, in comparison to the weight of the earth which is only
6 x 10%* kilograms. If you stacked them, you could reach any object which has been observed
anywhere in the universe.

Conversely, suppose that it were offered to you in $100,000,000,000,000 (100 trillion)
dollar bill§"] This is much more realistic to imagine; it’s roughly equivalent to the Himalayan
mountain range being made of such banknotes, all of which belong to you. If you went out
to lunch, you’d probably leave a generous tip. You’d have to, because it’s not like they can
make change for you.

In summary: This is obviously ridiculous. You can read more on the Wikipedia
article, but the point is that the real-life meaning of expected values can be distorted by
extremely large, and extremely improbable, events.

3more precisely: have a mass of

4Such banknotes were actually printed in Zimbabwe. See, for example, https://en.wikipedia.org/
wiki/Zimbabwean_dollarl
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3.4 Exercises

1. Watch the Deal or No Deal clip from the introduction. Fast forward through all the
talk and choosing briefcases if you like, but pay attention to each time the bank offers
him a buyout to quit. Compute, in each case, the expected value of playing the game
out until the end. Does the bank ever offer a payout larger than the expected value?

What would you decide at each stage? Explain.

2. Consider again a game of Rat Race with two rats, played for prizes worth $16,000
(car), $2,000 (meals), and $500 (guitar).

(a) Compute the expected value of the game, considering only the car and ignoring
the other prizes. (This should be easy: she has a 2 in 5 chance of winning the
car.)

Solution. She has a % chance of winning the car, so the answer is % x 16000 =
6400.

(b) Compute the expected value of the game, considering only the meals.
Solution. As above, the answer is % x 2000 = 800.

(c) Compute the expected value of the game, considering only the guitar.
Solution. As above, the answer is % x 500 = 200.
(d) By linearity of expectation, the expected value of the game is equal to the sum

of the three expected values you just computed. Verify that this sum is equal to
$7,400, as we computed before.

Solution. 6400 + 800 + 200 = 7400.

The next questions concern the Price is Right game Let ’em Roll. Here is a clip:

https://www.youtube.com/watch?v=gbqF-W9cSpo

Game Description (Let ’em Roll (Price Is Right)):

The contestant has five dice to roll. Each die has $500 on one side, $1,000 on another,
$1,500 on a third, and a car symbol on the other three. The contestant rolls all five
dice. If a car symbol is showing on each of them, she wins the car. Otherwise, she wins
the total amount of money showing. (Car symbols count nothing, unless she wins the
car.)

By default, the contestant gets one roll, and may earn up to two more by correctly
pricing small grocery items. After each roll, if she gets another roll, she may either
keep all the money showing, or set the dice showing ‘car’ aside and reroll only the rest.
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3. First, consider a game of Let ’em Roll where the contestant only gets one dice roll.

(a) Compute the probability that she wins the car.

(b) Compute the expected value of the game, considering the car and ignoring the
money. (The announcer says that the car is worth $16,570.)

(¢) Compute the expected value of the game, considering the money and ignoring the
car.

(d) Compute the total expected value of the game.

Solution. The probability that she wins the car is (%)5 = 3—12: there are five dice, and
each must show a car.

Considering only the car, the expected value of the game is 3—12 x 16570 ~ $518.

Considering only the money, each die contributes an expected value of

1 1 1
= - x1 — x 1500 = 500.
6X500+6X 000+6>< 500 = 500
Since there are five dice, the total is $2500, and the total (including both car and dice)
is $3018.

4. (a) Now watch the contestant’s playing of the game, where after the second round
she chooses to give up $2,500 and reroll. Compute the expected value of doing
so. Do you agree with her decision?

(b) Suppose that after two turns she had rolled no car symbols, and $1,500 was
showing on each of the five dice. Compute the expected value of rerolling, and
explain why she should not reroll.

(c) Construct a hypothetical situation where the expected value of rerolling is within
$500 of not rerolling, so that the decision to reroll is nearly a tossup.

Solution. After her second round, she has three cars (which she would keep if she
rerolls) and $2,500. If she rerolls, she has a one in four probability of winning the car,
so her expected value from the car is i X 16570 ~ 4142. She also obtains an additional
expected value of $1000 from the money, for a total of $5142. As this is much larger
than $2,500, rerolling is a good idea if she can stomach some risk.

In the second scenario, the expected value is the same as the one-turn version (because
she will reroll everything): $3,018. Since this is much less than $7,500, it is a good
idea to keep the money.

Here is an intermediate scenario. Suppose two cars are showing and she rerolls the
other three dice. Then the expected value of the game is

1
3 x 16570 + 3 x 500 ~ 3571.
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So if the three money dice are showing a total of $3,500, it is essentially a tossup
decision whether or not to reroll.

As another correct solution, suppose only one car is showing and she rerolls the other
four.

1
16 x 16570 + 4 x 500 ~ 3035.

If the four money dice are showing $3000 total, once again it is approximately a tossup.

Yet another correct solution has no cars showing and low amounts of money on the
dice: a total of either $2500 or $3000.

5. If the contestant prices the small grocery items correctly and plays optimally, compute
the expected value of a game of Let ’em Roll.

(Warning: if your solution is simple, then it’s wrong.)

4 Counting

We now consider a variety of clever counting methods, which will be useful in sophisticated
probability computations.

4.1 The Multiplication Rule

Just as there was a multiplication rule for probability, there is a multiplication rule for
counting as well. It is as follows.E]

The multiplication rule for counting. Suppose that an operation consists of k& steps,
and:

e The first step can be performed in n; ways;

e The second step can be performed in ny, ways (regardless of how the first step was
performed);

e and so on. Finally the kth step can be performed in n; ways (regardless of how the
preceding steps were performed).

Then the entire operation can be performed in nins...n; ways.

Example 4.1 In South Carolina, a license tag can consist of any three letters followed by
any three numbers. (Example: TPQ-909) How many different license tags are possible?

5We adopt the wording of Epp, Discrete Mathematics with Applications, 4th ed., p. 527.
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Solution. There are 26 possibilities for the first letter, 26 for the second, and 26 for the
third. Similarly there are 10 possibilities for each number. So the total number of possibilities
is 262 - 103 = 17576000.

Note that big states with more people than South Carolina have started using different
license plate schemes, because they ran out of possible tags.

Example 4.2 How many license tags are possible which don’t repeat any letters or numbers?

Solution. There are still 26 possibilities for the first letter, and now 25 for the second and
24 for the third: we must avoid the letters that were previously used. Similarly there are 10,
9, and 8 possibilities for the three numbers. The total number of possibilities is

26-25-24-10-9 -8 = 11232000.
These computations may be used to solve probability questions. For example:

Example 4.3 What is the probability that a random license tag doesn’t repeat any letters or
numbers?

This follows from the previous two computations. The result is

11232000

Example 4.4 On a game of Ten Chances, Drew Carey feels particularly sadistic and puts
all ten digits — zero through nine — to choose from in the price of the car. The price of the
car consists of five different digits. How many possibilities are there?

Solution. There are 10 possibilities for the first digit, 9 for the second, 8 for the third, 7
for the fourth, and 6 for the fifth, for a total of

10-9-8-7-6 = 30240
possibilities. Good luck to the poor sucker playing this game.

Example 4.5 As above, but suppose you know that the first digit is not zero. Now how
many possibilities are there?

Solution. This time there are only 9 possibilities for the first digit. There are still 9
possibilities for the second, no matter what the first digit was, and 8, 7, 6 for the last three
in turn. The total is

9-9.-8-7-6=27216.

Example 4.6 As above, but suppose you know that the first digit is not zero and that the
last digit is zero. Now how many possibilities are there?
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Solution. There are 9 possibilties for the first digit, 9 for the second, 8 for the third, 7 for
the fourth, and ... either 0 or 1 for the last depending on whether we’ve used the
zero. No good! We can’t use the multiplication rule this way!

To use the multiplication rule, we pick the numbers in a different order: the first digit
first (anything other than the zero, 9 ways), then the last digit (must be the zero, so 1 way),
and then the second, third, and fourth digits in turn (8, 7, and 6 ways), for a total of

9-8-7-6=3024

ways.

Alternatively, we could have picked the last digit before the first, and we can pick the
second, third, and fourth digits in any order. It is usually best to find one order which works
and stick to it.

4.2 Permutations and combinations

Recall that a permutation of a string with n symbols is any reordering of the string. If
the symbols are all distinct, then there are n! possible permutations of it. We justified this
earlier, and it is an example of the multiplication rule: there are n ways to choose the first
symbol, n — 1 to choose the second, n — 2 to choose the third, and so on.

Implicitly, we also discussed what are called r-permutations. If » < n, then an r-
permutation of a string of length n is a reordering of r of the n symbols. For example,
16820, 98561, and 37682 are 5-permutations of the string 1234567890. We discussed these
in our Ten Chances examples above, and there are 30240.

Notation. Write P(n,r) for the number of r-permutations of a string with n distinct
symbols.
We have the following formula:

n!
Pn,r)=——
() = s
Why is this true? It comes from the multiplication rule. There are n possibilities for
the first symbol, n — 1 possibilities for the second, and so on: one less for each subsequent
symbol. There are n — r + 1 possibilities for the rth symbol: we start at n and count down
by 1 r — 1 times. So we see that

Pn,r)y=n-(n—1)-(n—=2)-(n—3)---(n—r+1).

Why is this equal to (n+'r)'? Our expression is the same as n!, except that the numbers from
n —r down to 1 are all absent. So we’ve left out a product equalling (n — r)! from the

definition of n!, and so it equals (n"T'T),

Example 4.7 Compute P(n,r) for all possible n and r with r < n < 6 and notice any
patterns.

42



Solution. (To be written up here)
Combinations. Combinations are like permutations, only the order doesn’t matter.

If we start with a string (or a set) with n distinct elements, then an r-combination is
a string or r of these elements where order doesn’t matter, or equivalently a subset of r of
these elements.

Example 4.8 Write out all the 3-combinations of 12345.

Solution. They are: 123, 124, 125, 134, 135, 145, 234, 235, 245, and 345. There are ten of
them.

Here, we could have equivalently written 321, 213, or {1, 2,3} (for example) in place of
123, because when counting combinations it is irrelevant which order the symbols come in.
When counting permutations it is relevant, so please always be careful to pay attention
to exactly what you are counting!

Note that a string with n distinct elements, where order doesn’t matter, is the same thing
as a set of n distinct elements. We won’t worry about distinguishing these too carefully,
although in advanced mathematics and in computer programming it is important to be
precise.

Example 4.9 Write out all the 2-combinations of 12345.

Solution. They are: 45, 35, 34, 25, 24, 23, 15, 14, 13, and 12. Again, there are ten of them.

I didn’t have to list them in reverse order, but in doing so we notice something interesting:
they correspond exactly to the 3-combinations! Choosing which two elements to include is
equivalent to choosing which three to leave out, so we can line up the list of 2-combinations
with the list of 3-combinations and see that there is a one-to-one correspondence. In mathe-
matical parlance, we call this a bijection. If you want to prove that two sets have the same
size, finding a bijection between them is a great way to do it!

Notation. Write C(n,r) or (7) for the number of r-combinations of an n-element set.

The latter notation is read “n choose r”, and is ubiquitous in mathematics. These
numbers are also called ‘binomial coefficients’, because we have

(x+1)" = (Z)x’ur (nﬁl)x”—l + (nﬁ2)x"—2+---+ <T)m+ <g)

For example, we have
(z + 1)'0 = 2 + 102° + 452% + 12027 + 2102° + 2522° + 2102* + 1202° + 452 + 10z + 1,

so we can FOIL without FOILing. If you think about it carefully, you can figure out why the
first equation is true. But we still haven’t explained how to actually compute these things.
Here’s the answer.
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Theorem 4.10 We have
Clnr) n n!
n,r)= =
’ r rl(n —r)!

To explain thiis we will be very careful and work backwards. First of all, note that it is
enough to show that

(2) P(n,r)=C(n,r)-r!

We will first explain why (4.2)) implies the theorem, and then we will explain why (4.2)) is
true. First, note that (4.2) implies that

but remember that we showed that P(n,r) = (71%'7,), Therefore,

|
C(n,r) = )l _ o

r! (n—r)lrl’

as desired.
We are left to explain why is true. To do this, we explain why both sides of (4.2]) count
the number of r-permutations of a string of n elements:

e This is true of P(n,r) by definition.

e Instead, we could first choose which r objects to make an r-permutation out of, without
worrying about the order. By definition, there are C'(n,r) ways to do this. Now, we
have to put these r symbols in some order — i.e., to write down a permutation of them.
There are 7! ways to do this. So the total number of ways is C(n,r) - r!

If you haven’t seen this before, you probably didn’t understand what just
happened. That’s okay. Read through it again.

4.3 Pascal’s Triangle

The part of this section with the diagrams has been removed from this version
of the notes. It will again be in the final version — I removed it here because it
is much faster to edit the file if I don’t include the diagrams. Please see (for
example) the September 30 version of the file to see this part of these notes.

Here is a video of the Price Is Right game Plinko:

https://www.youtube.com/watch?v=qr7oYqcgsXQ
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Game Description (Plinko (The Price Is Right)): The contestant drops up to five chips
down a board. (She starts off with one, and can win up to four more by pricing small items.)
She drops them down a board which has a lot of pegs and a variety of prizes at the bottom.
(The shape of the board is relevant, and we will discuss it more in due course.) She hopes
to land her chips into a $10,000 slot in the middle, and the other slots have prizes between
zero and $1,000.

The question is, where should the contestant drop her pucks?

Here is a graphical representation of a Plinko board.
[Temporarily removed.]

For comparison’s sake we have included the previous numbers (where the board had
walls) below the final numbers. They are different, but not so different.
We have just written out the first thirteen rows of Pascal’s Triangle.

Pascal’s Triangle. To write down Pascal’s Triangle, proceed as follows.

e The top row has a solitary 1 in it.

Each row has one more number than the previous, with a 1 at each edge. Each
number in the middle of the table is equal to the sum of the two above it.

Proceed for as many rows as you like.
e By convention the rows are numbered as follows: the top row is the zeroth row. After
that, the rows are numbered 1, 2, 3, etc., and the nth row starts with a 1 and an n.
Our idealized version of Plinko is illustrated nicely by the following computer demonstra-
tion:

phet.colorado.edu/sims/plinko-probability/plinko-probability_en.html

We now investigate Pascal’s Triangle and observe that it has a large number of remarkable
properties:

Proposition 4.11 The numbers in the nth row of Pascal’s Triangle sum to 2™.

Why is this? It is true for the 1st row, and we see that each number contributes twice to
the row below it: once to its left, and once to its right. Hence, the sum of each row is twice
that of the row above it.

Proposition 4.12 The numbers in the nth row of Pascal’s Triangle are C(n,0), C(n,1),
..., C(n,n) in order.
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This is remarkable! Note that this lets us compute C(n, r) for all » without any factorials.

Why is this true? Consider, as an example, the 15 sitting left of center in the sixth row.
This 15 counts the number of possible paths a ball could have taken from the top 1 to this
15.

How many such paths are there? We already saw that the answer is 15, but let’s see the
same thing another way. The ball took six steps down, and of these four were to the left and
two were to the right. Say you label these steps A, B, C, D, E, and F in order. Then, for
each choice of two of these six letters (note: there are C'(6,2) such choices), there is exactly
one path corresponding to that choice. For example, corresponding to the choice {B, D} is
the path Left, Right, Left, Right, Left, Left.

The reasoning is the same no matter which number we started with.

Proposition 4.13 We have C(n,r) = C(n,n —r) for all n and r.

This can be seen from the symmetry in the triangle. It can also be seen as a consequence
of our explicit formula. We have
n!

C(n,r) =

and
n!

(n—r)l(n—(n—r))!

But n — (n — ) is just the same thing as r.

C(n,n—r)=

Proposition 4.14 The biggest numbers are always in the middle.

If it is true for one row, it has to be true for the row below it (since this row is made of
sums of the row above it). So since it is true at the top, it must always be true.

Note that this tells you how you should drop the puck in Plinko: drop it directly down
the miaddle, right over the $10,000!

Proposition 4.15 We have, for all n and r, that

C(n,r)+Cn,r+1)=C(n+1,r+1).

This is just a restatement of how Pascal’s Triangle is constructed. Since the rows consist
of the quantities C(n, ), we get the above identity.
Note that algebraically, this says that

n! n! B (n+1)!

A= D= 1) cr D+ D=+
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which after simplifying a bit is the same thing as

n! n! B (n+1)!
A= T D)m=r=10! Dl —r)’

(3)

We can also verify this algebraically. A common denominator for the fractions in is
(r 4+ 1)I(n — r)!, so the left side of (4) is
(1)

nl(r+1) nln—r)  nlr+1+n-—r) nl(n+1) (n+1)!

(r+Dl(n—n) (r+1)(n—r) (r+1D!(n—r)! (r+Dln—r)  (r+Dln-—r!

But that was a lot less fun.

Proposition 4.16 You can read off a rule for FOILing from Pascal’s Triangle. In particu-
lar, you have

(x+1y)" =C(n,0)2" + C(n,1)a" 'y + C(n,2)z" *y* +--- + C(n,n)y".

This is called the binomial theorem.
For example, plug in z =1 and y = 1. You get

2" =C(n,0) +C(n,1)+C(n,2) +--- 4+ C(n,n).

In other words, we see again that the sum of the nth row is 2".

Proposition 4.17 The alternating sum of each row of Pascal’s Triangle (after the zeroth)
15 0.

For example, the alternating sum of the seventh row is
1-7T+21-35435-21+7—-1=0.

Here, you can tell immediately that these sum to zero, because the numbers cancel in pairs.
But look at the eighth row. We also have

1-8+4+28—-56+70—-56+28—-8+1=0.

This is not obvious immediately — unless you look at the binomial theorem! Plug in x = 1
and y = —1. We get

0=C(n,0)—C(n,1)+ C(n,2) — C(n,3) +--- = C(n,n).

The last &£ is a plus if n is even and a minus if n is odd.
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Proposition 4.18 If you color all the odd numbers blue and the even numbers red, you will
create a familiar pattern called the ‘Sierpinski triangle’ which is a fractal.

Try it!!

Proposition 4.19 Suppose you draw lines through Pascal’s Triangle at an angle.

For example, start at any of the 1’s on the left. Circle it. Then, go over to the right one
and up and right one, and circle that number. Then, again go over to the right one and up
and right one and circle that. Keep going until you run out of numbers.

If you add up all the numbers you circled, you get .....

What, do you expect me to do it for you? And spoil the surprise? No way. Try it!! (Try
multiple such lines, and see if you can find the pattern.)

Proposition 4.20 The distribution of Pascal’s triangle approaches a nice limit as n — oo.

This is subtle, and so our explanation here will be a bit vague. Consider the following
question. You flip a fair coin a million times. What is the probability that you get at least
501, 000 heads?

We can give the answer immediately: it is

2~ 1000000 (0(1000000, 501000)-+C'(1000000, 501001)+C'(1000000, 501002)+- - - C'(1000000, 1000000)) .

But in some sense this is a useless answer. If I asked you whether this was nearer to 20% or
0.0000000000000001%, could you answer just by looking at it? (No.)

Here is a website which allows you to conduct experiments like this:

http://www.math.uah.edu/stat/apps/BinomialTimelineExperiment.html

The variable n is the number of coin flips and you do that many flips, many times over.
So you can see graphically the answers to questions like this. What it is important to observe
is that the shape of the graph is, in some sense independent of n.

The limiting distribution is called a normal or Gaussian distribution, or more informally
the bell curve. It has mean (i.e., average) § and standard deviation ‘/75 Roughly speaking,
the standard deviation is a measure of how much you might reasonably expect a trial to be
off from the mean.

So, for example, if you flip 1,000,000 coins, the mean outcome is 500,000 heads, the
standard deviation is 500, and 501,000 is two standard deviations away. The probability
of this outcome is roughly 2.27% — unlikely, but you wouldn’t be shocked to see it happen.

Conversely, the probability of getting at least 503,000 heads is less than a billion.
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4.4 Exercises

Incomplete. To be added to.

1. Compute tables of P(n,r) and C(n,r) for all n and r with 0 <r <n <8.

2. Explain why C(n,0) = 1 and C(n,1) = n for all n. Can you explain this using the
definition instead of the formula?

3. The following clip is from the game show Scrabble:

(a)

https://www.youtube.com/watch?v=11iCKnHxJiQ

At 6:25 in the video, Michael chooses two from eleven numbered tiles. The order
in which he chooses them doesn’t matter. Eight of the tiles are ‘good’; and reveal
letters which are actually in the word. Three of them are ‘stoppers’.

How many different choices can he make?
Solution. C(11,2) = 55.

In this example, it turns out that there are two R tiles, and two D tiles (one of
which is a stopper). The easy solution presumes that these are different from each
other — that one of the numbered tiles is the R appearing first in the word, and
another one is the R appearing second in the word.

However, if you watch the show a lot you will observe this is not actually true —
the first D picked will always be the good one, and the second will always be the
stopper. Our solution is the ‘easy solution” — extra credit to anyone who observed
that this is not quite accurate, and took account of it!

Of these choices, how many choices don’t contain a stopper? If he places both
letters, what is the probability that both will actually appear in the word?

Solution. C(8,2) = 28, and so 2.
Michael can’t guess the word and chooses two more of the remaining tiles. Now
what is the probability that both of them will actually appear in the word?

Solution. Now there are nine remaining tiles and six of them are good. It’s

C6,2) _ 15 _ 5
T2 — 36 = 18- Not very good.

At 8:15 (and for a different word), the contestants have used up two of the stop-
pers. Now what is the probability that both of Michael’s letters will appear in
the word?

Solution. There are six letters, and he chooses two. The probability that neither

is the bad one is % = %

(Challenge!) Suppose that Michael knows the first (6:25) word from the beginning,
but rather than guessing it immediately chooses to draw tiles until one of the
following happens: (1) he draws and places the first R on the blue spot, and
thereby can earn $500 for his guess; (2) he draws two stoppers, and must play
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one of them (and so forfeits his turn); (3) he places all letters but the first R, and
is obliged to guess without earning the $500.

Compute the probabilities of each of these outcomes.
Solution. We look at this turn by turn.

e (First turn.) With probability % he draws two stoppers and loses. With
probability % = % he draws the first R and can place it and win $500.

The number of ways in which he can draw one stopper and one good tile
other than the first R is 3-7 = 21, so there is probability % that this happens
and he wins the turn but not $500. Finally, there are C'(7,2) = 21 in which
he can draw good two tiles other than the first R, so there is probability %
that this will happen and he goes to a second round.

Note that 3 4+ 10 + 21 + 21 = 55 — a good way to check our work! We’ve
enumerated all possibilities and the probabilities end up to 1.

e (Second turn.) There is probability % that the game goes on to a second turn.

The following probabilities assume that it does, and should all be multiplied
by %
There are C(9,2) = 36 ways to draw two tiles. As above, there are 3 ways to
draw two stoppers, 8 ways in which he can draw the first R and something
else, 3 -5 = 15 ways in which he can draw a stopper and a tile other than
the first R, and C(5,2) = 10 ways in which he can draw two more good tiles
other than the first R. So there is probability %, or % X % total, of the game
going onto a third round.

e (Third turn.) Similar to above. There are C(7,2) = 21 ways to draw two
tiles, 3 to draw two stoppers, 6 to draw the first R, 9 to draw a stopper and
a tile other than the first R, and 3 ways in which he can draw two more good
tiles other than the first R. The probability of the game going on to a fourth
turn (total) is 21 x &8 x 2.

e (Fourth turn.) There are C'(5,2) = 10 ways to draw two tiles, 3 to draw two
stoppers, 4 to draw the first R, and 3 ways in which he can draw a stopper
and a title other than the first R.

So we can compute all the probabilities:
e Places the first R:
10 21 8 21 10 6 21 10 3 4 10
55 b5 36 55 36 21 55 36 21 10 33
e Draws two stoppers:
3 21 3 21 10 3 21 10 3 3 7
55 b5 36 55 36 21 55 36 21 10 66
e Must guess without winning $500:
21 n 21 15 N 2110 9 21 10 3 3 13
55 55 36 55 36 21 55 36 21 10 22
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4. Consider our first model of Plinko, where we assumed that the puck would always go
one space to the left or one space to the right, but did not ignore the walls of the board.

(a) If the contestant drops the puck one slot to the left of center, we already computed
the probability that the puck lands in each of the nine slots. Compute the expected
value of this drop. (Use a calculator or computer, and round to the nearest dollar.)

(b) Carry out all these computations (1) if the contestant drops the puck down the
center, and (2) if the contestant drops the puck down the far left slot. If you have
the patience, you might also do it if the contestant drops the puck two left of
center — in this case, by symmetry, you will have considered all the possibilities.

What can you conclude about where the contestant should drop the puck?

5. Watch one or more playings of Plinko, and discuss the shortcomings in our model.
Does the puck ever go more than one space to the left or right?

Briefly discuss how you would revise the model to be more accurate, and summarize
how you would redo the problem above to correspond to your revised model. (The
details are likely to be messy, so you're welcome to not carry them out.)

5 Example: Poker

We digress from our discussion of ‘traditional’ game shows to discuss the game of poker.
Poker is frequently televised — for example you can find the final table of the 2014 World
Series of Poker on YouTube, all fourteen hours of it — so you might call it a game show.
Poker is a very mathematical game, and we can very much use the mathematics we have
already developed to analyze it.

We start off by describing the poker hands from best to worst and solving the combina-
torial problems which naturally arise. For example, if you are dealt five cards at random,
what is the probability that you get dealt a straight or better?

We will then discuss different variations of Poker and the betting rules. This is where the
really interesting decisions come into play: do you fold, call, or raise? These are essentially
expected value computations, although you must make informed guesses about what your
competitors hold.

Online play. There are several websites where you can play free poker on the Internet.
One I have used myself is

http://www.replaypoker.com

— there is no gambling. (There is betting, but you are playing for ‘chips’ which do not
represent real money.)

Further reading. There are a great many excellent books on poker. I especially rec-
ommend the Harrington on Hold’em series by Dan Harrington. These books are quite
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sophisticated and walk you through a number of expected value and probability computa-
tions. If you’ve ever wanted to learn to play, you will find that this course provides excellent
background!

5.1 Poker Hands

A poker hand consists of five playing cards. From best to worst, they are ranked as follows:

e A straight flush, five consecutive cards of the same suit, e.g. 5MCMTRIMIM. An ace
may be counted high or low but straights may not ‘wrap around’ (e.g. KA234 is not a
straight).

In case of a tie, the high card in the straight flush settles ties. An ace-high straight
flush is sometimes called a royal flush, and is the highest hand in poker.

e Four of a kind, for example K@ K&K KO and any other card. (If two players have
four of a kind, the highest set of four cards win.)

e A full house, i.e. three of a kind and a pair, K@ K&K 707, (If two players have
a full house, the highest set of three cards wins.)

e A flush, any five cards of the same suit, e.g. Qd10&7dhCd3d. The high card breaks
ties (followed by the second highest, etc.)

e A straight, any five consecutive cards, e.g. S3&7)6{)504M. The high card breaks
ties.

e Three of a kind, ec.g. S3&SOSMAV4M.
e Two pair, e.g. 3IOCMEO AM.
e One pair, e.g. 8&SOOMVAM.

e High card, e.g. none of the above. The value of your hand is determined by the
highest card in it; then, ties are settled by the second highest card, and so on.

We now compute the probability of each possible hand occurring. Our computations will
make heavy use of the multiplication rule. (Note that each card is determined uniquely by
its rank (e.g. king, six) and suit (e.g., spades, clubs).)

e All hands. The total number of possible hands is C'(52,5) = 2598960.

e Straight flush (including royal flush). There are four possible suits, and nine possible
top cards of that suit: ace down through five. These determine the rest of the straight
flush, so the total number of possibilities is 4 x 10 = 40.
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Four of a kind. There are thirteen possible ranks. You must hold all four cards
of that suit, and then one of the other 48 cards in the deck, so the total number of
possibilities is 13 x 48 = 624.

Full house. First, choose the rank in which you have three of a kind. There are 13
possible ranks, and C(4,3) = 4 choices of three of that rank. Then, choose another
rank (12 choices) and two cards (C(4,2) = 6) of that rank. The total number of
possibilities is the product of all these numbers: 13 x 4 x 12 x 6 = 3744.

Flush. Choose one of four suits (in 4 ways), and five cards of that suit (in C(13,5)
ways), for a total of 4 x C(13,5) = 5148 possibilities.

Except, we don’t want to count the straight flushes again! So subtract 40 to get 5108.

Straight. Choose the highest card (ace through five, so ten possibilities). For each of
five ranks in the straight, there are 4 cards of that rank, so the number of possibilities
is 10 x 4° = 10240. Again subtracting off the straight flushes, we get 10200.

Three of a kind. Choose a rank and three cards of that rank in 13 x C'(4,3) = 52
ways. Then, choose two other ranks (distinct from each other) in C'(12,2) ways. For
each of these ranks there are four possibilities, so the total is 52 x C(12,2) x 42 = 54912.

Note that hands with four of a kind or a full house ‘include three of a kind’, but we
counted so as to exclude these possibilities, so we don’t need to subtract them now.

Two pair. Choose two different ranks in C'(13,2) ways; for each, choose two cards of
that rank in C'(4,2) ways. Finally, choose one of the 44 cards not of the two ranks you
chose. The total number of possibilities is C'(13,2) x C'(4,2)? x 44 = 123552.

One pair. Choose the rank in 13 ways and choose two cards of that rank in C'(4,2)
ways. Then, choose three other ranks in C'(12,3) ways and for each choose a card of
that rank in 4 ways.

The total number of possibilities is 13 x C'(4,2) x C(12,3) x 43 = 1098240 ways.

None of the above. There are several ways we could count this. Here is one way: we
can choose five different ranks in C'(13,5) ways — but we must subtract the ten choices
that are straights. So the number of choices for ranks is (C'(13,5) — 10).

Now, for each rank, we choose a suit, and the total number of choices is 4° — 4. We
subtract 4 because we want to exclude the flushes! So the total number of possibilities
is (C'(13,5) — 10) x (4° — 4) = 1302540.

Here is a second way to get the same result. We know that the total number of
possibilities is 2598960. So we add all the previous possibilities, and subtract from
2598960.
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This involved some subtleties, and for other variations the computations are still harder!
For example, in seven card stud you are dealt a seven-card hand, and you choose your
best five cards and make the best possible poker hand from these. You can redo all the
above computations, but now some new possibilities emerge. For example, you can be
simultaneously dealt a straight and three of a kind — and you want to count this only as
a straight (since that is better than three of a kind). But it is not so hard. The following
Wikipedia page works out all the probabilities in detail:

https://en.wikipedia.org/wiki/Poker_probability

Poker variations. There are many variants of poker. The rules for betting (and blinds
and antes) are described in the next section; for now we simply indicate when a round of
betting occurs.

‘Ordinary’ poker. (No one actually plays this.) Fach player is dealt five cards face
down. There is a round of betting. The best hand (among those who have not folded) wins.

Five-card draw. Each player is dealt five cards face down. There is a round of betting.
Then, each player who has not folded may choose to trade in up to three cards, which are
replaced with new cards (again dealt face down). There is another round of betting, and the
best hand wins.

Texas Hold’em. Typically played using blinds (and sometimes also antes), applied to
the first round of betting only. Each player is dealt two cards, dealt face down. There is a
round of betting. Three community cards are dealt face up (the ‘flop’), which every player
can use as part of their hand. There is a round of betting. A fourth community card is dealt
(the ‘turn’), followed by another round of betting. Finally, a fifth community card is dealt
(the ‘river’), again followed by another round of betting.

Each player (who has not folded) chooses their best possible five-card hand from their
two face-down cards and the five face-up cards (the latter of which are shared by all players).
The best hand wins.

Texas Hold’em is extremely popular and plenty of video can be found on the internet.
For example, this (six hour!) video is of the first part of the final table of the 2014 World
Series of Poker:

https://www.youtube.com/watch?v=5wlVFMNVJZQ

The top prize was a cool $10 million.

This is the most interesting poker video I have ever seen. Most telecasts of poker heavily
edit their coverage, only showing the hands where something exciting or out of the ordinary
happens. This video is unedited, and so gives a much more realistic viewpoint of what
tournament poker is like.

In the opening round of Texas Hold’em, you are dealt only your two-card hand and you
have to bet before any of the community cards are dealt. This offers some probability ques-
tions which are quite interesting, and easier than those above. For example, in Harrington
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on Hold’em, Volume I: Strategic Play, Harrington gives the following advice for you should
raise, assuming you are playing at a full table of nine or ten players and are the first player
to act.

e Early (first or second) position: Raise with any pair from aces down to tens, ace-king
(suited or unsuited), or ace-queen (suited).

e Middle (third through sixth) position: Raise with the above hands, nines, eights, ace-
queen, ace-jack, or king-queen (suited or unsuited).

e Late (seventh or eighth) position: Raise with all the above hands, sevens, ace-x, or
high suited connectors like queen-jack or jack-ten.

Harrington also points out that your strategy should depend on your stack size, the other
players’ stack sizes, your table image, the other players’ playing styles, any physical tells you
have on the other players, the tournament status, and the phase of the moon. But this is
his starting point. Let us work out a few examples (you will be asked to work out more in
the exercises).

Example 5.1 In a game of Texas Hold’em, compute the probability that you are dealt a pair
of aces (‘pocket aces’).

Solution. There are C'(52,2) = 1326 possible two-card hands. Of these, C(4,2) = 6 are a

pair of aces, so the answer is % = ﬁ, a little bit less than 0.5%.

Example 5.2 In a game of Texas Hold’em, compute the probability that you are dealt a
pair.

Solution. There are 13 possible ranks for a pair, and C'(4,2) = 6 pairs of each rank, so the

(o 6x13 1
answer is 3= = -

Example 5.3 You are playing Texas Hold’em against five opponents, and you are dealt a
pair of kings. You have the best hand at the table unless someone else has a pair of aces.
Compute the probability that one of your opponents has a pair of aces.

Approximate solution. There are fifty cards left in the deck, excluding your two kings.
The probability that any specific one of your opponents has pocket aces is CC((;)’?Q)) = %25,
about 1 in 200. (This much is exact.)

These probabilities are not independent: if one player has pocket aces, the others are less
likely to. Nevertheless, we get a very nearly correct answer if we assume they are independent.
The probability that any specific player does not have pocket aces is 1 — -2~ = 1219 Tf these

1225 — 1225°
probabilities are independent, the probability that all five opponents have something other

or
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1219

5
1225) . So the probability that at least one of your opponents has

1219\ °
1—( 9) — 0.0242510680 . . .

than pocket aces is (
pocket aces is

1225

Remark. Here is a simpler approximate solution. Just multiply % by 5, to get

30
— =0.0244 1...
1295 0.0244897959

This is almost exactly the same. Why is this? We can use the binomial theorem to see that

1—(1—21)°=5r—102* + 102° — 52 + 2°,

_6_

o Since z is very small, the 22, etc. terms are very small.

and plug in x =
Example 5.4 You are sitting in first position. Compute the probability that you receive a
hand that you should raise, according to Harrington’s advice.

Solution. As before there are 1326 hands, so we count the various hands that Harrington
says are worth opening:

e A pair of aces through tens: Five ranks, and 6 ways to make each pair, so a total of
5 x 6 = 30.

e Ace-king: Four ways to choose the suit of the ace, and four ways to choose the suit of
the king. 4 x 4 = 16.

o Ace-queen suited. (Suited means the cards are of the same suit. If your cards are
suited, this helps you because it increases the chances that you will make a flush.)
Four ways to choose the suit, so just 4.

None of these possibilities overlap, so the total number is 30 + 16 + 4 = 50. The probability
: 50
1S 1326

This is less than 1 in 25! Harrington’s strategy is much more conservative than that of
most top players.

In the exercises, you will compute the probability of getting a hand worth opening in

middle or late position.

5.2 Poker Betting

So far we have just considered probabilities. But the interesting part of the game comes
when we combine this with a discussion of betting strategy.

Poker is played for chips, which may or may not represent money. In general there are
two different formats. In a cash game, you simply try to win as many chips as you can.
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By contrast, a tournament is played until one player has won all the chips. Before each
hand players have to put antes or blind bets into the pot, and in a tournament these keep
going up and up to force the tournament to end eventually.

Betting rounds. In all variations of poker, a betting round works as follows. The
first player (usually, but not always, the player left of the dealer) opens the betting. She
may check (bet nothing) or bet any amount. The betting then proceeds around the table
clockwise. If no one has bet yet, the player may check or bet. If someone has bet, then the
player may fold (abandon her hand), call (match the bet), or raise (put in a larger bet).
The betting continues to go around the table until either everyone has checked, or everyone
has called or folded to the last (largest) bet. Note that players may raise an unlimited
number of times, so betting can go around the table multiple times if many players keep
raising.

In no-limit poker, a player may bet anything up to and including her entire stack of chips.
Players are never allowed to bet more than however many chips they have on the table.
(You are not allowed to reach into your wallet and suddenly drop a stack of Benjamins.)
Conversely, you can always call a bet for your entire stack: if someone bets more chips than
you have, you may go ‘all-in” and their effective bet is limited to the number of chips you
have. (There are ‘side pot’ rules if one player is all-in and two other players want to keep
raising each other; we won’t consider them here.)

Typically there are multiple rounds of betting. If a player bets and everyone else folds,
then that player wins the pot. (The ‘pot’ consists of the blinds and antes and all of the bets
that have been made.) Otherwise, everyone remaining at the end compares their hands, and
the best hand wins the pot.

Blinds and antes. A hand of poker never starts with an empty pot; there is always a
little bit of money to be won from the beginning. This is assured via blinds and antes. If
antes are used, then each player puts a fixed (small) amount of money into the pot at the
beginning. If blinds are used, then the first two players in the first betting round make a
‘blind bet’ before looking at their cards. For example, the first player might be required to
bet $1 (the small blind) and the second player $2 (the big blind). These count as their initial
bets, except that if everyone calls or folds to the big blind, the round is not quite over; the
big blind has the opportunity to raise if she wishes.

5.3 Examples

We now consider some examples of poker play and the mathematics behind your decision
making.

Example 1. You are playing Texas Hold’em with one opponent (Alice). The current
pot is 500 chips, and you and Alice each have 700 chips. You have a hand of 5040, the flop
comes A&K D100, You check, and Alice responds by going all-in. Should you fold or call
her bet?

Analysis. There are three steps to solving this problem. First, you estimate your winning
probability depending on what cards come. Since you don’t know what your opponent has,
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this is a very inexact science (and indeed depends on your assessment of Alice’s strategy).

The next two steps are mathematically more straightforward: the second step is to
compute the probability of each possible outcome, and the third is to determine whether the
expected value of calling is positive or negative. Since the expected value of folding is always
zero (not counting whatever you have put into the pot already), this determines whether or
not you should call.

You guess that Alice probably has a good hand — a pair of tens or higher. You estimate
that you probably need to make a flush to beat her. You make a flush if at least one heart
comes in the turn and the river. You’d rather see only one heart, because if two hearts come,
Alice beats you if she has any heart higher than the 5.

e [f exactly one heart comes during the next two cards, then almost certainly you win.
You only lose if Alice has two hearts, one of them higher than a five, or if she makes
some freak hand like a full house or four of a kind. (This can’t be discounted if a pair
appears on the flop, but as it stands this looks pretty unlikely.)

We estimate your winning chances here as 90%. (Reasonable people might disagree!)

e If two hearts come during the next two cards, you might win — but Alice could easily
have a heart higher than the 50. We estimate your chances of winning as 50%.

e If no hearts come, then you are very unlikely to win. You could — for example, if two
fives, or two fours, or a five and a four, come then you might win, but this is unlikely.
We will simplify by rounding this probability down to zero.

There are 47 cards you can’t see, and nine of them are hearts. What is the probability that
the next two are both hearts? As we've seen before, this is

9 8

This is quite low! Tt is substantially lower than (1/4)?, simply because you can already see
four of the hearts.

Now, what is the probability that one, but not both, of the next two cards, is a heart?
There are two ways to compute this, and we will work out both.
Method 1. The probability that the first card is a heart and the second card is not a

heart is
9 38

The probability that the second card is a heart and the first card is not is the same. So the
total probability is %, or approximately 0.316.
Method 2. First, we compute the probability that neither card is a heart. This is
38 37
47 46
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So, the probability that exactly one card is a heart is

1_38 37 9 8 342
A7 46 47 46 1081
It is very typical that there are multiple ways to work out problems like this! This offers you

a great chance to check your work.

So what’s the probability you win? 0.9 times the probability that exactly one heart
comes, plus 0.5 times the probability that two hearts come. In other words,

0.9 x 0.316 + 0.5 x 0.033 ~ 0.301,

which for the sake of simplicity we will round off to 0.3.

Now, on to the expected value computation. If you call and win, then you win $1,200:
the $500 previously in the pot, plus the $700 that Alice bet. If you call and lose, you lose
$700. Therefore the expected value of calling is

0.3-1200 + 0.7 - (=700) = —130.

It’s negative, so you should fold here.

But notice that it’s close! So, for example, if the flop had come AV8V 7, then you
should call. (Exercise: verify this as above!) Here you will make a straight if a six comes.
It is not so likely that a six will come, but a small probability is enough to swing your
computation.

Example 2. The same situation, except imagine that you both have 1,000 chips remain-
ing and that Alice bets only 300 chips. What should you do?

You could consider folding, calling, or now raising. Let us eliminate raising as a possibilty:
if Alice is bluffing with something like Q&7<{>, then you might get her to fold, even though
she has a better hand. But this doesn’t seem very likely.

Since you have the opportunity to bet again, let us now consider the next card only.

e Suppose the next card is a heart, giving you a flush. Then, you think it is more likely
than not that you’ll win, so you want to bet. Moreover, since Alice might have one
heart in her hand, you would really like her to fold — and so if this happens, you will
go all in.

It is difficult to estimate the probabilities of what happens next — this depends on how
you see Alice, how she sees you, and what she’s holding. As a rough estimate, let us
say there is a 50-50 chance that she calls your all-in bet, and if she calls there is a 75%
chance of you winning with your flush.

e Suppose the next card is not a heart. Then you don’t want to bet, because you don’t
have anything. Let us say that there is a 75% chance that Alice goes all-in, in which
case you should and will fold. (Check the math herel!)
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If Alice instead checks (assume there is a 25% chance of this), you both get to see one
more card and bet again. If it is a heart, assume that you both go all-in and that you
win with 75% probability. If it is not a heart, assume that Alice goes all in and you
fold.

These percentages are approximate — once again we can’t really expect to work exactly. But
given the above, we can enumerate all the possibilities, their probabilities, and how much
you win or lose:

e Heart, she calls your all-in, you win: probability
(The initial $500 pot, and her $1000.)

X % ~ 0.072, you win $1500.

[

e Heart, she calls your all-in, you lose: probability % x % X i ~ 0.024, you lose $1000.
(Your remaining $1000.)

e Heart, she folds: 4% X % ~ 0.096, you win $800. (The initial $500 pot, plus the $300

she invested to make the first bet.)

e Not a heart, she goes all-in: % X % ~ 0.606, you lose $300. (This is what you invested
to call her first bet, but you fold and so avoid losing any more.)

e Not a heart, she checks, next card is a heart, you win: % X % X 4% X % ~ 0.030. You
win $1500.

e Not a heart, she checks, next card is a heart, you lose: % X % X % X ;11 ~ 0.010. You
lose $1000.

X Z—g ~ 0.163. You

=

e Not a heart, she checks, next card is not a heart, you fold: i—? X
lose $300.

As is often the case in poker, it is more likely that you will lose than win, but the winning
amounts are larger than the losing amounts. Here there are two reasons for this: first of
all, if she goes all-in on a bad card for you, then you can usually fold and cut your losses.
The second is that we're comparing against a baseline of folding, which we say has expected
value zero. But if you bet, you can not only get Alice to match your bets, but also keep your
stake in the existing pot.

The expected value of calling is

.072x1500—.024 x 1000+-.096 x 800 —.606 x 300+.040 x 1500—.013 x 1000 —.163 x 300 ~ —35.

A close decision, but if we believe our assumptions, then it looks like it’s wise to fold.

Example 3. You are the big blind (50 chips) at a full table, playing Texas Hold’em.
The first player, who is known to be conservative, raises to 200 chips, and everyone else folds
to you. You have a pair of threes, and if you call, both you and your opponent will have
3,000 more chips to bet with. Since you already have 50 chips in the pot, it costs you 150
chips to call.
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Should you call or fold?

To solve this problem we again have to make guesses about what we think will happen,
which are still more inexact than the last problem. This will set up another expected value
problem.

Anyway, the first player is known to be conservative, so she probably has ace-king or a
high pair or something like that. Let us assume that no three comes on the flop, you will
not dare to bet. Assume further that your opponent will, and you end up folding.

Since you have a pair of threes, you are hoping that a three comes on the flop. If so, you
will almost certainly win. Let us assume that, if a three comes on the flop:

e With 25% probability, your opponent will fold immediately and you will win the current
pot (of 425 chips: your bet, her bet, and 25 chips from the small blind).

e With 60% probability, your opponent will bet somewhat aggressively, but eventually
fold, and you win (on average) the current pot of 425 chips, plus an additional 500
chips.

e With 10% probability, your opponent will bet very aggressively. Both of you go all-in,
and you win the pot of 425 chips plus all 3,000 of her remaining chips.

e With 5% probability, your opponent gets a better hand than three threes, and both of
you go all-in and you lose 3,000 of your remaining chips.

Let a be the probability of a three coming on the flop. Then, the expected value of calling
(relative to folding) is

—150 + o - (.25 425 4 .60 - 925 + .10 - 3425 + .05 - (—3000)) = —150 + 853.75ar.

So we need to compute « to determine whether this is positive or negative. To illustrate our
techniques, we will do this in two different ways. In both cases we compute the probability

that no three comes on the flop, and then subtract this from 1.

Solution 1. The first card will not be a three with probability %: there are 50 cards
remaining, and 48 of them are not threes. If the first card is not a three, then the second
card will not be a three with probability g, and the third card will not be a three with
probability g. The probability that at least one card is a three is therefore

Therefore, the expected value of calling is
—150 4+ 835.75 - .117 = —52.30.

It is negative, so a call is more prudent.
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Solution 2. We compute in a different way the probability that none of the three cards

in the flop is a three. There are C'(50,3) possible flops, and (48, 3) possible flops which
C(48,3)

CG03) which is the same as == - 75 - 22 )

don’t contain a three. So this probability is
Some remarks:

e If you each had 10,000 remaining chips, then it would make sense to call. (Redo the
math to see why!!) This illustrates the principle that long-shot bets are more profitable
if you possibly stand to make a very large amount of money.

e The above computations assumed that all 50 cards were equally probable. But, given
what you know about your opponent, you might assume that she doesn’t have a three
in her hand. In this case, the probability of getting a three on the flop goes up to

46 45 44
1_4_8'E'E—.122"'

which is slightly higher.

5.4 Exercises

Thanks to the participants (credited by their screen names below) in the Two Plus Two
Forums for suggesting poker hands which are treated here:

http://forumserver.twoplustwo.com/32/beginners-questions/
videos-online-illustrating-simple-mathematical-poker-concepts-1631031/

1. Refer to Harrington’s opening strategies for Texas Hold’em described above. If you are
in middle position and everyone has folded before you, compute the probability that
you are dealt a hand which Harrington suggests raising.

Now do the same for late position.
2. (Suggested by ArtyMcFly.) The following amusing clip shows a hand in a million-

dollar Hold’em tournament with eight players, where two players are each dealt a pair
of aces. One of them makes a flush and wins.

https://www.youtube.com/watch?v=aR52zv1GqBY

(a) Compute the probability that Drinan and Katz are each dealt a pair of aces. (No
need to approximate; you can compute this exactly.)

(b) Compute the probability that any two of the eight players are each dealt a pair
of aces.
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(c¢) Given that two players are dealt aces, these aces must be of different suits. Each
player will win if at least four cards of one of his two suits are dealt. (If four of
this suit are dealt, then he will make a flush. If five of this suit are dealt, then
both players will have a flush, but only one of them will have an ace-high flush.)

The broadcast lists a probability of 2% of this happening for each player. Compute
this probability exactly.

(Note that the most common outcome is that no four cards of the same suit will
be dealt, in which case the two players will have equal hands and tie.)

(d) Compute the probability of this whole sequence happening: two of the eight
players are dealt a pair of aces, and one of them makes a flush and wins. Please
give both an exact answer and a decimal approximation.

(e) Suppose these eight players play one hundred hands of poker. What is the prob-
ability that this crazy sequence of events happens at least once?

3. (Suggested by whosnext.) Here is another clip illustrating some serious good luck. (Or
bad luck, depending on whose perspective you consider!)

https://www.youtube.com/watch?v=72uxvL8xJXQ

Danny Nguyen is all-in with A{)7<{ against an opponent with AdK&. The flop is
5QKCO5M. After this, the next two cards must both be sevens for Nguyen to win.
Compute the probability of this happening.

(Note: there is also a small possibility of a tie, for example if both cards are aces.)

4. Consider a variant of poker where you are dealt four cards instead of five. So a ‘straight’
consists of four consecutive cards, a ‘flush’ four of a suit.

By analogy with ordinary poker, determine what the possible hands are, and determine
the probability of each. For each hand, give an exact answer for the probability as well
as a decimal approximation.

5. (This is Hand 4-3 from Harrington on Hold’em, Volume 1.)

Early in a poker tournament, with blinds $5 and $10, you are sitting third out of ten
players in a no-limit Hold’em tournament with a stack of $1,000. You are dealt AQ K &.

The first two players fold, and you elect to raise to $50. The next four players fold,
and the eighth (next) player, who has a stack of $1,630, calls your bet. The total pot
is $115, and the remaining players fold.

The flop comes J{7&40, and you act first. You choose to bet $80. (This is a ‘contin-
uation bet’, a kind of bluff. Since you expect that your opponent is somewhat likely
to fold, this is considered good strategy.)

Your opponent raises to $160. Do you fold, call, or raise the bet?

63


https://www.youtube.com/watch?v=72uxvL8xJXQ

You should analyze this hand as in the examples in the book and in lecture. As best
as you can, estimate your odds of having the best hand after the turn and the river,
and carry out an appropriate expected value computation.

Note: There is no single right answer, so justify your assumptions. If you like, you
may work with one other person in the class and turn in a joint soution to this problem.

6. (This is the optional bonus.) Watch part of the World Series of Poker clip in the
text, or any other poker tournament which is publicly available. (With your solution,
please let me know where I can find video to watch the hand myself.) Find a decision
made by one of the players similar to the situation in the text or the previous problem,
and either explain or critique the play. Your solution should involve probability and
expected value computations somewhere!

6 Inference

Your instructor decides to conduct a simple experiment. He pulls out a coin and is curious
to see how many consecutive heads he will flip. He starts flipping — and lo and behold he
flips a long sequence of consecutive heads! Six, seven, eight, nine, ten .... What are the odds
1 ) 10 1

of consecutive heads? (5 = 131+ Pretty unlikely!

He continues flipping. Eleven, twelve, thirteen, fourteen, ... the probabilities get smaller
and smaller. But eventually it occurs to you that there is an alternative, and indeed more
likely, explanation: You cannot see the coins, and so perhaps your instructor was just lying
to you.

What happened here? After the first coin, or after the second, you probably didn’t
suspect any dishonesty — after all, it is not so unlikely to flip one or two heads. He could
have been lying, but you probably didn’t suspect that. But while the probability of umpteen
consecutive heads goes down and down, the probability that he was lying from the beginning
doesn’t, and eventually the latter becomes more plausible.

This is an example of Bayesian inference, which we will explore from a mathematical
point of view. But even if you don’t know the mathematics yet, you already make similar
inferences all the time. For example, suppose that a politician makes a claim you find
surprisingﬂ Then, informally you will assess the probability that the claim is true. In doing
so, you will take into account two factors: (1) how likely you believed this claim might have

6More specifically, this claim should concern a matter of fact, which can be independently verified to
be true or false. For example, a politican might claim that crime levels have been rising or falling, that
the moon landing was faked, or that Godzilla was recently sighted in eastern Siberia. Even if such claims
cannot be confirmed or denied with 100% accuracy, the point is that they are objectively true or false. This
is different than offering an opinion or speculation. For example, a politician might claim that if we airlift
ten million teddy bears into North Korea, they will overthrow their dictator and become a democracy. We
cannot say this is true or false without trying it. Similarly, a politician might say that Americans are the
kindest people in the world. Unless you are prepared to objectively measure ‘kindness’, this is a subjective
matter of opinion.
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been true, before the politician made it; (2) your assessment of the honesty of the politician
in question.

And finally we can look for examples from game shows. Here is a clip of Let’s Make a
Deal:

https://www.youtube.com/watch?v=-vRty_kkfgw

What would you do?

6.1 Conditional Probability
Definition 6.1 Let A and B be events in a sample space S. If P(A) # 0, then the condi-
tional probability of B given A, written P(B|A), is

P(AN B)

Here the symbol N means intersection — so A N B is the set of outcomes that are in
both A and B. In informal language, P(A N B) is the probability that both A and B occur.
We also sometimes omit the word ‘conditional’; and just say ‘the probability of B given A’.

Example 6.2 You flip two coins. Compute the probability that you flip at least two heads,
given that you flip at least one head.

Solution. We could give a quicker solution, but let’s write out everything explicitly for
clarity’s sake. The sample space is

S={HH,HT,TH,TT},
with all outcomes equally likely. Call A the event that we flip at least one head. We have
A={HH,HT,TH}.
Write B for the event that we flip two heads. We have
B={HH}.

We also have
ANB=B={HH},

because B is a subset of A. (Warning: In many examples B will not be a subset of A.)
So,
P(ANB)
P(B|A) = —————= =
(B1A) =~

INIOUT NI
Ll =
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Note that we could have simplified the arithmetic in the last step. We have P(AN B) =

%, and also P(A) = %, so that
N(ANB
psia) - PANB) ¥ _ N(AnB)
P(A) % N(A)

This is an alternative formula which we can use whenever it’s easier. (It holds always, not
just for this example.)
The next example concerns the Price Is Right game One Away.

https://www.youtube.com/watch?v=V6gCNW5wFIY

Game Description (One Away — The Price Is Right): The contestant is shown a car
and a five digit price for the car. Each digit in the price is off by one — too low or too high.
She then guesses the price of the car, one digit at a time.

If her guess is correct, she wins the car. Otherwise, if at least one digit is correct, she is
told how many digits she has right and can make corrections as she sees fit.

Example 6.3 Suppose that all the digits are random. Compute the probability that her first
guess 1s correct, given that she has at least one number right.

Solution. This is easy: Let A be the event that she has at least one number right, so
P(A) = &, an let B be the event that she has all five right, with P(B) = P(BN A) = 5.
We have P(B) .
P(B|A) = —/—* = —.
(Bl4) P(A) 31

Her winning chances have gone from 1 in 32 to 1 in 31, if you assume the digits are
random. In reality, we can be pretty sure the first digit is indeed a 2. (If this is not clear
to you, please take a friend with you next time you go car shopping.) If the other digits are
random, her winning chances have gone from 1 in 16 to ...... 1 in 16.

She is then told she has at least two numbers right.

Example 6.4 Suppose that all the digits are random. Compute the probability that her first
guess is correct, given that she has at least two numbers right.

Solution. Now writing A for the event that she has at least two numbers right, we have
P(A) = 2 and so P(B|A) = 5.

How did we compute 267 Well, the number of ways to get eractly two numbers right is
C'(5,2): choose which two numbers. And so, the number of ways to get at least two numbers
right is

C(5,2)+C(5,3)+C(5,4)+C(5,5) =10+ 10+ 5+ 1.
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Now here’s what no contestant on this show realizes: she should be ecstatic that she
doesn’t have two numbers right. Let us go back to assuming the first digit is definitely a 2,
and the others are random. Her initial winning chances are 1 in 16, and once we know she
has at least two numbers right they go up to 1 in 15. Whoopty doo. But, if she doesn’t have
at least two numbers right, then keep the initial 2 and change everything else!!

Example 6.5 You roll two dice. What is the probability that the sum of the numbers showing
face up is 8, given that both of the numbers are even?

Note that, in contrast to the previous examples, neither event is implied by the other. We
could roll an 8 without either of the numbers being even, and we could roll two even numbers
whose sum isn’t 8.

Solution. Writing S for the sample space, it has 36 elements as we have seen before.
Write A for the event that the numbers are both even, and B for the event that the total is
eight. Then we have

A ={22,24,26,42,44,46,62, 64,66},

B = {26, 35,44, 53, 62},
AN B = {26,44,62}.
Then (using the alternate version of our formula) we have

NANB) 3 1
PBJA)=—F=—-=—.
(Bl4) N(A) 9 3
In conclusion, if we know that both numbers are even, this makes it more likely that they
will sum to eight. This is true even though we removed some possibilities like 3 + 5.

6.2 The Monty Hall Problem

We now consider the most famous mathematical problem coming from a game show: the
Monty Hall Problem. Although the problem was based on Let’s Make a Deal, the problem
was made up and never actually happened on the show. But it’s a good problem, so we’ll
consider it anyway.

The Monty Hall Problem. Monty Hall, on Let’s Make a Deal, shows you three doors.
Behind one door is a car, behind the others, goats. You pick a door, say No. 1, and the
host, who knows what’s behind the doors, opens another door, say No. 3, which has a goat.
He then says to you, “Do you want to switch to door No. 27”

Is it to your advantage to switch your choice?

Let’s assume that the contestant prefers the car to a goat[] We will make the following
further assumptions:

"But see https://xkcd.com/1282/.
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e Initially, the car is equally likely to be behind any of the three doors.

e After you choose a door, the host will randomly pick one of the other doors with a
goat and open that one.

More specifically: If you choose a door with a goat, then exactly one of the other two
doors will have a goat and the host will show it to you. If you choose the door with
the car, then both of the other doors will have goats and the host will pick one of them
at random and show it to you.

So, given that you choose Door 1, let’s compute the sample space of all possible outcomes:
e The car is behind Door 2 (probability 3). Monty shows you Door 3.
e The car is behind Door 3 (probability %) Monty shows you Door 2.

e The car is behind Door 1, and Monty shows you Door 2. (Probability = x % =

W= W=

e The car is behind Door 1, and Monty shows you Door 3. (Probability  x % =

Let B be the event that the car is behind Door 2 (so P(B) = 3), and let A be the event
that Monty shows you Door 3. We want to compute P(B|A), the probability that the car is
behind Door 2, given that Monty showed you Door 3.

We have
P(ANB)

P(A)

The probability P(AN B) is 3, the same as P(B). As we saw before, if the car is behind

Door 2, Monty will always show you Door 3.

The probability P(A) is %, the sum of the two probabilities above in which Monty shows

you % If the car is behind Door 2, Monty will always show you Door 3, and if the car is

behind Door 1 then Monty might show you Door 3.
So

P(B|A) =

P(B|A) =

ol=[col—
[GSRI

2

Given that Monty showed you Door 3, there is now a ; probability the car is

behind Door 2. You should switch.

Many people find this counterintuitive, and so we will consider some alternative fomula-
tions.

Monty Hall with a Million Doors. Instead of three doors, Monty shows you one
million, and randomly you choose door 816,280. Monty then opens 999,998 of the remaining
doors — all but your door and Door 161,255. He offers you the opportunity to switch.

You really feel like you should take it, don’t you?

Bertrand’s Box is a closely related paradox. There are three boxes — one with two gold
coins, one with two silver coins, and one with one of each. You don’t know which box is
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which. You randomly choose one of the boxes and one of the coins in it, and it turns out
that your coin is gold. What is the probability that the other coin in the box is also gold?
Answer: Two thirds. (Work it out!)

The Prisoner Paradox was posed by Martin Gardner in 1959, and is equivalent to the
Monty Hall problem. Here it is, in Gardner’s original formulation

A wonderfully confusing little problem involving three prisoners and a warden,
even more difficult to state unambiguously, is now making the rounds. Three
men-A, B and C-were in separate cells under sentence of death when the governor
decided to pardon one of them. He wrote their names on three slips of paper,
shook the slips in a hat, drew out one of them and telephoned the warden,
requesting that the name of the lucky man be kept secret for several days. Rumor
of this reached prisoner A. When the warden made his morning rounds, A tried
to persuade the warden to tell him who had been pardoned. The warden refused.
‘Then tell me,” said A, ‘the name of one of the others who will be executed. If B
is to be pardoned, give me C’s name. If C is to be pardoned, give me B’s name.
And if I'm to be pardoned, flip a coin to decide whether to name B or C.’

Three prisoners, A, B and C, are in separate cells and sentenced to death. The
governor has selected one of them at random to be pardoned. The warden knows
which one is pardoned, but is not allowed to tell. Prisoner A begs the warden to
let him know the identity of one of the others who is going to be executed. ‘If B
is to be pardoned, give me C’s name. If C is to be pardoned, give me B’s name.
And if I'm to be pardoned, flip a coin to decide whether to name B or C.’

‘But if you see me flip the coin,’ replied the wary warden, ‘you’ll know that you're
the one pardoned. And if you see that I don’t flip a coin, you’ll know it’s either
you or the person I don’t name.’

‘Then don’t tell me now,” said A. ‘Tell me tomorrow morning.’

The warden, who knew nothing about probability theory, thought it over that
night and decided that if he followed the procedure suggested by A, it would give
A 1o help whatever in estimating his survival chances. So next morning he told
A that B was going to be executed.

After the warden left, A smiled to himself at the warden’s stupidity. There were
now only two equally probable elements in what mathematicians like to call the
‘sample space’ of the problem. Either C would be pardoned or himself, so by all
the laws of conditional probability, his chances of survival had gone up from 1/3
to 1/2.

The warden did not know that A could communicate with C, in an adjacent cell,
by tapping in code on a water pipe. This A proceeded to do, explaining to C

8 Gardner, Martin (October 1959). Mathematical Games: Problems involving questions of probabil-
ity and ambiguity. Scientific American. 201 (4): 174-182. Available online: http://www.nature.com/
scientificamerican/journal/v201/n4/pdf/scientificamerican1059-174.pdf|
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exactly what he had said to the warden and what the warden had said to him. C
was equally overjoyed with the news because he figured, by the same reasoning
used by A, that his own survival chances had also risen to 1/2.

Did the two men reason correctly? If not, how should each calculate his chances
of being pardoned? An analysis of this bewildering problem will be given next
month.

6.3 Bayes’ Theorem

Suppose you go caving: you explore all sorts of beautiful underground caverns, and have a
fabulous time. But afterwards you are alarmed to hear that some cavers catch the disease
of cam’tosz’s.ﬂ The disease can be treated, and so you decide to be tested to see if you have
caught the disease.

You learn the following:

e One in a thousand cavers develop cavitosis, and so your a priori probability of having

. . . 1
cavitosis 1s 000

e The test is not completely reliable, and has a false positive rate of 1%. This means

that if you don’t have the disease, and you get tested for it, then with probability %

you will be told that you don’t have the disease and with probability ﬁ you will be
told (incorrectly) that you do have it.

e The test has a false negative rate of 3%. This means that if you do have the disease,
and you get tested for it, then with probability % you will test positivﬂ and with
probability 13—0 you will test negative.

There are four probabilities we can compute:

e The probability that we have the disease, and test positive for it, is
1 o o

1000 100 100000

The probability that we do have the disease, but test negative for it, is
I N

1000 100 100000

The probability that we don’t have the disease, but test positive for it, is
999 1 999

1000 " 100 _ 100000

The probability that we don’t have the disease, and test negative for it, is

999 " 99 98901

1000 100 100000

= 0.097%.

= 0.003%.

= 0.999%.

= 98.901%.

9This is completely made up.
10<Positive’ does not mean ‘good’; it means that you do have whatever condition was being tested for.
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Example 6.6 You get tested for cavitosis, and to your horror the test comes back positive.
Compute the probability that you do indeed have cavitosis.

Solution. The probability that you have cavitosis, and test positive for it, is %.

The probability that you test positive for cavitosis is the sum of the two relevant proba-

bilities above:
97 999 1096

100000 - 100000 100000

Therefore, the probability that you have cavitosis, given that you have tested positive for it,
is

97
1096 — 8.85 -+ %.
In other words, you should be concerned, and if your doctor prescribes antibiotics then you
should take them, but it is still more likely than not that you don’t have the disease. In
particular, it is much more likely that the test resulted in a false positive.
A false positive rate of 1 in 100 sounds pretty good, but out of those who test positive
this results in a 11 in 12 failure rate of the test!

We now state a theorem that could have been used to derive this result more quickly.

Theorem 6.7 (Bayes’ Theorem) Suppose that A and B are any two events. Then we

e P(BIA)P(A)

P(AIB) = =5

It is easy to understand why this is true. The left hand side is given by

P(ANB)

P(AIB) = =

and the right side is equal to

which we immediately see is the same thing.

Example 6.8 Here is an example borrowed from Wikipedia. Suppose that the probability
that any one person has cancer is 1 in 100.

Now suppose a 65 year old goes to the doctor to see if she has cancer. She knows that
0.2% of all people are age 65, and of those who test positive for cancer, 0.5% are age 6’5.E|

Note that the above probabilities are all things one could probably look up in books or on the internet!
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Solution. We can apply Bayes’s Theorem to compute the probability that she has
cancer. Let A be the event that she has cancer, and B be the event that she is 65 years
old[?| Then, we have

P(A) =001, P(B)=0.002, P(B|A)=0.005,

BIA)P(A)  0.005 x 0.01
P(B)  0.002

So there is a 2.5% chance she (a random 65-year-old) has cancer.

= 0.025.

p(aB) = 2

Note that we can rewrite Bayes’s rule slightly as

P(B|A)
P(A|B) = P(A) x ———=
which allows us to to interpret Bayes’ theorem more natiurally. Here P(A) is the prior (or
base) probability of having cancer, i.e., the probability that a person about whom you don’t
know anything has cancer. The ratio PISJ(BE'}‘;‘), then, tells you how much more (or less) likely
knowing B makes A. For example, in the example above we have

P(B|A)  0.005
P(B) 0002

2.5.

So we can say that being 65 years old makes it 2.5 times as likely that you will have cancer.

Example 6.9 We apply this to the cavitosis example above. Let A be the event that we have
cavitosis, and let B be the event that we test positive for it. We are interested in computing
P(A|B) - the probability of having the disease, given a positive test.

Solution. By Bayes’s theorem, we have

P(B|A)P(A)  0.97 X 15
P(B)

P(A|B) =

Here we need to compute P(B). It isn’t given to us, and we need to compute it in the same
way we did above. There are two ways we could test positive for cavitosis: either we have
the disease and tested positive for it, or we don’t but got a false positive.

In other words, we have

P(B) = P(B|A)P(A) + P(B|-~A)P(-A).

Here the symbol — means not. The above formula enumerates the two ways in which we
might have tested positive for cavitosis.

12What is it mean to talk about P(B) here? After all, if we've said she’s 65 years old, then the probability
of her being 65 is 100%, right?

The proper interpretations of these probabilities are as proportions of the population at large. This is the
context in which our 0.2% and 0.5% estimations make sense.
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These probabilities we all computed above, and we have

1 999
P(B) = P(B|A)P(A) + P(B|~A)P(=A) = 0.97 X —— + 0.01 X —— = .01096.
(B) (B|A)P(A) 4+ P(B|-~A)P(-A) =0 X Jogg T 001 X 15ag = -01096

So we have
P(B|A)P(A) B 0.97 x ﬁ 97

P(A|B) = - _
(41B) P(B) 01096 1096

=0.0885...

Note that this is the same way we computed it before, only introducing notation and
the formalism of Bayes’ Theorem. The theorem hopefully helps us better understand the
principle of the computation we did before.

Note that it is interesting to write Bayes’s theorem in the form

P(B|A)P(A)
(B|A)P(A) + P(B|-A)P(=A)

P(AB) = -

In the denominator we enumerate, and compute the probabilities of, the two ways in which
B can happen, and the numerator shows just the one that involves A being true. (Sometimes
we have to enumerate more than two possibilities in the denominator.)

Elections and polling. As this chapter was being written, the U.S. 2016 Presidential
election was underwayIE. The candidates are Hillary Clinton and Donald Trump, and the
race is receiving an eztraordinary amount of attention.

A popular site is FiveThirtyEight, started by Nate Silver:

http://fivethirtyeight.com

Silver (and others writing for the site) have created a mathematical model which uses polling
data to track the outcome of the election, and Bayesian inference is at the heart of how Silver’s
model works.

For example, consider the following (hypothetical) situation. Imagine that Clinton and
Trump are tied on the eve of the first debate, and at the first debate Clinton promises to
give every American a free puppy. How will Americans react to this? Maybe they think
puppies are adorable and now are eager to vote for Clinton. Maybe they dread cleaning up
all the dog poop, and are thus more inclined to vote for Trump. If you're Nate Silver, you
don’t try to figure this out — you just pay attention to the polls.

Polls have a margin of error. Suppose you poll 1000 people, among a population which is
divided 50-50. What’s the probability at least 520 express support for Clintonﬂ Roughly

Band we refer to it henceforth in the present
14Tn a sense, you know how to do this already. It is the same as the probability of flipping a coin a
thousand times, and getting 520 or more heads, so

C (1000, 520) + C(1000, 521) + C(1000, 522) + - - -
91000 :

But that’s a mess to compute, and we're interested in approximate (and, as it turns out, extremely close)
models.
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speaking, the margin of error is about \/Lﬁ, where n is the number of people polled. So, if you

poll 1000 people, your margin of error is about \/11(% = 0.0316--- = 3.16%. The true error
could be higher — by some freak accident, you could reach a thousand Trump supporters in a
row, just like you could flip a coin and get a thousand consecutive tails. The margin of error
represents the range of outcomes you wouldn’t be too surprised by. So, here in this 1,000
person poll, you expect roughly 470 to 530 to express support for either candidate. If you
get 550 Clinton supporters, that is pretty strong evidence that public opinion has shifted. If
you get 520 Clinton supporters, then that is some evidence that public opinion has shifted.

To give a flavor of how these computations look, consider the following simplified model
of polling: we assume that there is a 60% chance that a poll is accurate, a 20% chance that
it is three points too high, and a a 20% chance that it is three points too low.

Meanwhile, back to our debate and Clinton’s puppy promise.

Example 6.10 We’'ll say that there is a 30% chance this lowered Clinton’s support three
points, 30% chance that it raised it three points, and 40% that it didn’t make a difference.

Suppose then that a post-puppy poll comes out showing Clinton at 53%. What is the
probability that her support actually increased?

Solution. Let Ay, Ay, and A3 be the events that Clinton is now at 53%, 50%, and 47%
respectively, and B be the event that she polled at 53%. We want to compute P(A;|B), and
we have

P(B|A1)P(Ar)
(BIA1)P(A1) + P(B|A2) P(Az) + P(B|A3) P(As)
We know every quantity on the right side of this equation. We get

P(AB) = P

0.6 x 0.3 0.18 18
P(A,|B) = — -2 -692...%.
(4] B) 06x03+02x04+0x03 026 26 %

Note the zero in the denominator — according to our model, polls can not be off six points so
we know Clinton’s support didn’t increase. The two possibilities are that Clinton’s support
genuinely went up, or that the polling was too high, and our computation tells us that the
first is a somewhat more likely outcome.

In real life the problem is (essentially) continuous rather than discrete: the poll could
have been 51.2%, or 50.4%, or 47.7%, or .... and there is no theoretical limit to how much
it can be off. To learn more about how to adjust for this probability, I recommend a course
in statistics.

6.4 Monty Hall Revisited

We now return to further discussion of the Monty Hall problem. Our first order of business
is to give a solution using Bayes’ Theorem.

Again suppose that you have chosen Door 1, and Monty opens Door 3 (which contains a
goat) and offers you the opportunity to switch. Should you switch?
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Let B be the event that the car is behind Door 2, and let A be the event that Monty
shows you Door 3. The probability that switching will pay off is P(B|A) — the probability
that the car is behind Door 2, given that Monty showed you Door 3.

We havd™|
P(A[B)P(B)

In this formula, we have:

e P(A|B) is 1. We're assuming here that Monty shows you a door, other than the one
you picked initially, which does not have the car. If the car is behind Door 2, then this
must be Door 3.

e P(B) is 5 — this is the initial probability the car was behind door 2. This is one in
three for all the doors.

e P(A)is % — if Monty’s behavior is random, and we don’t know where the car is, then
Monty is equally likely to show you either of the two doors you didn’t pick.

So we have (AB)P(B) .
P(A|B)P(B I1xs 2
P(B|A) = = 8 =,
(Bl4) P(A) % 3
This is perhaps more illuminating in the form
P(A|B)

P(B|A) = P(B) x

Here P(A) is % We don’t know which of the two remaining doors Monty will show us. But
if the car is behind Door 2, then this raises the probability that he’ll show you Door 3. Since
this is what you in fact observed, it makes it more likely that the car was behind Door 2.

To help further understand this, now let B be the event that the car is behind Door 1.

This is less likely than Door 2, and we can see why our previous computation changes:

e P(B) is still 3 — this is the initial probability the car was behind door 1. This is one
in three for all the doors.

o P(A) is still % — if Monty’s behavior is random, and we don’t know where the car is,
then Monty is equally likely to show you either of the two doors you didn’t pick.

e P(A|B) is now % instead of 1. Since the car is assumed to be behind Door 1, Monty
chooses one of the two remaining doors at random. He is not forced to show you Door

3.

15Note that the roles of A and B are switched here.
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In other words, the prior probabilities of being behind Door 1 or Door 2 were each % The
equation is: did the fact that Monty showed you Door 3 make either of these more likely? It
did not make Door 1 more likely, but it did make Door 2 more likely because this would have
forced Monty to show you Door 3, i.e., it made the sequence of events you actually observed
more likely.

Just how does Monty behave? If you think you’ve finally understood the Monty Hall
problem, now I'm going to confuse you.

The Monty Hall Problem — Zonk! Monty shows you three doors, behind one of
which is a car. You pick Door #1, and Monty shows you Door #3, behind which is — the
car!

You lose. Zonk.

This violates the assumptions we made about Monty’s behavior. But are we so sure they
were correct?
Jeffrey Rosenthal introduceq | two variations of the Monty Hall problem. The first is the

The Monty Fall Problem: In this variant, once you have selected one of the three
doors, the host slips on a banana peel and accidentally pushes open another door, which just
happens not to contain the car. Now what are the probabilities that you will win the car if
you stick with your original selection, versus if you switch to the remaining door?

The Monty Crawl Problem: As in the original problem, once you have selected one
of the three doors, the host then reveals one non-selected door which does not contain the
car. However, the host is very tired, and crawls from his position (near Door #1) to the
door he is to open. In particular, if he has a choice of doors to open (i.e., if your original
selection happened to be correct), then he opens the smallest number available door. (For
example, if you selected Door #1 and the car was indeed behind Door #1, then the host
would always open Door #2, never Door #3.) What are the probabilities that you will win
the car if you stick versus if you switch?

The Monty Crawl Problem is easy: By assumption, Monty definitely would have opened
Door #2 if it didn’t contain the car. Since he skipped by it, you deduce that it contains the
car.

For the Monty Fall Problem, again let B be the event that the car is behind Door 2, and
let A be the event that Monty shows you Door 3, and reveals a goat. The probability that
switching will pay off is P(B|A) — the probability that the car is behind Door 2, given that
Monty showed you Door 3.

We have still
P(A[B)P(B)

P(BIA) = =50

and now

16Problem statements produced verbatim from his Monty Hall, Monty Fall, Monty Crawl, Math Horizons,
September 2008. Also available here: http://probability.ca/jeff/writing/montyfall.pdf
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e P(B)is 3, same as it ever was.

e P(A|B) is %: Monty trips and opens one of the doors. Door 3 is as likely as the other
two, so the probability is %

e P(A) is now %: The probabilities that Monty shows you Door 3, and that it contains
2

a goat, are now independent. Their product is % X % =3

So the conditional probability is

ol
X
W=

P(B|A) = =

1
5

©OIN

This should be intuitive. There is nothing deliberate about Monty’s decision, nothing to
inform you that Door 1 or Door 2 has become more likely. But do not in this case that
the probability of Door 1 containing the car has gone up (also to %) Here, there was some
possibility that Monty’s slip and fall might have revealed the car. The fact that no car
appeared meant that the odds of your existing choice being correct went up.

And, finally, The Monty Hell Problem["] Monty doesn’t want to give you a car. So

he makes up his mind to do the following: if you initially pick a door with a goat, then show
you the goat. You lose. Zonk. But if you pick the door with the car, then Monty will do
everything he can to get you to switch.

In this case, needless to say, if Monty asks you to switch then you definitely shouldn’t. So
the moral is that the solution to the problem hinges on your assumptions about his behavior.

6.5 Exercises

The following problems emphasize Bayes’ theorem and what it describes about conditional
probability. Instructions: For each problem, before you work out the details, guess the
answer and write down your guess. Then, after you get the answer, compare this to your
guess and briefly describe what your competition tells you.

1. Consider the simplified polling example from before. One poll (after Clinton’s promise
of puppies for all) showed Clinton with 53% support, and we computed that this reflects
Clinton’s actual level of support with 69.2% probability, and that the candidates are
tied with probability 30.8%.

Suppose now that a second poll comes in, again showing Clinton with 53% support.
Now compute the probability that this is her true level of support.

Finally, suppose that a third poll comes in, this time showing the candidates tied. Now
compute the probability that this is her true level of support.

"Taken from the Wikipedia page. See also the very enligthening article by John Tierney in
the New York Times, July 21, 1991.  Available here: http://www.nytimes.com/1991/07/21/us/
behind-monty-hall-s-doors-puzzle-debate-and-answer.html
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When FiveThirtyEight adjusts each candidate’s probability of winning, this is what it
is doing!

2. Recall the experiment we conducted in class: I flipped a coin repeatedly, and it came
up heads every time! Eventually it occurred to you that the experiment was rigged —
I was ignoring the actual result of the coin flip and just telling you that it was heads
every time.

Assume there is a prior probability of 95% that I was conducting the experiment
honestly, and a 5% chance that I was cheating and would always say it comes up
heads. For each n = 0,1,2,3,4,5,6,7,8,9, 10, after you have seen n heads, compute
the probability that the experiment is rigged.

(Hint: around n = 4 or 5, you should definitely suspect it but be unsure. By n = 10,
there is a small possibility I am telling the truth, but at this point you should be
reasonably confident that I'm lying.)

3. You decide to conduct your own experiment: You pull a coin out of your pocket, keep
flipping it, and it keeps coming up heads over and over!

This time, since you produced the coin yourself, you estimate the prior probability as
one in a million that by some freak chance this coin had heads on both sides. Now
estimate the probability of this, after n = 0,5, 10, 15, 20, 25, 30 flips.

4. As a Gamecock football fan, in August you look at Clemson’s team and you wonder
if they are incompetent. You guess that with 50% probability they are and with 50%
probability they aren’t.

Clemson’s first game of the season is against Podunk State. If they are incompetent,
they have a 20% chance of winning; otherwise, they have a 70% chance of winning.

Suppose that Clemson loses its game. How do you revise your estimates as to the
probability that Clemson is incompetent?

6. Here is a clip of the game Barker’s Markers (from The Price Is Right):

https://www.youtube.com/watch?v=X1TaZlk3mz8

(a) Assume that the contestant has no idea how much the items cost and guesses
randomly. Also assume that the producers choose randomly two of his correct
guesses and reveal them.
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8.

6.6

2.

Explain why he has a winning probability of % if he switches. (Use Bayes’ theo-
rem!)

(b) Watch several clips of this game (also known as ‘Make Your Mark’ during the
Drew Carey era). Determine, as best as you can, the extent to which these
assumptions are accurate. In the clips you watch, do you think the contestant
should indeed switch?

Compose, and solve, your own problem that involves Bayes’s theorem, similar to the
above. (Bonus points for problems which are particularly interesting, especially realis-
tic, or are drawn from any game show.)

Term project. Send me, by e-mail, a rough indication of what you would like to do
for your term project. You are free to ask me questions, or to suggest more than one
idea if you would like advice on which is the most feasible.

Unless you prefer to work alone, please let me know whom you plan to work with (if
you know). If you don’t know, I'm happy to match people who have indicated similar
interests.

More Exercises

. The election continues, and in a following debate Trump counters Clinton’s promises

by promising a free kitten to every American family. You initially estimate that with
40% probability Trump now has a 50% level of support, and with 30% probability
Trump now has a 52% or 48% level of support.

In this problem we consider a different polling model. With 60% probability a poll will
be accurate; with 15% probability it will be too high by 2 points; with 5% probability
it will be too high by 4 points; with 15% probability it will be too low by 2 points;
with 5% probability it will be too low by 4 points.

Four polls come in and show the following levels of respective support for Trump:
50%, 52%, 48%, 54%. After each poll, compute the probability that Trump’s support
is respectively at 48%, 50%, or 52%.

You sit down for a game of poker with a player you have never met before. Suppose
that, when first to act, an aggressive player will raise 70% of the time and fold 30% of
the time; a conservative player will raise 40% of the time and fold 60% of the time.
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You estimate initially that there is a 50% chance that your opponent is aggressive. The
first three times that she is first to act, she elects to raise.

After each raise, compute the revised probability that your opponent is aggressive.

3. You are a child worried about monsters under your bed. Suppose that your knowledge
of Bayesian probability outstrips your common sense, so you decide to use Bayes’
theorem to assauge your worries.

You initally estimate that with 30% probability there are monsters under your bed,
and with 70% probability there aren’t.

Periodically, you ask your father to look under your bed. If there are monsters under
your bed, then with 90% probability they will hide and your father won’t see anything.
With 10% probability your father will indeed see the monsters (and presumably be
eaten by them).

(a) Suppose you ask your father to look, and on three consecutive nights he doesn’t
see any monsters. What do you now estimate as the probability that there are
monsters under your bed?

(b) How many times must you ask your father to look before you get this probability
under 1%7

4. You speculate that your math professor may be a zombie. At the beginning of the
class, you estimate that with 20% probability he is a zombie.

If he is not a zombie, then each class he will give a normal lecture. If he is a zombie,
then with 80% probability he will give his lecture as normal, and with 20% probability
he will instead devour your brains.

Twenty lectures pass, and your professor has still not consumed your brains. With
what probability do you now estimate that your professor is a zombie?

5. In a variation of Let’s Make A Deal, Monty shows you four doors, one of which contains
a car. You pick Door 1, and then Monty chooses at random one of the other doors
which does not contain a car (let’s say Door 4) and shows you that it contains a goat
instead.

The prior probabilities of each door containing the car were 411' What are the revised
probabilities now, and should you switch?

6. Here is a clip of the game Barker’s Markers (from The Price Is Right):
https://www.youtube.com/watch?v=X1TaZlk3mz8

(a) Assume that the contestant has no idea how much the items cost and guesses
randomly. Also assume that the producers choose randomly two of his correct
guesses and reveal them.
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Explain why he has a winning probability of % if he switches. (Use Bayes’ theo-
rem!)

(b) Watch several clips of this game (also known as ‘Make Your Mark’ during the
Drew Carey era). Determine, as best as you can, the extent to which these
assumptions are accurate. In the clips you watch, do you think the contestant
should indeed switch?

7. Consider a further variation of Let’s Make a Deal with four doors, this time two of
which contain cars. You pick Door 1, and this time Monty opens a different door which
contains a car. (If only one of the remaining doors contained a car, he shows you that
one; if two did, he chooses one of them at random.)

Compute now the probabilities that each of the doors contains a car. Should you
switch?

Solution. Suppose you pick Door 1 and Monty shows you a car behind Door 2. Let
A be the event that a car is behind Door 1. We know P(A) = 3. Let B be the event
that Monty shows you a car behind Door 2. We want to compute P(A|B).

For this we use Bayes’ Theorem. We know that

P(aB) = ZEALA) (B]Lf(%) (4)

We saw earlier that P(A) = 5. What is P(B|A)? If a car is behind Door 1, then there
is only one car remaining, and Monty is obliged to show it to you. The probability
that it is behind Door 2 is P(B|A) = 3.

Finally, what is P(B)? There are two ways that Monty could show you Door 2. The
first is that a car is behind Door 1. We just saw that the (prior) probability that a car

is behind Door 1 and then Monty shows you Door 2 is P(B|A)P(A) =3 -4 = ¢.

Alternatively, there is a (prior) probability of % that there is no car behind Door 1, in
which case the probability Monty shows you Door 2 is still % So the total probability
of this sequence of this events is %. The event B takes place if one of these two scenarios
happens, so that P(B) = ¢ + 3 = 3.
We conclude that -
P(B|A)P(A 5 1
P(A‘B): ( |)():312:_'

P(B) I 73

Indeed, we knew it had to be %: you knew that Monty had to show you one of the other
three doors, and Door 2 is as good as either of the other two. So P(A) = P(A|B) = 1.

Now, let A be the event that a car is behind Door 3, with P(A) = % As before, let B
be the event that Monty shows you a car behind Door 2. We want to compute P(A|B).

What changes? We compute P(B|A). If a car is behind Door 3, then the second car
is equally likely to be behind Door 1, 2, or 4. Monty will only show you a car behind
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Door 2 if one is there, and even then there is only a one in two chance he will show
you this door (since he might show Door 3 instead). So P(B|A) = 3.

Now what is P(B)? It is cumbersome to do this the long way, so here is a shortcut
solution: you know that Monty will show you one of Door 2, 3, or 4, so without any

information (like A) he is equally likely to show you one of these. So P(B) = j.

In conclusion, we have

P(BIA)P(A) 55 1

p(B) L 4

P(A[B) =

The probability that Door 3 contains a car has gone down to i, so you should not switch
to it. By exactly the same reasoning, the probability that Door 4 also contains a car
has also gone down to %.

8. Compose, and solve, your own problem that involves Bayes’s theorem, similar to the
above. (Bonus points for problems which are particularly interesting, especially realis-
tic, or are drawn from any game show.)

7 Competition

7.1 Introduction
The following clip is from the final round of the British Game Show Golden Balls.

https://www.youtube.com/watch?v=tYYSu6PkyDs

Game Description (Golden Balls (Final Round)): Two players play for a fixed jackpot,
the amount of which was determined in earlier rounds. They each have two balls, labeled
‘split” and ‘steal’. They are given some time to discuss their strategies with each other.
Then, they each secretly choose one of the balls and their choices are revealed to each other.

If both choose the ‘split’ ball, they split the jackpot. If one chooses the ‘split’ ball, and
the other ‘steal’; the player choosing ‘steal’ gets the entire jackpot. If both players choose
‘steal’; they walk away with nothing.

In the video, the players are competing for a prize of 8,200 pounds (roughly $11,000 in
US currency). We can summarize the game in a two-by-two grid that describes the possible
choices for you and for your opponent, and the outcome of each choice.

You
Share Steal

Share | 5500 | 11000

Opponent
Steal 0 0
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Now, assuming that you don’t care about your opponent one way or another, and want
only to maximize your own expected payoff, your optimal strategy is clear. If your opponent
steals, it doesn’t matter whether you steal or share. If your opponent splits, then you do
better if you steal. Therefore, it is clear that you should always choose the steal ball.

Of course, your opponent will reason in exactly the same way. Therefore, your opponent
will deduce that she should choose the steal ball, and therefore with optimal strategy both of
you will choose ‘steal’ and win nothing.

Here is an amusing video of the same game being played by two other contestants:

https://www.youtube.com/watch?v=S0qjK3TWZES

You can also find other videos of this game on YouTube, many of which will do somewhat
less to affirm your faith in humanity.

Setup and notation. This is an example of a two-player strategic game, of the type
studied in the subject known as game theory. Although this entire course is about games,
mathematical ‘game theory’ refers to this sort of analysis: you have a game involving two or
more players, and you have distilled the analysis down to the point where you know what
will happen depending on your, and your opponents’, choice of strategy.

A strategic game consists of the following inputs:

e Two or more players. Here we will only look at two player games.

e For each player, two or more choices of strategy. (The players choose their strategies
independently and simultaneously.) For example, in the Golden Balls example, each
can choose ‘Share’ or ‘Steal’. Typically, the strategies are the same for each player,
but this doesn’t have to be the case.

o A payoff matriz, such as the one above, describing the payoff to each player.

In the above, we listed only the payoff to the first player. To be more precise, we list the
payoffs to both players as follows:

You
Share Steal
Share | 5500, 5500 | 11000, 0
Opponent
Steal | 0, 11000 0

This is an example of a non-zero-sum game. Many games (and especially those that we
describe colloquially as ‘games’) are zero-sum in the sense that what is good for one player
is equally bad for the other player. For example, if one team wins the World Series, then
the other team loses. In most board games, there is one winner and everyone else loses.@

18 This is not true of all board games. For example check out Republic of Rome, described here —
https://boardgamegeek.com/boardgame/1513/republic-rome — where there can be at most one winner,
but where it is possible for all players to lose.
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7.2 Examples of Strategic Games

We now give some common examples of strategic games and discuss their optimal strategy.

Example 1. The Prisoner’s Dilemma. This is essentially the same as the ‘Golden Balls’
game discussed above, and is perhaps the most familiar example of a strategic game. One
formulation™ of the Prisoner’s Dilemma is as follows.

Two members of a criminal gang are arrested and imprisoned. Each prisoner is in solitary
confinement with no means of communicating with the other. The prosecutors lack sufficient
evidence to convict the pair on the principal charge. They hope to get both sentenced to
a year in prison on a lesser charge. Simultaneously, the prosecutors offer each prisoner a
bargain. Each prisoner is given the opportunity either to: betray the other by testifying
that the other committed the crime, or to cooperate with the other by remaining silent. The
offer is:

e If A and B each betray the other, each of them serves 2 years in prison.

e If A betrays B but B remains silent, A will be set free and B will serve 3 years in prison
(and vice versa).

e If A and B both remain silent, both of them will only serve 1 year in prison (on the
lesser charge).

The payoff matrix for this game as follows:

A
Betray  Silent

Betray | -2, -2 -3, 0
B

Silent | 0, -3 -1, -1

Mathematically speaking, the game is trivial. Each prisoner should betray the other. This
invites a very serious paradox, as well as questions about whether the model is realistic. (If
you betray your accomplice and he remains silent, you had better get the hell out of town
as soon as you are released from jail.) It is also interesting if the game is played multiple
times consecutively. But we won’t pursue these questions here.

Example 2. Rock, Paper, Scissors. This is a familiar game and we can describe its
payoff matrix immediately.

YTaken from the Wikipedia article.
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A

Rock Paper  Scissors

Rock | 0,0 1,-1 1,1

B Paper| -1,1 0,0 1,-1

Scissors 1, -1 -1, 1 0,0

This is a stupid game of pure luck, but don’t tell these people:
https://www.youtube.com/watch?v=nGYqSqfOyCY

Note that this is also an example of a zero-sum game: a win for you is equivalent to a
loss for your opponent.

If you try to get too clever, then your opponent can outwit you. Best to assume your
opponent is the smartest person on earth. Therefore, just play a random strategy: play rock,
paper, scissors randomly with probability % chance each. Then, on average, you can’t win,
but you can’t lose either.

Example 3: Chicken. The game of Chicken is illustrated by this clip?”| from the movie
Rebel Without a Cause.

https://www.youtube.com/watch?v=u7hZ9jKrwvo

Two teenagers challenge each other, in front of all of their friends, to the following
contest. They start far apart and drive their cars at maximum speed towards each other.
If one swerves and the other one does not, then the driver who swerves is the ‘chicken’ and
loses face among his friends, while the other enjoys increased social status.

If neither swerves, the resulting accident kills them both.

The payoff matrix for this game might be described as follows:

A
Swerve Straight

Swerve 0,0 1,-1
B

Straight | -1, 1 | -100, -100

Example 4: Final Jeopardy (Simplified).
Here is a clip of the final round from the game show Jeopardy:

20Thanks to Kevin Bartkovich, who taught me this subject and who used this very clip for this example.
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https://www.youtube.com/watch?v=p- jFBEozxWk
And here is a particularly dramatic one:

https://www.youtube.com/watch?v=8MwVgf2AzcQ

Game Description (Jeopardy — Final Jeopardy): Three players come into the final
round with various amounts of money. They are shown a category and write down a dollar
amount (anything up to their total) that they wish to wager.

After they record their wagers, they are asked a trivia question. They gain or lose the
amount of their wager, depending on whether their answer was correct. Only the top finisher
gets to keep their money.

This is a complicated game to analyze in full detail, so we consider the following toy
model of it:

Two players, A and B, start with 3 and 2 coins respectively. Fach chooses to wager none,
some, or all of her coins, and then flips a coin. If the coin comes up heads, she gains her
wager; tails, she loses it.

How should each player play to mazimize her chances of winning (counting a tie as half
a win)?

We can compute the payoff matrix for the game as follows:

A
329 1 0
516 | 5| 4
2131853
4 | 5| 6 | 6
B 11315 /8]%

4 1 4 6
0 8 8 8 1

Here only the payoffs for A are listed; the payoffs for B are the negatives of these. (Since we
stipulated that each player wants only to win, the game is a zero-sum game: your opponent’s
gain is your loss.)

This takes a little bit of work to compute. For each combination of wagers there are four
possibilities: A and B both gain, A and B both lose, only A gains, only B gains. We add }1
for each such scenario in which A wins, and % for each such scenario in which they are tied.

We can see immediately that A should never wager all three coins: she always does at
least as well, and depending on B’s strategy possibly better, by instead wagering two coins.

But between the other strategies it is not obvious what the players should choose: your
best strategy depends on your opponent’s best strategy, in a somewhat complicated way.
We will come back to this later.
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7.3 Nash Equilibrum

These games are very interesting if done repeatedly or there are additional factors (such as
altruism) involved. We will assume that the game is played once and each player plays
exclusively for his or her own self-interest.

The obvious question for a game is: what is the optimal strategy? We cannot hope
to define that precisely, so we define a mathematically rigorous, more precise notion that
captures some of what we mean by ‘optimal’. We will imagine that our opponent is a genius,
or perhaps a mindreader, and focus on playing defense: making sure that our opponent can’t
outplay us.

We will allow each player to choose a mixed (i.e., random) strategy. For example, if
you are playing Spilt or Steal you might choose the non-random strategy of always playing
Steal. But if you are playing Rock, Paper, Scissors and you always make the same play
then you can be exploited by a sufficiently clever opponent. If we are playing defensively, we
should choose rock, paper, and scissors each with % probability.

Definition 7.1 By a mixed strategy we mean an assignment of a probability (between 0
and 1, inclusive) to each possible strategy.

Definition 7.2 Suppose you and your opponent each choose a (mixed) strategy for a game.
Then these strategies form a Nash equilibrum[if] if: your current strategy is optimal against
her current strateqy, and her current strategy is optimal against your current strategy.

In other words, given your strategy, your opponent can’t do any better than her current
strategy, and vice versa. (Being at a Nash equilibrium doesn’t mean that you couldn’t both
do better by both adjusting your strategy.)

Example. Suppose you play Split or Steal. Then a Nash equilibrium is both players
choosing to steal with probability 1. If your opponent always steals, then it doesn’t matter
what you do, so actually every strategy is optimal for you. You can’t do any worse (or
better) than always stealing.

Example. Suppose you play Rock, Paper, Scissors. Then a Nash equilibrium is a mixed
strategy: both players choosing rock, paper, and scissors with probability % each. If you do
this, then your opponent’s strategy doesn’t matter: the game is, on average, a draw.

Note that no other choices of strategy form a Nash equilibrium. Why is this? Suppose
that you choose a different strategy. Then the probabilities will be uneven, so let’s say your
strategy is biased towards Rock. Then your opponent should switch immediately to playing
Paper all the time. But then you should switch to playing Scissors all the time! And so your
opponent should switch to Rock all the time. And so on, ad infinitum. The game is not at
equilibrium.

Example. Here is the game of Stag Hunt. You and another player have to choose to
either cooperate and hunt a stag, or to hunt a rabbit on your own. You can catch a rabbit

2INamed after John Forbes Nash, as depicted in the movie A Beautiful Mind.
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by yourself, but you need the other player’s cooperation to successfully hunt the stag. The
payoff matrix is as follows.

You
Stag  Rabbit

Stag | 2,2 1,0
They

Rabbit | 0, 1 1,1

Obviously, you both should cooperate to hunt the stag. This choice is a Nash equilibrium:
if your opponent has decided to cooperate, then you want to cooperate with her too.

However, both players hunting the rabbit is also a Nash equilibrium. If your opponent
has decided to hunt the rabbit instead of the stag, then that is important, but you have to
do the same thing (or go without food entirely).

Example. You and another player place a coin heads or tails, each invisibly to the other.
You have no chance to communicate beforehand. If you both make the same choice, then
you get a reward; otherwise, nothing happens.

The payoff matrix for this game is as follows.

You
Heads Tails

Heads | 1,1 0,0

They
Tails | 0,0 1,1

The game has two Nash equilibria: you both pick heads, or you both pick tails. This is
somewhat similar to the Stag Hunt, but here it is not obvious which you should pick.

Now we come back to Chicken. We describe a less morbid game along the same lines — sort
of like Share or Steal, but with a bit more bite. A referee asks you to choose (independently)
whether to be nice or mean. If you are both nice, the referee gives you each a dollar. If the
other player is nice and you are mean, then the referee gives you her dollar too. But if you
are both mean, the referee takes five dollars from both of you.

All of this is described by the following payoff matrix.

A

Nice Mean

Nice | 1,1 2,0

Mean | 0,2 | -5,-5
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Note that ‘both nice’ is not a Nash equilibrium. If the other player is always nice, you should
be mean to take her money. Similarly, ‘both mean’ is also not a Nash equilibrium. If your
opponent is determined to always be mean no matter what, then you should give in and be
nice, so that you avoid losing anything.

However, it is a Nash equilibrium for you to always be nice and your opponent to always
be mean, or vice versa. If your opponent is always mean, then you stave off the damage by
always being nice. Conversely, if you decide to always play nice, then — in the dog-eat-dog
world of theoretical game theory, there is no reason for your opponent not to exploit you.

Are there any Nash equilibria in the middle — where you each play a mixed strategy?
Suppose your opponent plays a mixed strategy where she is nice with probability «, and
mean with probability 1 — a.

Then, the expected value of you being nice is

l-a+0-(1—a)=a,
and the expected value of you being mean is
2-a+(-5)-(1—a)=Ta—>5.

If @« > 7o — 5, then you should always be nice; if & < 7a — 5, then you should always be
mean.

The interesting case is when these are equal, i.e., when o« = 7Ta — 5. (Doing the algebra,
this is the same as saying 6 = 5, or a = %) If your opponent is nice with probability %,
then every strategy has the same payoff: the extra dollar you get from being mean exactly
balances the occasional big loss. So you may as well match her strategy, and this is also a
Nash equilibrium.

Indeed, in some sense it is the best one. With this mixed strategy, the probabilities of

each combination are

A
Nice Mean
. 25 5
Nice 36 36
B
5 1
Mean % 6

and the expected payoff of the game is

25 5 5 1 30 5
Tl =9 0+ = (=)= == C
36 +36 +36 +36 (=5) 36 6
to each player. It is not as good as if you both play ‘Always Nice’, but with this choice of

strategy you do pretty well, and you ensure that you cannot be exploited.

Final Jeopardy. We finally return to our Final Jeopardy model: A has 3 coins, and B
starts with two. Each places a wager and either wins or loses that many coins with 50-50
probability, and wants to finish with more coins than their opponent. (A tie counts as half
a win.)
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Recall that we didn’t include the possibility that A wager all three coins because it was
dominated by the choice of wagering two coins. Wagering two is at least as good in all
situations, and in some situations better.

For simplicity we multiply all the payoffs by 8 and subtract 4. This results in a nicer-
looking payoff matrix, without changing the essence of the problem.

A
2 10
2121110
Bi1j1/2]2
0[0]2|4

We want to find a Nash equilibrium. We can simplify this problem by realizing that B
should never wager 1. Why? The payoffs are respectively 1, 2, 2 to A depending on A’s
strategy. If she is considering doing this, she should flip a coin and wager either 0 or 2 with
a 50-50 chance each. This results in an average payoff of 1, 1.5, and 2 which is better for B.

So we can further simplify the matrix:

A
2 10
212110
B
0(0]2|4

We can go one step further. For player A, it is not harmful to wager 1, but she can just
as well wager 0 or 2 with 50-50 probability. The average payoffs are identical. So we can
eliminate this strategy from A’s choices as well to obtain:
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Finally, we can find the Nash equilibrium! We want a mixed strategy. So suppose B plays 2
with probability p and 0 with probability 1 — p. Then the payoff to A from playing 2 is

2p+0(1 —p) = 2p,
and the payoff to A from playing 0 is
Op +4(1 —p) =4(1 — p).

In a mixed strategy Nash equilibrium, A will be indifferent to these two strategies, so we
must have 2p = 4 — 4p — solving this yields p = 2/3. So B should play 2 with probability %
and 0 with probability %

Conversely, suppose A plays 2 with probability ¢ and 0 with probability 1 — ¢q. Then the
payoff to A (i.e. the negative payoff to B) from playing 2 is

2¢+0(1 — q) = 2¢,
and the payoff to A from playing 0 is
0g +4(1 —q) = 4(1 —q).
So, similarly, A should play 2 with probability % and 0 with probability %

7.4 Exercises

1. Consider our original game of Chicken:

A
Swerve Straight

Swerve 0,0 1, -1
B

Straight | -1, 1 | -100, -100

Compute the Nash equilibrium for this game (it will be a mixed strategy for both
players) and the expected payoff.
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2. You and a friend were planning to meet tonight, but your cell phones are both dead and
you cannot communicate. You were either going to meet at the park and go jogging,
or go to the movie theater and watch a movie. Since you can’t communicate, each of
you decides to go to either the park or the theater and hope that the other decides the
same.

You would slightly prefer jogging to the movies, and your friend would slightly prefer
a movie to jogging. But the top priority for each of you is meeting up, and you
would rather do the other’s preferred activity together than your preferred activity by
yourself.

Describe this scenario as a strategic game and come up with a suitable payoff matrix.
Compute at least one Nash equilibrium corresponding to your payoff matrix.

3. Consider a game like rock-paper-scissors, but only with rock and paper. If you both
show the same thing, then you win a prize, and if you show different things, then your
opponent wins the same prize. In addition, if you both show rock, then you get an
additional bonus prize. (This does not come at your opponent’s expense, so although
this outcome is better for you than if you both show paper, it is not worse for your
opponent. )

Describe this scenario as a strategic game and come up with a suitable payoff matrix.
Compute at least one Nash equilibrium corresponding to your payoff matrix.

Solution. One possible payoff matrix is the following. (This posits that the bonus
prize is worth half the main prize. Similar, but different, solutions are also possible.)

A
Rock Paper

Rock | 3,0 0, 2

B
Paper | 0, 2 2,0

The pure strategies are not Nash equilibria: there is no strategy that both players
could agree to, such that neither would want to deviate.

So we look for a mixed strategy Nash equilibrium. Suppose first that A chooses to
play rock with probability o and paper with probability 1 — . Then the payoff to B
from playing rock is

0-a+2-(1—a)=2-2a,

and the payoff to B from playing paper is

2-a+0-(1—a)=2a.
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A should choose her strategy to leave B indifferent between these two options: Set
2 —2a =2a, so0 2 = 4a, sooz:%.

The game is not symmetric, so we analyze the game the other way. Suppose first that
B chooses to play rock with probability g and paper with probability 1 — . Then the

payoff to A from playing rock is

3-8+0-(1-p)=3p,

and the payoff to A from playing paper is

0-8+2-(1—f8)=2-—28

B should choose her strategy to leave A indifferent between these two options: Set
38=2—-28,s02=53,s0f =2

In conclusion, A should choose rock half the time, and B should choose rock % of the
time. Although this was not asked in the question, we compute the expected payoff of
the game. To A it is

1 1 3 6

.2 ) R

2 3+2 5 5’
and to B it is

1 2—1—1 3 2=1

2 5 2 5 ° 7

8 Backwards Induction

Example. A Money Division Game. Consider the following game. You and another
player play for a pot of $100. You go first, and you can propose any division of the money
between the two of you. The other player may then either accept your division, or flip a
coin. If she elects to flip and flips heads, then she gets the entire pot; if she flips tails, then
neither of you gets anything.

The key to analyzing this game is backwards induction: figure out what your counterpart’s
optimal strategy is, and then base your strategy on that. The expected value (to her) of
a coin flip is $50.00, and therefore you should offer more than that to ensure that she will
take your offer. For example, if you must divide the pot into integer amounts, you should
offer to give her $51.00 and keep $49.00. This is better than a coin flip, so — if she is playing
rationally — she will accept your offer.

Now consider a three player version of the same. The three of you play for a pot of $100.
You propose any division of the money between the three of you. The second player either
accepts it, or proposes an alternative division of the money. In the latter case, the third
player either accepts that or flips a coin.

By what we have just determined, if the second player proposes a division, she should
propose to keep $49.00 and give $51.00 to the third player. Obviously you want to avoid this
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outcome since you will get nothing, So you should make a proposal with more than $49.00
for the second player. The best option is to propose $50.00 for yourself and $50.00 for the
second player. The second player should then accept this deal.

Another Prisoner Example. You and one other person share a prison cell. You are
both very intelligent, and you have exactly the same motives.

One day the jailer comes and paints a mark on each of your foreheads — either red or
blue. You don’t have any idea what color your mark is, but you can see your cellmate’s — it
is red. He can also see yours.

The jailor informs you both that either of you may guess the color of your mark. If you
guess right, you will be set free, but if you guess wrong, you will be executed. You would
very much like to be set free, but you even more don’t want to be executed, so neither of
you is willing to guess unless you are certain.

Finally, the jailor then tells you: ‘At least one of you has a red mark’. After a few
moments, you raise your hand and inform the jailor — correctly — that your forehead has a
red mark, and you are set free. How did you know?

The solution is to consider the problem from your cellmate’s perspective. Suppose instead
that you had a blue mark. Then your cellmate would see your blue mark. Since he knew
that at least one of you had a red mark, he could deduce that it must be him. So he would
have immediately guessed that his own mark was red.

He did not do so; therefore your mark is not blue. So you can guess with confidence that
it is red.

8.1 The Big Wheel

Part of The Price Is Right consists of spinning the famous big wheel. It is played twice
each show. Most of the stand-alone clips on Youtube feature something unusual happening,
so we refer to 13:00 or 30:00 of the following clip.

https://www.youtube.com/watch?v=q0Wfz7ZNEPE

Game Description (The Big Wheel — Price Is Right): The Big Wheel consists of
twenty numbers — 5 through 100 (i.e. five cents through a dollar), in increments of five.
Three players compete, and the player who spins the closest to a dollar without going over
advances to the Showcase Showdown.

The players spin in order. Each player spins once, and then either keeps the result or
elects to spin a second time and add the two results. If the result is higher than $1.00, the
player is eliminated immediately. The winner is the player who spins the highest without
going over. (If two or more players tie, they advance to a tiebreaker.)

In addition, players earn a bonus if they spin exactly a dollar — but we will ignore this.

The natural question is: how should each of the players play? To be more specific, when
they are faced with the decision to spin again or not, should they spin again?
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In some ways this is like the strategic games dicussed in the previous chapter. But it has
one very important difference: the players play sequentially rather than simultaneously.

We will assume that all players understand their best possible strategy and will play it.
With that in mind, we solve this puzzle by backwards induction: we start with the last player
(who has by far the easiest decision) and work backwards.

8.1.1 Player 3

This is very easy, and on the show you will even observe that Barker and Carey don’t ask
the contestants what they want to do.

If you spin more than the two previous contestants (or if they busted by spinning more
than $1.00), then you win and obviously you should not spin again. Conversely, if you spin
less than one of the two previous contestants, then you lose if you don’t spin again, and you
might win if you spin again, so obviously you should spin again.

You could tie. If you and one other player are tied with more than 50 cents, then you
have 50-50 odds of winning a tie breaker and less than that of not busting, so you should
accept the tie and proceed to the tie-breaker. Conversely, if you and one other player are
tied with less than 50 cents, you should spin again. (If you are at exactly 50 cents, then it
is a tossup.)

Similarly, if you are tied with both other players, you should spin again if the tie is 65
cents or less, and accept the tie at 70 cents or greater.

8.1.2 Player 2 — Example

This is much more subtle, but once we are done we will understand how to work out Player
1’s strategy. We begin with a specific example. Assume that the first player spun 60 cents.
Obviously if you spin less than 60 on your first spin, you must go again. Suppose you spin
65 cents on your first spin. Should you spin again, or hold? To answer this question we will
compute the winning probability in either outcome.

Suppose first that you hold at 65 cents. Then the third player will spin again. If she
spins 65 cents or greater, she will hold, where if she spins 60 cents or less she will spin again.

The probability that the third player will win without a tiebreaker is

T 12 7 14 0.56
202020 2
The first figure is the probability that she will win on the first spin; the second is the
probability she will take a second spin times the probability she will win on that spin. (Note
that, no matter what she spins on the first spin, if it is less than 65 cents there are exactly
seven outcomes with which she will win on the second spin, and so seven numbers that will
put her between 70 cents and one dollar. Other numbers will leave her too high or too low.)
The probability that the third player will force a tiebreaker is

1+12 1_2_008
20 20 20 25
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So her winning chances are 0.56 + % -0.08 = 0.6 — so yours are 0.4, or 40 percent.

Now we consider the option of spinning again. Here we can take a shortcut, and notice
that in this case your odds are less than 35%: there is a 35% probability that you will not
bust, and if you don’t bust then your opponent still has some odds to beat you. So, although
we could compute this probability we don’t need to.

So, in conclusion, if the first player spins 60 cents on her first spin, and you spin 65 cents
on your second spin, you should keep it and not attempt to spin again. Clearly this is still
more true if you spin more than 65 cents on your spin, and if you spin less than 60 cents
then you should go again.

What if you tie the first player? If you hold, the probability of a third player victory

without a tiebreaker is
51208 16
20 720 20 25 0%
Note that if the third player also spins 60 percent, then she will choose to spin again as we
analyzed previously! (This is the whole idea of backwards induction — we're figured out in
advance how the third player will respond to any action, so we don’t need to think about it
again.) So, she will only tie if she spins 60 cents total on both spins. The probability of this

outcome is
11 1

20 20

the probability of spinning less than 60 cents on the first spin, and then on the second spin.

So, in conclusion, with probability 0.3325 you will finish in a two-way tie, and with
probability 0.0275 you will finish in a three-way tie. Your winning probability is therefore

= 0.0275,

% -0.3325 + % -0.0275 = .175. ..

Not very good.

Suppose then you spin again. This looks pretty good, right? With probability 0.4 you
will improve your score and not be stuck in a tie with the first player.

With probability 0.05 each, you will improve your score to 60 + 5n for each of n =
1,2,3,4,5,6,7,8. Your opponent will spin again only if she doesn’t match your score. In
each case, her winning probability without a tiebreaker is

8—n+n+11 8—n  (8—n)(n+31)
20 20 20 400

Her tying probability is

207720 20 400
So her total winning probability is

1 n+11 1 _n—|—31

(8 —n)(n +31) N n+31  —2n%—45n + 527
400 800 800 '
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That probably looks very strange. For each n from 1 to 8, this is (to three decimal places)
0.6,0.536, 0.468, .393, .315, .231, .142, .048,

and so your winning probability is
0.4,0.464, 0.534, .607, .685, .769, .858, .952.

To compute your winning probability, multiply each of these numbers by 0.05 and add the
results. (Equivalently, take their average and multiply by 0.4 — your probability of not
busting.)

We get a winning probability of 0.26. It’s not very good — you have a probability of
only 40% of not busting and even then you could lose.

Let’s recap. We have concluded: As the second player, if the first player spins 60 cents,
you should spin again if you get less than 60 cents (obvious) or if you tie (less obvious). Also,
if you spin 65 cents or more, you should keep it (again not obvious).

8.1.3 Player 2 — In general

We now mostly understand what Player 2 should do. We can recap what we have concluded:
e If you spin less than the first player, then obviously you should spin again.

e If you tie the first player at sixty cents, then you should spin again. Also, if you tie
the first player at less than 60 cents, then you should still spin again (by comparison
with the 60 cent case).

What if you tie with more than 60 cents? This is a computation we have not done
yet. We could similarly work out the smallest amount of money at which you should
hold rather than spin again. This is a computation like the one above: we would do
the same for 65 cents, 70 cents, 75 cents, ...

e If the first player spins 60 cents, and you surpass her, you should hold.

It also follows that if the first player spins more than 60 cents, and you surpass her,
you should still hold.

Finally, we can conclude that if the first player spins less than 60 cents, and you get
at least 65 cents, you should hold. This is equivalent to the case where the first player
spun 60 cents. Since you spun more, you have knocked her out of the competition and
the only question is whether the third player can beat you.

It remains to consider: if you spin 60 cents or less on your first spin, and it is more than
the first player, should you spin again? Somes the answer is clearly yes. Suppose for example
that the first player spins twice and gets a nickel each time, for a total of 10 cents. On your
first spin you get 15 cents. Then it’s fairly clear that you should go again, right? So the
question is when we should spin again — we just need to compute the cutoff, and we’re done.
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8.2 Player 1

Finally, what should Player 1 do? Suppose she spins 55 cents. Should she keep it or go
again? We can’t answer this question completely yet, since we haven’t analyzed Player 2’s
complete strategy.

But it’s not so hard. Suppose she spins 60 cents. Then we have computed Player
2’s optimal strategy in every case, and so eventually we can compute Player 1’s winning
probability if she stays. Similarly we can compute Player 1’s winning strategy if she spins
again.

Now if we conclude that she should hold on 60 cents, then we would also conclude that
she should hold with everything higher. Conversely, if we conclude that she should spin
again on 60 cents, then we would also conclude that she should spin again with anything
lower. One feels intuitively that the cutoff point should be around here.

Is this question hard? It sort of feels so. After all, we didn’t give a complete answer.

But I want to argue that this question is not, in fact, so hard. We gave a complete
description of how to solve it in every possible case, and so all we need for a complete
solution is the time and willpower to finish.

Or..... a computer. What we described is an algorithm for completely solving the ques-
tion: we break it up into a lot of small steps, and we are guaranteed that following them
will eventually yield a complete solution. This is what computers excel at!

This turned out to be worth a research paper. In the first spot, spin again with 65 cents
or less:

http://fac.comtech.depaul .edu/rtenorio/Wheel.pdf

8.3 Contestant’s Row

In the following game, a pie is on a table and three players divide it up. The first player
takes any amount of pie, including the entire pie. The second player then takes any amount
of pie from either the table or the first player. The third player then takes any amount of
pie from one of the first two players, or from the table.

How should the players play, if they want to get as much pie as possible?

Before we begin, note that the last player is definitely at an advantage! This is because
she can take the pie of any other player. Either the portion left over for her is the largest,
or she can take the largest piece. In any case she always ends up with more (or as much)
pie than the others.

Finally, to simplify matters, we're going to ignore ties in everything that follows. If you
leave a tie for another player, then you could have taken just a tiny bit less pie and broken
the tie — so the other player will definitely not want to take your pie. So we will assume that
you always do this.

e We begin, as before with the third player. She picks one piece of pie — either the first
player’s, the second player’s, or whatever is left on the table — and takes all of it. She
has no reason to share, and she chooses whichever is largest.
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e The second player wants to take as much pie as possible while ensuring that it is not
in the third player’s interest to take it.

If the first player took a third or less of the pie, then the second player takes a sliver
less than half of the remaining pie. Then, the remaining pie will be the largest piece,
the third player will take it, and the second player will end up with nearly as much.

If the first player took more than a third, but less than half of the pie, then the second
player should take a sliver less than the first player took. Then less than a third of the
pie will be left and the third player will take the first player’s pie.

If the first player too more than half, but less than two thirds, of the pie, then the
second player should take all of the remaining pie. The third player will then take the
first player’s p Finally, if the first player too more than two thirds (or all) of the pie,
the second player should take slightly less than half of the first player’s pie. The third
player will then take the remainder of the first player’s pie.

e Finally, what is the best strategy for the first player? We can see that if she takes
more than a third of the pie, it will be taken by the second or third player. So the
first player should take slightly less than a third, and leave the rest for the other two
players. This leaves both players essentially equally well off.

This game is essentially a model for Contestant’s Row on The Price Is Right. We
introduced this game earlier; see for example the following clip:

https://www.youtube.com/watch?v=TmKP1a03E2g
How does the pie game resemble The Price Is Right? And how is it different?

e The resemblence comes from imposing a random model on the range of possible prices.
With the scuba gear, the contestants bid 750, 875, 500, and 900, and the actual price
was 994.

So we might assume for example that (1) the price of the scuba gear was between $500
and $1,200; that (2) that the price is equally likely to be any of these; that (3) all of
the players know this; and that (4) all of the players know that all of the players know
this. (And, all of the players know that all of the players know that all of the players
know this, and so on.)

And, as always, we have to assume that all of the players are math experts and play
rationally in their own self-interest. This is demonstrably false — the fourth player
should always bid either exactly $1 more than some other player, or exactly $1. But
most contestants don’t do this. This is kind of like going last in the pie game, and
taking someone else’s pie — but taking only some of it. In our cutthroat, dog-eat-dog
worldview, there’s no reason to take less than all of it.

Note that none of our assumptions are totally realistic. That is the price for developing
a mathematical model. Any of our assumptions can be questioned. But we have to
make assumptions to tackle this as a math problem.
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So, in our model, the pie is the price range, and the amount of pie each player has is
the range of guesses that their bid has covered. Our four contestants end up with the
following ranges: 750 to 874, 875 to 899, 500 to 749, and 900 to 1200. The last player
has done the best, the third player has done almost as well, and the second player has
had his pie taken from him.

e The Price Is Right is discrete, where our pie game was continuous. You can divide a
piece of pie, no matter how tiny, into still smaller pieces. But on The Price Is Right,
the minimum interval is one dollar.

This doesn’t make a big difference, but it does make a difference.

e Related to the above, you can’t literally steal someone else’s bid — this is like saying you
have to leave someone with a tiny piece of pie. You do see on the show one contestant
bidding one over an earlier contestant, and the earlier contestant being exactly right.
(Indeed, contestants get a cash bonus if they guess the amount on the spot.)

e [f all of the contestants bid too high, then they don’t all lose. They all get to bid again.

So, in our pie model, this is like saying that if there is any unclaimed pie, the players
get to play again for the leftovers. Or (essentially equivalently), what matters is not
how much pie you get — but rather that you get more than your competitors!

We could tweak our pie model. But we don’t want to think of mathematical models as being
‘right’ or ‘wrong’ per se — rather, we try to make them fairly accurate, and design them to
capture the essential elements of the game.

9 Special Topics

In this section we treat some unusual mathematical topics which come up in game shows.
(During the course, we covered these just before the midterm; it was intended that students
see these topics but not be expected to master them.)

9.1 Divisibility Tests
The following clip illustrates the Price Is Right game of Hit Me.

https://www.youtube.com/watch?v=n5dZcIq7fIk&t=189s

Game Description (Hit Me (The Price Is Right)): The contestant plays a game of
blackjack against the dealer, where the objective is to get a total of 21 without going over.
The dealer plays as in ordinary blackjack: it deals two cards at random, and if it has a total
of 16 or less it keeps drawing cards until it is over 16.
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The contestant is shown six prizes along with six prices, each of which is nx the actual
price of the item. Behind each prize is a card worth n. The contestant chooses prices one at
a time and her hand is made up of these cards.

One of the prices will always be exactly right (so n = 1, and the card is ace, which in
blackjack you may count as eleven), and one of them will be ten times the right price. If the
contestant picks these two prizes first, she gets a blackjack (21) and wins no matter what
the dealer has. Otherwise, she still has some opportunities to win.

In the clip, the contestant is shown the following prizes and prices: some kind of joint
cream for $5.58; toothpaste for $14.37; some fragrance for $64.90; a six-pack of juice for (7777
— poor camera work); some calcium supplements for $76.79; and some denture adhesive for
$27.12.

We now ask which cards these prizes might hide. And for this we review the divisibility
tests from number theory:

e A number is divisible by 2 iff its last digit is.

e A number is divisible by 3 iff the sum of its digits is.

A number is divisible by 4 iff its last two digits are.

A number is divisible by 5 iff its last digit is.

A number is divisible by 6 iff it is divisible by both 2 and 3.

There are divisibility tests for 7, but it is probably easier to just try dividing by 7 in
your head.

A number is divisible by 8 iff its last three digits are.

A number is divisible by 9 iff the sum of its digits is.
e A number is divisible by 10 iff its last digit is 0.

No, ‘iff” is not a typo. The word iff is mathematical short-hand for if and only if, describing
a necessary and sufficient condition. For example, if the sum of a number’s digits is
divisible by 3, then the number is divisible by 3. If the sum of a number’s digits is not
divisible by 3, the number is not divisible by 3.

In mathematics we are always very happy when we have necessary and sufficient con-
ditions. Sometimes we have only one or the other. For example, if a number ends in the
digit 6, then we know it is divisible by 2, but vice versa. Conversely, if we want to test if a
number is divisible by 8, we can just apply the divisibility test for 4. If the number is indeed
divisible by 4 then we have more work to do, but if it’s not then it can’t be divisible by 8
either.

So we can use these to figure out what prices are divisible by what.
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e 558 is divisible by 2, 3, 6, and 9. Pretty obviously the joint cream is not 62 cents, but
it could well be $2.79 and so this one is a little bit tricky to guess.

So, the card could be any of the ace, two, three, six, or nine, with the ace or the two
more likely.

e 1437 is divisible by 3 (only). It looks like the toothpaste is $4.79.

e 6490 is divisible by 2, 5, and 10. If the price of the juice does not end in a ten, and we
know that one of the cards is a ten (which it always is), then we know this has to be
the ten.

e We have no idea what card the juice hides, because the camera operator is incompetent.

e 7679 is divisible by 7 (only). The cheap way to see this is to eliminate 3 and 9
immediately; it’s not even, it’s not divisible by 5, so 7 is the only thing that’s left
unless we believe that the supplements cost this much money.

We can also notice that 7700 is divisible by 7; now subtract 21.
e 2712 is divisible by 2, 3, 4, 6, and 8. It’s difficult to guess the actual price.

We can see if that if you are willing to do some arithmetic in your head, you can do quite
well in this game!

9.2 Bonkers, Gray Codes, and Mathematical Induction
Here is a clip of the Price Is Right game of Bonkers:

https://www.youtube.com/watch?v=3EqBci60QNg

Game Description (Bonkers (The Price Is Right)): The contestant is shown a prize
whose price is four digits. She is then shown a board with a four digit price for the item.
Each digit is wrong, and there are spaces to put paddles above and below each digit.

She must guess whether each digit is too high or too low, by placing paddles in the
appropriate location and hitting a button (after which she gets the prize if her guess is right,
and buzzed if it is wrong). She has thirty seconds and may guess as many times as she is
physically able to.

She does win the prize, but she only gets off four guesses and wins at the last second.
Her strategy leaves much to be improved upon. Here is a contestant who puts on a much
better show:

https://www.youtube.com/watch?v=1ZzBubK_aBA
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We can ask: what’s the optimal strategy? Is there an efficient, and easily remembered,
algorithm to go through every possibility?

The best we can possibly do is to move 19 paddles. You make some starting guess (you
need to move 4 paddles for this), and then there are 15 more possible guesses. (The total
number of possibilities is 24 = 16.) We will achieve this, and more.

Theorem 9.1 Suppose you play a game of Bonkers with n digits (n = 1,2,3,4,...), and the
n paddles are arranged in any guess. Then it is possible to cycle through all remaining 2™ — 1
guesses by moving only one paddle at a time — so 2™ — 1 paddle moves.

We are interested in the case n = 4 — but it is actually easzer to prove this for all n at
the same time! The algorithm is beautifully simple:

e Step 1. Go through all possibilities for the first n — 1 paddles. This requires 2" ' — 1
moves.

e Step 2. Move the last paddle. This requires 1 move.

e Step 3. Again go through all possibilities for the first n — 1 paddles. This requires
27=1 — 1 moves.

The total number of moves required is
- +1+@@ ) =221 +1-1=2"—1.

So in other words, if we can solve Bonkers with one paddle, we can solve it with two. If we
can solve Bonkers with two paddles, we can solve it with three. If we can solve Bonkers with
three paddles, we can solve it with four. And so on, forever. The solution with one paddle
is trivial (2! —1 =1, and we simply move the paddle from one slot to the other), but this is
the building block that sets off a chain reaction, allowing us to solve Bonkers for any number
of paddles. So if the price was twenty digits, we could win the game within 1,048,595 moves
— twenty to fix the paddles initially, and 220 — 1 = 1048575 to iterate through the remaining
guesses.

This process of reasoning is known as induction by mathematicians, and recursion by
computer programmers. In each case it is an extraordinarily powerful tool.

So let’s see how it works in practice:

e Bonkers with one paddle: Move the following paddles in order: 1. If our starting
position is T (T for top and B for bottom), then this results in the following sequence
of positions: T, B.

e Bonkers with two paddles: Move the following paddles in order: 1,2, 1. If our starting
position is T'T, then this results in the following sequence of positions: TT, BT, BB,
TB.
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e Bonkers with three paddles: Move the following paddles in order: 1,2,1,3,1,2,1. If
our starting position is TTT, then this results in the following sequence of positions:
TTT, BTT, BBT, TBT, TBB, BBB, BTB, TTB.

e Bonkers with four paddles: Move the following paddles in order: 1,2,1,3,1,2,1,4,1,2,1,3,1,2, 1.
If our starting position is T'T'T, then this results in the following sequence of positions:
TTTT, BTTT, BBTT, TBTT, TBBT, BBBT, BTBT, TTBT, TTBB, BTBB, BBBB,
TBBB, TBTB, BBTB, BTTB, TTTB.

We can see the recursive structure of our solutions more clearly in the instructions than in the

resulting sequence of paddles. For example, if we write (sequence for 3) for 1,2,1,3,1,2,1,

then the last sequence for 4 is (sequence for 3), 4, (sequence for 3). Similarly if we call that

whole thing (sequence for 4), the sequence for 5 is (sequence for 4), 5, (sequence for 4).
The same pattern can be seen in the tick lengths on many rulers!

These sequences of T’s and B’s are known as binary Gray codes and have applications
in electrical engineering.

9.3 Inclusion-Exclusion

The principle of inclusion and exclusion is a bit difficult to explain, but it is a powerful
one. It does not really come up when analyzing game shows, but it illustrates many of the
same principles. It is most easily explained by example.

For example, suppose we want to count elements in the union AU B, where A and B are
any two sets. Then, we have

N(AUB) = N(A)+ N(B) — N(ANB).

This is illustrated by the following Venn diagram. Everything in AN B was counted twice —
once for A, once for B, so we need to subtract it once to make sure it wasn’t double counted.

Example 9.2 How many integers between 1 and 100 are divisible by either 2 or 3¢

Solution. There are 50 integers in the set divisible by 2, and 33 divisible by 3. (3 x 1
through 3 x 33.) An integer is divisible by both 2 and 3 if and only if it is divisible by 6,
and there are 16 of these.
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So the count is
50 + 33 — 16 = 67.

You can check it! Another way to count the same: an integer n is divisible by 2 or 3 if
its remainder after division by 6 is 2, 3, 4, or 0. So, four out of every six. In the first 96
integers, there are 16 groups of six and exactly 64 integers in this range that we want to
count. Finally, out of the last four integers (97, 98, 99, and 100) there are fhree we want to
count. So 67 total.

If we have three sets A, B, and C', then the rule is

N(AUBUC)=N(A)+N(B)+N(C)—N(ANB)—N(ANC)—N(BNC)+ N(ANBNC).

Here is a Venn diagram.

A

The formula is probably not obvious, but you can check it from the diagram. For example,
if an element is in A, not B, and not C, then the number of times it is counted is

1404+0-0-0-0+0=1.

The terms are in the same order as in the formula above. It appears in only the N(A) term
on the right!
If an element is in A and B, but not C, then the number of times it is counted is

1+1+40-1-0—-0+0=1,
and if an element is in all three then the number of times it is counted is
1+14+1—-1—-1—-1+1=1.

The other cases are exactly analogous. So, each element is counted exactly once, unless it is
in none of the sets.

The general principle of inclusion-exclusion says that this process works with any
finite number of sets. Given sets A, As, through Ay,
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e Consider each of the sets, and sum all of their sizes. Then,

e Consider the double overlaps, and sum the sizes of all the double overlaps. Subtract
these. Then,

e Consider the triple overlaps, and sum all their sizes. Add these. Then,
e Consider the quadruple overlaps, and sum all their sizes. Subtract these. Then, ....

e And so on. Keep going, alternating addition and subtraction until you've counted the
overlap of all of the sets. (You will count it negative if there are an even number of
sets, and positive if there are an odd number of sets.)

9.3.1 The umbrella problem

We consider the following problem:

The Umbrella Problem. One hundred guests attend a party. It is raining, and they
all bring umbrellas to the party. All of their umbrellas are different from each other.

At the end of the party, the host hands umbrellas back to the guests at random. What
is the probability that nobody gets their own umbrella back?

This was asked as a probability question, but we will reframe it as a counting question.
We consider the number of ways to give umbrellas out to the party guests. This is essentially
the same as a permutation of the umbrellas, so there are 100! possibilities. This number is
equal to

93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000.

We just have to count how many of them don’t involve giving anyone their own umbrella!
No problem, right?

We'll do the opposite count, and count how many involve giving at least one person their
own umbrella. We do this using inclusion-exclusion. A; is the set of ways to distribute the
umbrellas, with person #1 getting their own umbrella. A, is the set of ways to distribute
the umbrellas, with person #2 getting their own umbrella. And so on, there are a hundred
sets.

Note that, when counting A;, we don’t have to worry about whether other people get
their umbrella or not! This is much easier. If we needed to count the ways to distribute
the umbrellas, with person #1 and only person #1 getting their umbrella, this would be
harder. (It would be like the mani problem we're solving here.) The nice thing is that we
have formulated the problem so we never have to worry about who doesn’t get their own
umbrella, only who does.

We count N(A;UAsU---UAjq) and then subtract it from that big number. We do this
using inclusion-exclusion.
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o N(A;) is just 99!. We give person #1 their own umbrella, and distribute the other
umbrellas any which way.

N(Ajy) through N(Ajgo) are also each 99!, for the same reason.
So, the total number added in this step is

99! x 100 = 100!.

o N(A; U As) is 98!. We give the first two people their own umbrella, and distribute the
others however.

How many sets are there like this? Exactly the number of ways to choose two people

out of 100, which is C(100,2) = %!02!!. So the total number subtracted in this step is

100! 100!

| o
B o8l = o

o N(A;UAyUA3) is 97!, as before. The number of sets like this is C'(100,3) = 29%  and

CIEIE
the number added in this step is

100! 100!

971 % = 2
“ 973l T 30

e The pattern continues. For the four-fold intersections we subtract

100! 100!
96! X —— = ——,
96!4! 4!
and then we add %0!, subtract %0!, and so on. The very last step is subtracting %85 -

the one way in which we can give everyone their correct umbrella!

So the total number of ways to distribute the umbrellas with at least one person getting their

umbrella is
L00! 100! n 100! 100! . 100!
' 21 3! 4] 100!

The number of ways to distribute the umbrellas with nobody getting their umbrella is 100!
minus this, or

100! 100! 100! 100!
— _'_ —

100! — 100! L
008 = 100"+ == = == + * o000

which we can rewrite as

1111 1
1000114 — 4o
00( TR TR T +100!)’

and so upon dividing by 100! (which was the total number of ways to distribute the umbrellas
we see that the probability that no one gets their umbrella is
1 1 1 1

oy oot
T Ty T T T 000
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This is a pretty good answer! But we can do better if we know some calculus. Calculus tells
us that the Taylor series expansion for e” is
s _ 1 2 23 2t
e’ = +$+§+§+I+“',
and so plugging in e~! we get

1 1+1 1+1 1+ +1 1+
N 21 31 4! 5l 100! 101!

If we truncate after ﬁ then we get exactly our umbrella probability, and also by the

alternating series test we make an error less than 4, which is very VERY small - less
than one over the GIANT number above, and so the probability that no one gets their
umbrella is, within an error bounded by ﬁ, equal to

el=1—14 = — =+ — —-..=0.36787944117144232159552377016146086745 - - -

9.3.2 Switcheroo

The game Switcheroo is illustrated in the following clip.

https://www.youtube.com/watch?v=nvSMVAuGpAE

Game Description (Switcheroo — The Price Is Right): The contestant is shown five
prizes — four very small prizes and a car. The contestant is also shown the price of each with
the tens digits removed. The tens digits of the prizes are all different from each other, and
the contestant is given five blocks with the tens digits written on them.

The contestant must match the blocks to the removed tens digits. She has thirty seconds
to do this, after which she is shown how many prizes she has matched correctly (but not
which prizes she has matched correctly). She may then switch around the blocks if she likes.
She wins all prizes which she prices correctly.

We will ask the following question: A contestant has no idea what any of the prices
are, but otherwise plays optimally. With what probability does she win the car?

Since she has no idea what the prices are, she just places the blocks randomly in the first
round (any placement is as good as any other). Her choice of strategy depends on how many
she gets right on the first round:

e If she gets 2, 3, or 5 correct then this is better than expected and she should stick with
1. . . . 2 3 .
her guess. Her probability of winning the car is £, £, or 1 respectively.
(Note that there is no way to get exactly four correct, or equivalently, exactly one
wrong. If one prize’s block is in another prize’s slot, then her guesses for both prizes

must be wrong.)
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If she gets 1 correct then she is indifferent to switching or leaving everything in place.
There is a % probability that her one correct item is the car, and a % probability that
it is one of the other items — in which case each of the remaining numbers is equally
likely to be the correct price for the car.

If she gets none correct, then she should switch. This is better than getting exactly one
correct because she got some reliable information: her guess for the car is wrong. So
she picks one of the other numbers and wins with probability }l.

So we have to figure out the probabilities of each of these outcomes on the first round!
There are 5! = 120 ways to place the blocks, and so all of these probabilities will be fractions
with 120 in the denominator. In our analysis we will label the prizes A, B, C, D, and E.

Five right. There is exactly one way.

Three right. First we ask: in how many ways can the contestant get A, B, and C right
and D and E wrong? One: ABCED.

So the number of ways to get exactly three right is C'(5,3) = 10 — the number of
subsets of three of the five prizes.

Two right. First we ask: in how many ways can the contestant get A and B right and
C, D, and E wrong? There are two: ABDEC and ABECD.

So the number of ways to get exactly three right is C'(5,3) x 2 = 10 x 2 = 20: there
are ten ways in which to choose which subset she gets right, and for each, two ways to
screw the rest up.

None right. This is the umbrella problem!! The answer is

5 5 5 5
5l = 4 = =
5! 5.+2! 3!+4! = = 44.

One right. By process of elimination,
120 — (1 4+ 10+ 20 4 44) = 120 — 75 = 45.

Alternatively, there are five ways to choose one prize to get right, and

4'—4!—}—%—;1—5 1—5:9
ways to mix up the rest, and 5 x 9 = 45.
So her probability of winning in the end is
QL 10 3 0 2 45 1 a4 1T
120 120 5 120 5 120 5 120 4 24
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10 Review

Here we briefly review the main ideas of the course and propose some sample questions
relevant to each. (This is not a comprehensive listing of every topic covered.)

Probability and counting We formally defined probability in terms of sample spaces and
events. These were subject to the addition and multiplication rules. The former said that
probabilities for disjoint events add; the latter that probabilities for sequential events multi-
ply.

We also supplemented this material with some material on permuations and combinations
— you should remember the formulas for those. These help with counting sizes of events and
sample spaces.

Good sample questions involve coins, dice, and cards. You are dealt two cards. What is
the probability that (1) they are of the same suit; (2) they are each ten or higher; (3) they
could possibly fit into a five-card straight; etc. (Compose your own!) You toss three dice.
What is the probability the sum is odd? Even? At least twelve? Bigger than 14 or smaller
than 57 You flip ten coins. What is the probability that they all come up heads? Half of
them?

Probability questions also came up in various game shows. On The Price Is Right, Rat
Race, Let 'Em Roll, Squeeze Play, Switcheroo, 3 Strikes, Spelling Bee, and Plinko (among
others) provide lots of probability questions. Watch an episode, start to finish, and see what
you can come up with. You can also come up with interesing probability questions watching
Deal or No Deal: what is the probability that the contestant will have eliminated the two
most valuable briefcase by the time the bank’s first offer comes in?

Finally, poker was an excellent source of probability questions.

Fxpected value. Make sure you understand how expected value works. Expected value
comes up in poker, in game shows like Let’s Make a Deal and Deal or No Deal, and pretty
much every scenario where probability is relevant. Here again you can compose your own
questions. You toss three dice, and get a dollar for every six you roll. Alternatively, you get
a dollar if at least two dice are the same. What is the value of playing such a game?

Remember the rule of linearity of expectation, and review its applications. The idea is
that expected values add. For example, if you get a dollar for every six you roll in three dice,
you do not need to compute the probabilities of rolling zero, one, two, or three sixes. Just
compute the expected value of one die, and multiply by three.

We also introduced conditional probability. Make sure you understand the definition and
why it is true. Review the Monty Hall Problem and its variants (and related games like
Barker’s Markers). And be sure you understand how to use Bayes’s theorem, either in the
form of the formula or in terms of reasoning via probability trees.

Strategic game theory. We covered this very lightly (it is easily worth an entire under-
graduate course). Understand how these are set up and how a payoff matrix corresponds to
a game. You should also be able to find the Nash equlibrium in a game with two choices for
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each player. This might be a pure or mixed strategy. (Try finding the Nash equilibria of all
the games we discussed, and thinking up your own games.)

Backwards induction. There were no exercises on this, and any exam problems on this
will be relatively easy. Note also that we did some backwards induction problems before
introducing it per se. For example, Punch-a-Bunch is very much backwards induction.

11

Project Ideas

Part of the course requirements is a term project: study a game or game show in depth,
write a paper analyzing it, and give a presentation in class.
Here are some ideas. Of course, feel free to come up with your own.

Deal or No Deal: This is an easy to understand game from the contestants’ point of
view. What about the producers? How does the bank determine its offers?

Watch a bunch of episodes of the show and write down what happens. Attempt to
determine some sort of formula that predicts what the bank will offer.

Press Your Luck: One interesting project would be to investigate the patterns behind
the show, just as Michael Larson did. Watch old YouTube videos, and hit freeze frame
a lot! Try to describe the patterns, and see if you could win $100,000 too.

Switcheroo: Here is a fascinating, and deep Price Is Right game:
https://www.youtube.com/watch?v=nvSMVAuGpAE

Try to figure out the optimal strategy. You will have to assume that the contestant
has some idea how much the small prizes cost, but very imperfect information.

Race Game: A somewhat easier Price is Right game. Here is a clip:
https://www.youtube.com/watch?v=CkqZkqeNyKU

You might try to figure out the best strategy, assuming the contestant has no idea how
much the prizes cost.

This is somewhat similar to the game Mastermind (see the Wikipedia page). But don’t
neglect the fact that some prizes are closer to the lever than others!

Poker: If you enjoyed the poker discussion, you might want to dig deeper. I recom-
mend reading at least the first of Harrington’s books, watching some poker tournaments
online, and then trying to analyze what happened.
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12 Review of Games, Links, and Principles

(p- The Addition Rule (1). Suppose E and F are two disjoint events in the same
sample space — i.e., they don’t overlap. Then

P(E or F)= P(E) + P(F).

(p. The Multiplication Rule. The multiplication rule computes the probability that
two events E and F' both occur. Here they are events in different sample spaces.
The formula is the following:

P(FE and F) = P(E) x P(F).
It is not always valid, but it is valid in either of the following circumstances:

e The events E and F' are independent.

e The probability given for F' assumes that the event E occurs (or vice versa).

(p. Michael Larson. Here is a bit of game show history. The following clip comes
from the game show Press Your Luck on May 19, 1984.

https://www.youtube.com/watch?v=UzggoA41Lwk

(p. Game Description (Card Sharks): Each of two contestants receives a lineup of

five cards. The first is shown to each contestant, and a marker is placed on the first card.
The objective of each round is to reach the last card.

A turn by the contestant consists of the following. She starts with the (face-up) card at
the marker, and may replace it with a random card if she chooses. She then guesses whether
the next card is higher or lower, which is then revealed.

If is the last card and her guess is correct, she wins the round. Otherwise, she may keep
guessing cards for as long as she likes untill one of three things happens: (1) she guesses the
last card correctly, and wins; (2) she guesses any card incorrectly, in which case the cards
she has guessed are all discarded and replaced with new cards (face down); (3) she chooses
to end the turn by moving her marker forward to the last card guessed correctly.

The round begins with a trivia question (I don’t describe the rules for that here), and
the winner gets to take a turn. If this turn ends with a freeze, the contestants go to another
trivia question; if it ends with a loss, the other contestant takes a turn.
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(p. Herﬂ is a typical clip:

https://www.youtube.com/watch?v=bUvOCRU6t50

(p. This videﬂ illustrates a playing of the Price Is Right game Ten Chances:

https://www.youtube.com/watch?v=1iY_gmGcDKXE

(p. Game Description (Ten Chances (The Price Is Right)): The contestant is shown

a small prize, a medium prize, and a large prize. She has ten chances to win as many prizes
as she can.

The price of small prize has two numbers in it, and the contestant is shown three different
numbers. She then guesses the price of the first prize. She takes as many chances as she
needs to.

Once she wins the small prize, she attempts to win the medium prize. The price of the
medium prize has three numbers in it, and the contestant is shown four.

Finally, if she wins the medium prize, she attempts to win the car. Its price has five
numbers in it, and the contestant is shown these five.

(p- [22)

Definition 12.1 Let T be a string. For example, 01568 and 22045 are strings of numbers,
ABC and xyz are strings of letters, and @ — ©&E, is a string of symbols. Order matters:
01568 s not the same string as 05186.

A permutation of T' is any reordering of T.

(p- [22)

22Summary of the clip: (Please note. The trivia questions are off-color and arguably sexist. This is
unfortunately common on this show.) The contestants are Royce and Cynthia. Cynthia wins the first trivia
question. Her initial card is a king. She keeps it and guesses lower; the second card is a two. She guesses
higher; the third card is a nine. She freezes on position three.

Royce wins the next trivia question. His initial card is an eight; he changes it and gets a four. He guesses
higher; the second card is a six. He guesses higher; the third card is a nine. He freezes on position three.

Royce wins the next trivia question. He starts on position three and chooses to replace the nine, and gets
a three. He guesses higher; the fourth card is a five. He guesses higher; the fifth card is a king and Royce
wins the round.

23 Summary of the clip: She plays Ten Chances for a pasta maker, a lawnmower, and a car. The digits in
the pasta maker are 069, and she guesses the correct price of 90 on her second chance. The digits in the
mower are 0689, and she guesses the correct price of 980 on her third chance. (Her third chance overall;
she took only once to win the mower.) The digits in the car are 01568, and she guesses the correct price of
16, 580 on her first try (and wins).

Barker then hides beyond the prop ... and, uh, (please note) the contestant violates his personal space.
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Proposition 12.2 Let T be a string with n distinct symbols. Then there are ezxactly n!
distinct permutations of T'.

(p.

Definition 12.3 Consider a random process whose outcome can be described as a real num-
ber. Suppose that the possible outcomes are aq, as, . .. a,, which occur with respective proba-
bilities p1,pa,...,pn. Then the expected value of this process is

n

Z agpr = a1p1 + agps + - - - + appi.
k=1

(p. Game Description (Wheel of Fortune, Simplified Version): The contestants play

several rounds where they try to solve word puzzles and win money. (The contestant who
has won the most money then gets to play in a bonus round.)

The puzzle consists of a phrase whose letters are all hidden. In turn, each contestant
either attempts to solve the puzzle or spins the wheel. If the contestant attempts to
solve, he states a guess; if is correct, he wins all the money in his bank, and if it is wrong,
play passes to the next player.

The wheel contains lots of spaces with various dollar amounts or the word ‘bankrupt’.
When the contest spins, the wheel comes to rest on one of these spaces. If ‘bankrupt’,
the contestant loses all his money from this round and play passes to the next contestant.
Otherwise, the contestant chooses a letter. If that letter appears in the puzzle (and has not
yet been guessed), then each of these letters is revealed and the contestant wins the amount
of money on his space for each time it appears. If the letter does not appear, the contestant
wins nothing and play passes to the next contestant.

(p. Consider the episode of Wheel of Fortune shown in this clip:
https://www.youtube.com/watch?v=A8bZUXi7zDE

Robert wins the first round in short order. After guessing only two letters (and buying a
vowel) he chooses to solve the puzzle. Was his decision wise?

(p. Game Description (Punch-a-Bunch (The Price Is Right)): The contestant is

shown a punching board which contains 50 slots with the following dollar amounts: 100 (5),
250 (10), 500 (10), 1000 (10), 2500 (8), 5000 (4), 10,000 (2), 25,000 (1). The contestant can
earn up to four punches by pricing small items correclty. For each punch, the contestant
punches out one hole in the board.

The host proceeds through the holes punched one at a time. The host shows the contes-
tant the amount of money he has won, and he has the option of either taking it and ending
the game, or discarding and going on to the next hole.
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(p. Here is a typical playing of Punch-a-Bunch:

https://www.youtube.com/watch?v=25THBiZNPpo

(p. Here is a typical clip from Who Wants To Be a Millionaire:

https://www.youtube.com/watch?v=sTGx0qp3qB8

(p. Game Description (Who Wants to be a Millionaire?): The contestant is provided

with a sequence of 15 trivia questions, each of which is multiple choice with four possible
answers. They are worth an increasing amount of money: 100, 200, 300, 500, and then (in
thousands) 1, 2, 4, 6, 16, 32, 64, 125, 250, 500, 1000. (In fact, in this epsiode, the million
dollar question was worth $2,060,000.)

At each stage he is asked a trivia question for the next higher dollar amount. He can
choose to answer, or to not answer and to keep his winnings so far. If he answers correctly,
he goes to the next level. If he answers incorrectly, the game is over. At the $1,000 and
$32,000 level his winnings are protected: he is guaranteed of winning at least that much
money. Beyond that, he forfeits any winnings if he ventures an incorrect answer.

He has three ‘lifelines’, each of which may be used exactly once over the course of the
game: ‘50-50’, which eliminates two of the possible answers; ‘phone a friend’; allowing him
to call a friend for help; and ‘ask the audience’, allowing him to poll the audience for their
opinion.

(p. Principle of Linearity of Expectation. Suppose that we have a random process
which can be broken up into two or more separate processes. Then, the total expected value
is equal to the sum of the expected values of the smaller processes.

This is true whether or not the smaller processes are independent of each other.

(p. The next questions concern the Price is Right game Let ’em Roll. Here is a clip:

https://www.youtube.com/watch?v=gbqF-W9cSpo

(p. Game Description (Let ’em Roll (Price Is Right)):

The contestant has five dice to roll. Each die has $500 on one side, $1,000 on another,
$1,500 on a third, and a car symbol on the other three. The contestant rolls all five dice. If
a car symbol is showing on each of them, she wins the car. Otherwise, she wins the total
amount of money showing. (Car symbols count nothing, unless she wins the car.)

By default, the contestant gets one roll, and may earn up to two more by correctly
pricing small grocery items. After each roll, if she gets another roll, she may either keep all
the money showing, or set the dice showing ‘car’ aside and reroll only the rest.
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(p. The multiplication rule for counting. Suppose that an operation consists of &
steps, and:

e The first step can be performed in n; ways;

e The second step can be performed in ny ways (regardless of how the first step was
performed);

e and so on. Finally the kth step can be performed in n; ways (regardless of how the
preceding steps were performed).

Then the entire operation can be performed in nins...n; ways.

(p. Notation. Write P(n,r) for the number of r-permutations of a string with n
distinct symbols.
We have the following formula:

(p. If we start with a string (or a set) with n distinct elements, then an r-combination
is a string or r of these elements where order doesn’t matter, or equivalently a subset of r of
these elements.

(p. Notation. Write C(n,r) or () for the number of r-combinations of an n-element
set.

(p.

Theorem 12.4 We have
Clnyry= (") = _n
\r) rlln—r)

(p. Here is a video of the Price Is Right game Plinko:

https://www.youtube.com/watch?v=qr7oYqcgsXQ

(p. Game Description (Plinko (The Price Is Right)): The contestant drops up to five

chips down a board. (She starts off with one, and can win up to four more by pricing small
items.) She drops them down a board which has a lot of pegs and a variety of prizes at the
bottom. (The shape of the board is relevant, and we will discuss it more in due course.)
She hopes to land her chips into a $10,000 slot in the middle, and the other slots have prizes
between zero and $1,000.

(p. Pascal’s Triangle. To write down Pascal’s Triangle, proceed as follows.
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The top row has a solitary 1 in it.

Each row has one more number than the previous, with a 1 at each edge. Each
number in the middle of the table is equal to the sum of the two above it.

Proceed for as many rows as you like.

e By convention the rows are numbered as follows: the top row is the zeroth row. After
that, the rows are numbered 1, 2, 3, etc., and the nth row starts with a 1 and an n.

(p. Our idealized version of Plinko is illustrated nicely by the following computer
demonstration:

phet.colorado.edu/sims/plinko-probability/plinko-probability_en.html

(p.

Proposition 12.5 The numbers in the nth row of Pascal’s Triangle sum to 2".

(p.

Proposition 12.6 The numbers in the nth row of Pascal’s Triangle are C(n,0), C(n,1),
..., C(n,n) in order.

(p.

Proposition 12.7 We have C(n,r) = C(n,n —r) for all n and r.

(p.

Proposition 12.8 The biggest numbers are always in the middle.

(p.

Proposition 12.9 We have, for all n and r, that

C(n,r)+C(n,r+1)=C(n+1,r+1).

(p. [47)
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Proposition 12.10 You can read off a rule for FOILing from Pascal’s Triangle. In partic-
ular, you have

(x+1y)" = C(n,0)2" + C(n, 1)a" y + C(n,2)z" *y* + --- + C(n,n)y".

(p.

Proposition 12.11 The alternating sum of each row of Pascal’s Triangle (after the zeroth)
15 0.

(p.

Proposition 12.12 If you color all the odd numbers blue and the even numbers red, you
will create a familiar pattern called the ‘Sierpinski triangle’ which is o fractal.

(p.

Proposition 12.13 Suppose you draw lines through Pascal’s Triangle at an angle.

For example, start at any of the 1’s on the left. Circle it. Then, go over to the right one
and up and right one, and circle that number. Then, again go over to the right one and up
and right one and circle that. Keep going until you run out of numbers.

If you add up all the numbers you circled, you get .....

(p.

Proposition 12.14 The distribution of Pascal’s triangle approaches a nice limit as n — oo.

(p. Here is a website which allows you to conduct experiments like this:

http://www.math.uah.edu/stat/apps/BinomialTimelineExperiment.html

(p.

https://www.youtube.com/watch?v=-vRty_kkfgw

(p-

Definition 12.15 Let A and B be events in a sample space S. If P(A) # 0, then the
conditional probability of B given A, written P(B|A), is

P(ANB)

P(BIA) = =5
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(p-

https://www.youtube.com/watch?v=V6gCNWSwFIY

(p. Game Description (One Away — The Price Is Right): The contestant is shown

a car and a five digit price for the car. Each digit in the price is off by one — too low or too
high. She then guesses the price of the car, one digit at a time.

If her guess is correct, she wins the car. Otherwise, if at least one digit is correct, she is
told how many digits she has right and can make corrections as she sees fit.

(p. The Monty Hall Problem. Monty Hall, on Let’s Make a Deal, shows you three
doors. Behind one door is a car, behind the others, goats. You pick a door, say No. 1, and
the host, who knows what’s behind the doors, opens another door, say No. 3, which has a
goat. He then says to you, “Do you want to switch to door No. 27”7

Is it to your advantage to switch your choice?

(p.

Theorem 12.16 (Bayes’ Theorem) Suppose that A and B are any two events. Then we
have

P(B|A)P(A)

(p. The Monty Hall Problem — Zonk! Monty shows you three doors, behind one
of which is a car. You pick Door #1, and Monty shows you Door #3, behind which is — the
car!

You lose. Zonk.

(p. Game Description (Golden Balls (Final Round)): Two players play for a fixed

jackpot, the amount of which was determined in earlier rounds. They each have two balls,
labeled ‘split” and ‘steal’. They are given some time to discuss their strategies with each
other. Then, they each secretly choose one of the balls and their choices are revealed to each
other.

If both choose the ‘split” ball, they split the jackpot. If one chooses the ‘split’ ball, and
the other ‘steal’, the player choosing ‘steal’” gets the entire jackpot. If both players choose
‘steal’; they walk away with nothing.

(p. Game Description (Jeopardy — Final Jeopardy): Three players come into the

final round with various amounts of money. They are shown a category and write down a
dollar amount (anything up to their total) that they wish to wager.
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After they record their wagers, they are asked a trivia question. They gain or lose the
amount of their wager, depending on whether their answer was correct. Only the top finisher
gets to keep their money.

(p.

Definition 12.17 By a mixed strategy we mean an assignment of a probability (between
0 and 1, inclusive) to each possible strategy.

Definition 12.18 Suppose you and your opponent each choose a (mized) strategy for a
game. Then these strategies form a Nash equilibrumP| if: your current strategy is optimal
against her current strategy, and her current strateqy is optimal against your current strateqy.

(p. Game Description (The Big Wheel — Price Is Right): The Big Wheel consists

of twenty numbers — 5 through 100 (i.e. five cents through a dollar), in increments of five.
Three players compete, and the player who spins the closest to a dollar without going over
advances to the Showcase Showdown.

The players spin in order. Each player spins once, and then either keeps the result or
elects to spin a second time and add the two results. If the result is higher than $1.00, the
player is eliminated immediately. The winner is the player who spins the highest without
going over. (If two or more players tie, they advance to a tiebreaker.)

In addition, players earn a bonus if they spin exactly a dollar — but we will ignore this.

(p.[101) Game Description (Hit Me (The Price Is Right)): The contestant plays a game

of blackjack against the dealer, where the objective is to get a total of 21 without going over.
The dealer plays as in ordinary blackjack: it deals two cards at random, and if it has a total
of 16 or less it keeps drawing cards until it is over 16.

The contestant is shown six prizes along with six prices, each of which is nx the actual
price of the item. Behind each prize is a card worth n. The contestant chooses prices one at
a time and her hand is made up of these cards.

One of the prices will always be exactly right (so n = 1, and the card is ace, which in
blackjack you may count as eleven), and one of them will be ten times the right price. If the
contestant picks these two prizes first, she gets a blackjack (21) and wins no matter what
the dealer has. Otherwise, she still has some opportunities to win.

(p. [[02)

https://www.youtube.com/watch?v=3EqBci60QNg

24Named after John Forbes Nash, as depicted in the movie A Beautiful Mind.
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(p.[102) Game Description (Bonkers (The Price Is Right)): The contestant is shown

a prize whose price is four digits. She is then shown a board with a four digit price for the
item. Each digit is wrong, and there are spaces to put paddles above and below each digit.

She must guess whether each digit is too high or too low, by placing paddles in the
appropriate location and hitting a button (after which she gets the prize if her guess is right,
and buzzed if it is wrong). She has thirty seconds and may guess as many times as she is
physically able to.

(p.

https://www.youtube.com/watch?v=iZzBubK_aBA

(p. The Umbrella Problem. One hundred guests attend a party. It is raining, and
they all bring umbrellas to the party. All of their umbrellas are different from each other.

At the end of the party, the host hands umbrellas back to the guests at random. What
is the probability that nobody gets their own umbrella back?

(p.|108) Game Description (Switcheroo — The Price Is Right): The contestant is shown

five prizes — four very small prizes and a car. The contestant is also shown the price of each
with the tens digits removed. The tens digits of the prizes are all different from each other,
and the contestant is given five blocks with the tens digits written on them.

The contestant must match the blocks to the removed tens digits. She has thirty seconds
to do this, after which she is shown how many prizes she has matched correctly (but not
which prizes she has matched correctly). She may then switch around the blocks if she likes.
She wins all prizes which she prices correctly.
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