
The Geometry of Numbers (Spring 2014): Homework 4
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Asterisks indicate problems representative of what might appear on the comprehensive exam.
Plusses indicate problems whose solutions will likely involve background beyond what has been
taught here and in 701/702.

1. (* 5 points) Verify directly, via brute force, that the discriminant of a binary cubic form is
SL2(Z)-invariant.

(You are welcome to outsource arithmetic, etc. to Sage or other software, but please use it
only for basic algebra and do not call any highbrow routines.)

2. (* 3 points) Let u3 + a2u
2v + a3uv2 + v3 be a binary cubic form with first and last coefficients

1. Prove that its discriminant is equal to the polynomial discriminant obtained by setting
either u or v equal to 1.

3. (* 10 points) Do the exercise spelled out on p. 23.4 of the lecture notes, relating discriminants
of forms to discriminants of polynomials.

4. (* 5 points) Carry out the details of the computation given on p. 23.5 of the lecture notes.

5. (* 10 points) Describe what the Delone-Faddeev correspondence says over (some or all of)
the following fields: C, R, Q, Fp, Q, C(t), Qp(t). Describe both sides of the correspondence,
and explain what conclusions Delone-Faddeev allows you to draw, in case any of them are
nontrivial.

6. (5 points) Prove that there are 1
3
(p2−1)(p2−p) irreducible binary cubic forms over Fp. (Hint:

use Delone-Faddeev.)

7. (12 points) Formulate the natural generalization of Delone-Faddeev to quartic forms and fields,
and illustrate by counterexample that it does not hold.

8. (* 5 points) Write down some cubic rings (including some of the weird ones) and compute
their discriminants.

9. (* 15 points) Work out several explicit examples of the Delone-Faddeev correspondence over
Z. Your examples should include reducible and irreducible binary cubic forms, including a
binary cubic form which factors as the product of a linear times a quadratic; integral domains,
rings with zero divisors but no nilpotents, and rings with nilpotents. Compute the relevant
discriminants, and summarize your conclusionsl.

10. (* 10 points) Is the following true or false?

Consider the cubic ring Z[α], where α3 + bα2 + cα + d = 0. Then, the corresponding cubic
form is u3 + bu2v + cuv2 + dv3.

If this is false (or imprecisely stated), find a better version of this statement if possible.


